
An Introduction
to the

Structure
of

Computers and Programs

Jerud J. Mead

Computer Science Department
Bucknell University

Lewisburg, PA 17387

September, 1997

Contents

I The Organization of a Computer 1

1 Computer Architecture 3

2 The Architecture of the Itty Bitty Machine 5
2.1 Memory Unit . 6
2.2 CPU . 6
2.3 Two Program Examples . 7

3 Representing Data 9
3.1 Representing Numbers on Paper . 9
3.2 Representing Rational Numbers . 11
3.3 Representing Data in the Computer . 14

II Specifying and Understanding Programs 19

4 Making Programming Easier 21
4.1 IBM Assembler Language . 21
4.2 Description Translation - Semantics . 23
4.3 Virtual Machine Levels . 24

5 A Formal Approach to Programming 25
5.1 Syntax . 25
5.2 Semantics . 25

i

Part I

The Organization of a Computer

1

Chapter 1

Computer Architecture

Just as with buildings, each computer has a “visible” structure referred to as its architecture. The
architecture of a building can be examined at various levels of detail: the number of stories and the size of
rooms, the details of door and window placement, the layout of electrical wiring or heating conduit. We can
look at a computer’s architecture at similar levels of detail.

At the highest level a computer can be seen as a collection of components connected by a “device”
called a bus (See Figure 1.1). The bus is a medium for communication amongst the components, with each
component having an address on the bus (the bus address). If one component must transfer a packet
of data to another device, it will create a message (containing the data) and put it on the bus along with
the bus address of the target device; each device “listens” to the bus and removes those messages with the
appropriate bus address.

CPU Memory

BUS

Keyboard

Disk
Screen

Network

Figure 1.1: Computer Architecture - Bus Level

The components connected by the bus are those with which you may already be familiar. The two central
components of a computer are its central processing unit (CPU) and its memory. Notice that these
are separate components on the bus. The CPU is (generally) the active component in a computer, with the
others being passive and responding to requests sent by the CPU. So, for example, the CPU sends a message
to the memory unit requesting that a data item be transferred to the CPU; or the CPU sends to the screen
a message containing the code for a character to be displayed. In this way the CPU can make use of a disk
drive, a keyboard and a video screen (this is a typical configuration).

The next level of computer architectural detail is the structure of the CPU and memory as well as the
mechanism which allows the combination to do work. The most common architecture for CPU’s is called the

3

4 CHAPTER 1. COMPUTER ARCHITECTURE

von Neumann architecture, named for the mathematician and early computer scientist John von Neumann
(1903-1957). A computer does its work by manipulating data according to a sequence of instructions (a
program). The main idea of the von Neumann architecture is that program instructions and data are kept
in memory together; a program is executed or run on a set of data by means of a process called the
fetch/execute cycle, the details of which are described in the next section. To aid in understanding the
process, we will describe a model computer, consisting of a CPU, memory, keyboard and screen. The model
is a greatly simplified version of a real computer, but has all the important architectural features.

Chapter 2

The Architecture of the Itty Bitty
Machine

The high-level architecture of the Itty Bitty Machine in Figure 2.1 shows four components: the CPU, a
memory unit, a keyboard and a video screen, which is “connected” to part of the memory. Associated with
the CPU is a set of instructions, referred to as the instruction set or machine language, which can be
carried out by the CPU. As described above, the job of the CPU is to sequence through a list of instructions,
carrying out each instruction in turn. In this section we will describe in detail the structure of the memory
unit and the CPU, including the instruction set and fetch/execute cycle.

Op
Code

Address
Field

Condition
Code

Program
Counter

Accumulator

CPU Memory Unit

00

01

02

03

04

05

06

07

08

09

11

12

13

14

15

16

17

18

19

10

20

21

22

23

24

25

26

27

28

29

31

32

33

34

35

36

37

38

39

30

40

41

42

43

44

45

46

47

48

49

51

52

53

54

55

56

57

58

59

50

60

61

62

63

64

65

66

67

68

69

71

72

73

74

75

76

77

78

79

60

80

81

82

83

84

85

86

87

88

89

91

92

93

94

95

96

97

98

99

90

Output
Screen

Character
Translater

Character
Translator

Keyboard

Instruction
Register

Figure 2.1: Itty Bitty Machine Architecture

5

6 CHAPTER 2. THE ARCHITECTURE OF THE ITTY BITTY MACHINE

2.1 Memory Unit

The memory unit of the Itty Bitty Machine consists of 100 cells called words, with each word consisting of
3 digits - each digit stores a decimal digit value, i.e., 0, 1, ..., 9. Each memory word has a 2 digit address (00
to 99). [Most modern computers use a binary (base-2) representation where each word consists of (usually)
32 binary digits or bits, each storing either 0 or 1.]

In fact, as is seen in Figure 2.1, memory is in two pieces. The first 80 memory locations are used as normal
memory. The last 20 memory locations, though they can be used as normal memory, are also connected to
the video screen in a technique known as memory mapped I/O. When a data value is stored in a location
between address 80 and 99, a character also appears on the screen at a predetermined location (address
80 corresponds to the left-most screen location, 81 to the next, etc.). So a character is displayed on the
screen by storing its numeric code in the appropriate memory location. Since only numbers can be stored in
memory, there is a translation which associates with each 3-digit number a corresponding character. This
translation takes place when a character is printed on the screen and also when a character is input from
the keyboard.

2.2 CPU

The CPU contains a small collection of special purpose memory locations, called registers, which facili-
tate data manipulation and instruction sequencing. The nature of these registers, the Itty Bitty Machine
instruction set and the fetch/execute cycle are described below.

Registers

The Itty Bitty Machine’s CPU has four registers, each with a specific use as indicated below. The registers
store data in the same way (base-10 digits) as the main memory, but the size of a register need not be the
same size as a memory word.

1. accumulator(ACC) This register acts as a scratch pad for the CPU. The accumulator size matches
that of the memory word because data is transferred from memory to the accumulator and from the
accumulator to memory (the process is described below). The CPU has the capability to add and
subtract values from the value stored in the accumulator.

2. Program Counter(PC) This register holds the memory address of the next instruction to be ex-
ecuted by the processor. The PC is 2 digits wide in order to exactly match the size of a memory
address.

3. Instruction Register (IR) The instruction register holds the instruction currently being executed
by the processor. The IR is broken into two parts: the left-most digit is an instruction code, or op
code, (described below) while the right 2 digits are (usually) interpreted as a memory address.

4. Condition Code Register (CC) This register holds one digit (actually either a 0 or a 1). This
register is used to store a value based on the comparison of two numeric values: the CC has value 0
(zero) if the compared values are not equal and value 1 if the values are equal.

These registers are manipulated each time the control unit executes an instruction.

Fetch/Execute Cycle

Remember that a CPU does its work by executing a machine language program which is stored in memory.
When a program is put into memory its instructions are placed in consecutive memory locations. The
memory address of the first instruction is placed in the PC and then the fetch/execute cycle begins. The
fetch/execute cycle consists of the following three steps (notice the references to the registers described
above).

2.3. TWO PROGRAM EXAMPLES 7

1. Fetch the value stored in memory at the address found in the PC and place the value in the IR.

2. Increment the PC (add 1 to it).

3. Execute the instruction in the IR.

This cycle begins when the computer is turned on and continues until the machine is turned off or a halt
instruction is executed.

Instruction Set

The CPU interprets the value in the IR according to the following table. This table is a complete description
of the semantics of the Itty Bitty Machine’s machine language. Assume that M is the value in the address
field of the IR and that v(M) denotes the value stored at address M in memory. We use a similar notation
to refer to the value stored in a register (e.g., v(ACC) for the value in the ACC register).

op code explanation action

0 Load value at M into the ACC ACC ← v(M)
1 Store value in the ACC at M M ← v(ACC)
2 Add value at M to value in the ACC ACC ← v(ACC) + v(M)

and store result in ACC
3 Subtract value at M from value in the if v(ACC)− v(M) < 0 then ACC ← 0

ACC and store result in ACC otherwise ACC ← v(ACC)− v(M)
[negative results are stored as 0 (zero)]

4 Increment value at M M ← v(M) + 1
5 Compare value in ACC with value at M if v(ACC) = v(M) then CC ← 1

and set value in CC to 1(0) if they are otherwise CC ← 0
equal(not equal)

6 BranchE to M if v(CC) = 1 if v(CC) = 1 then PC ←M
7 BranchNE to M if v(CC) = 0 if v(CC) = 0 then PC ←M
8 Branch to M PC ←M
9 if M = 10 then Clear ACC ACC ← 0

if M = 20 then Halt - fetch/execute cycle
if M = 30 then Blank the screen v(i) = 40 for each i from 80 to 99
if M = 40 then Shift left ACC ← (v(ACC) ∗ 10) mod 1000
if M = 50 then Shift right ACC ← v(ACC) div 10
if M = 60 then Input keyboard character ACC ← Keyboard

2.3 Two Program Examples

The list of machine instructions which follows is a machine language program which, when executed, will
input two digits and store their sum at memory address 41. Notice how memory location 40 is used to
temporarily store the value of the first digit. You should consider what would happen if two letters were
entered rather than two digits.

address instruction mnemonic explanation

10 960 Input input a digit from the keyboard to the ACC
11 140 Store 40 store the value at address 40
12 960 Input input another digit from the keyboard to the ACC
13 240 Add 40 add what’s at address 40 to ACC
14 141 Store 41 store result at address 41
15 920 Halt stop fetch/execute cycle

8 CHAPTER 2. THE ARCHITECTURE OF THE ITTY BITTY MACHINE

That program was fairly straight forward. The second example is a bit trickier and uses more of the
instructions in the instruction set. The following program inputs two digits and stores the larger at address
80. Notice that by storing the larger digit at address 80, the character form of the digit will appear in the
first cell of the video screen. The program is written with the assumption that memory location 42 has ‘000’
as its content and that the program will be stored in memory starting at address 10.

address instruction mnemonic explanation

10 960 Input input a digit
11 140 Store 40 store digit at address 40
12 960 Input input a digit
13 141 Store 41 store digit at address 41
14 340 Subtract 40 subtract value at 40 from ACC
15 542 Compare 42 compare ACC with value at 42 (0)
16 619 BranchE 19 if ACC is 0, set PC to 19
17 041 Load 41 load value at 41
18 820 Branch 20 branch to display digit
19 040 Load 40 load value at 40
20 180 Store 80 display digit in ACC at first video cell
21 920 Halt halt the fetch/execute cycle

Chapter 3

Representing Data

Theoretically, the IBM architecture provides all the power needed to carry out any computation. But real
computers must not only be able to carry out these computations, they must be able to do them quickly and
efficiently. One inefficiency inherent in the IBM architecture results from the fact that the IBM can only
represent and manipulate integer values. In real computers there are several different data representations,
typically for integers, real numbers, characters, and logical values (true and false). In this chapter we look
at typical techniques for representing these various kinds of data values. Before discussing how these data
values are represented in a computer, we will review how numbers can be represented in various number
bases – a computer, of course, uses a base-2 (binary) coding for all values.

3.1 Representing Numbers on Paper

The notation we are used to for denoting numbers is based on an algebraic form. We understand the notation
‘437’ to represent the polynomial

4 ∗ 102 + 3 ∗ 101 + 7.

We say that the ‘4’ occupies the hundreds space, the ‘3’ the tens space, and the ‘7’ the ones space. The number
represented by this notation can be understood as that number arrived at by counting to one hundred four
times then to ten three times and finally to 7. Since this notation is based on powers of ten we refer to it as
base-10 notation. It is crucial to notice that in this notation there are ten (the base) basic symbols or digits
used for representing numbers: 0, 1, ..., 9. It is also important to realize that the number being represented
is independent of the notation used to represent it; seven, 7, and V II all denote the same number.

Our culture is very used to using the base-10 notation for numbers, but there is, of course, nothing
special about base-10 notation other than the fact that we are used to it. We could just as easily us base-60
notation, as did the Babylonians, or base-6 notation. In base-6 there would be six “digits”, 0, 1, ..., 5, used
in the representation of numbers. In base-16 notation there are sixteen digits: 0, 1, ..., 9, A,B,C,D,E, F .
This probably looks weird, but it is necessary that each digit be denoted by a single symbol; letters are
customarily used in denoting digits beyond 9.

The important thing to remember about different bases is that they are just different ways of representing
the same numbers. The number fourteen can be represented by 1410 or 226 or 1123 or 11102 (notice how the
subscript is used to indicate the number base). The table in Figure 3.1 shows various representations for the
numbers from zero to fourteen. The numbers zero and one have the same representation for the different
bases.

In studying computer architecture we are most interested in representing numbers in base-2. But since
we are most comfortable with base-10 notation it is good to also be familiar with the methods for converting
from one notation to the other. The following two sections look at these conversions.

9

10 CHAPTER 3. REPRESENTING DATA

Numeric Representations
alphabetic Roman base-10 base-6 base-3 base-2
zero † 010 06 03 02

one I 110 16 13 12

two II 210 26 23 102

three III 310 36 103 112

four IV 410 46 113 1002

five V 510 56 123 1012

six V I 610 106 203 1102

seven V II 710 116 213 1112

eight V III 810 126 223 10002

nine IX 910 136 1003 10012

ten X 1010 146 1013 10102

eleven XI 1110 156 1023 10112

twelve XII 1210 206 1103 11002

thirteen XIII 1310 216 1113 11012

fourteen XIV 1410 226 1123 11102

† There is no Roman numeral for zero!

Figure 3.1: Examples of Numeric Representations

Base-x =⇒ Base-10

Converting from some other number base to base 10 is relatively easy. In a sense what we have to remember
is that a number just represents the result of counting. If I write 247 this just means that I have counted
up to the base seven twice and then up to four; or that I have counted to ten once and then to eight, i.e.,
1810. Similarly, the number 1B16 means counting to sixteen once and then to eleven. So, to convert 5147 to
base-10 notation we make use of the algebraic form:

5147 = 5 ∗ 72 + 1 ∗ 71 + 4.

If we interpret these values in base-10 then we have

5147 = 25610.

What do we do about something like a base-16 notation? We follow the same principle:

3C616 = 3 ∗ 162 + 12 ∗ 16 + 6 = 966.

Notice that ‘12’ is used rather than ‘C’ because ‘12’ is the base-10 equivalent of C16.
So the algorithm for converting a number represented in base-x to an equivalent representation in base-10

can be stated as follows:

1. Write the number as a polynomial in x, where x is in its base-10 equivalent.

2. In the polynomial convert each coefficient to base-10 notation.

3. Compute the value of the polynomial, carrying out all calculations in base-10; this is the base-10
equivalent of the base-x number.

The algorithm is illustrated with the following example. To convert the number 1AC14:

1. 1 ∗ 142 +A ∗ 141 + C

2. 1 ∗ 142 + 10 ∗ 141 + 12

3. 196 + 140 + 12 = 348

So 1AC14 and 34810 denote the same number.

3.2. REPRESENTING RATIONAL NUMBERS 11

Base-10 =⇒ Base-x

How about conversion in the other direction? The algorithm for doing this conversion is just the reverse
of the algorithm above. Suppose we want to convert the number 54310 to an equivalent representation in
base-x. We must be able to fashion a polynomial in x so that we can determine the polynomial coefficients
and thus fabricate the base-x representation. As an example we will determine an equivalent representation
for 54310 in base-8.

Step 1 Write down powers of 8 until the largest power less than or equal to 54310 is written:

1 = 80, 8 = 81, 64 = 82, 512 = 83.

The desired polynomial will be
a ∗ 83 + b ∗ 82 + c ∗ 81 + d.

Step 2 The coefficient a is the integer quotient resulting from dividing 543 by 83 = 512: a = 1.

Step 3 Subtract a ∗ 512 from 543, leaving 31. Now find the largest power of 8 less than or equal to 31.
Since this is 81, in this step we will be determining the coefficient c, since it is the coefficient of 81.
Divide 81 = 8 into 31 and make c the integer part of this quotient; 3 ∗ 8 < 31, so make c = 3.

Step 4 Subtract c∗8 from 31, leaving 7. Since 7 < 8, we make d = 7, and the process is almost complete.

Step 5 In the above steps we have determined values for the coefficients a, c, and d. All undetermined
coefficients are set to zero, i.e., we set b = 0.

Following these steps we have derived the polynomial

1 ∗ 83 + 0 ∗ 82 + 3 ∗ 81 + 7

and have determined that 10378 = 54310.

PROBLEMS

Determine y in each of the following (show your work!).

1. 256 = y10

2. 10323 = y10

3. AC0513 = y10

4. 150810 = y8

5. 20210 = y2

6. 49510 = y4

3.2 Representing Rational Numbers

The numbers we have dealt with so far have been integers. In fact the same methods just discussed can be
applied to representing rational numbers in varying bases. The reason, of course, is because the polynomial-
based representation used for integers is extended to represent rational numbers. For example,

125.36 = 1 ∗ 102 + 2 ∗ 101 + 5 + 3 ∗ 10−1 + 6 ∗ 10−2.

12 CHAPTER 3. REPRESENTING DATA

n 2−n an sum
1 .5 a1 = 0 0
2 .25 a2 = 1 .25
3 .125 a3 = 1 .375

Figure 3.2: Table for Converting 0.2510

Base-x =⇒ Base-10

Conversion of representations from base-x to base-10 is really the same as described above. To convert
325.427 to base-10 we write out the polynomial in base-10 notation and compute the value:

325.428 = 3 ∗ 82 + 2 ∗ 81 + 5 + 4 ∗ 8−1 + 2 ∗ 8−2

= 3 ∗ 64 + 2 ∗ 8 + 5 + 4 ∗ (1/8) + 2 ∗ (1/82)
= 213 + 4 ∗ (.125) + 4 ∗ (.125) + 2 ∗ (.015625)
= 213 + .5 + .03125
= 213.5312510

PROBLEMS

Try converting each of the following to base-10 notation.

1. 101.01012

2. 29.4116

3. 43.05

4. 0.0018

Base-10 =⇒ Base-2

Converting a base-10 decimal to another base takes a bit more. The problem is that, as we will see, a
rational number with a finite expansion in one base can have an infinite expansion in another base. A simple
example of this is 1/3; this rational number expands as follows: 0.13 and 0.333 · · ·10. This means that when
applying the technique described above for integer conversions, there will be times when an approximate
representation will be all that is practical.

The conversion from base-10 to another base can be done in two steps. First convert the integer part
of the number using the technique described earlier. Then do the conversion for the fractional part of the
number as follows. First determine the number of “decimal” places needed in the new representation. Then
write out a polynomial form for the converted value (as an example we will convert 0.37510 to base-2).

a1 ∗ 2−1 + a2 ∗ 2−2 + a3 ∗ 2−3 + · · ·

At this point it is convenient to set up two columns with the first containing the (base-10) decimal expansions
for the first few negative powers of the base. The second column will be filled out from top to bottom with
the values for the coefficients of the polynomial; Figure 3.2 shows this table. Of course when converting to
base-2 the only coefficients possible are 0 and 1, so the conversion process is a matter of starting with the
top row and creating a sum, where at each row we add 2−n if adding the value would not exceed the base-10
value being converted. In the example of 0.37510 the coefficient of 0.5 must be 0 and the coefficient of 0.25
must be 1. Since 0.25 is less than the original value (0.375), we repeat the process with the next row. In this
case adding 0.125 to the current sum just makes 0.375, so the process stops. For each row where we made
an addition the corresponding coefficient is set to 1, while all other rows are set to 0. We have determined
that

0.37510 = 0.0112.

3.2. REPRESENTING RATIONAL NUMBERS 13

We will examine one more example, which will appear to be easier (because the initial representation
is shorter) but will not be. We will convert 0.310 to base-2, where the base-2 representation will have six
“decimal” places. Figure 3.3 shows the conversion. The conversion to six places shows that

0.310 ≈ 0.0100112,

where this approximation is off by 0.3− .296875 = .003125.

n 2−n an sum
1 .5 a1 = 0 0
2 .25 a2 = 1 .25
3 .125 a3 = 0 .25
4 .0625 a4 = 0 .25
5 .03125 a5 = 1 .28125
6 .015625 a6 = 1 .296875

Figure 3.3: Table for Converting 0.310

One thing to notice about converting fractional parts from base-10 to base-2 is that, since every negative
power of two end in a ‘5’, that a base-10 number not ending in ‘5’ will have an infinite expansion in base-2.
Try this method out on the following numbers - converting to base-2 representation.

PROBLEMS

Try converting each of the following to base-2 notation.

1. 0.562510

2. 0.01562510

3. 0.1210 (to 8 positions)

4. 28.57510 (to 8 positions)

14 CHAPTER 3. REPRESENTING DATA

3.3 Representing Data in the Computer

In this section we will look at the way data are represented in a real computer memory. Where the Itty
Bitty Machine uses base-10 representation for data, real machines use base-2 representation. In the last
section you should have gained an understanding of the relationship between base-10 and base-2 numeric
representations. In this section we will look at the ways in which base-2 numeric representation is used to
store character data and both real and integer numeric data in computer memory.

Bits, Bytes and Words

A computer’s main memory is constructed as a sequence of storage units called words. Each word is con-
structed as a sequence of bits, where each bit stores a value of 0 or 1 (electronicly we think of this as a bit
being on (= 1) or off (= 0)). It is important to know that every bit always has one or the other of these
two values — never no value. As in the case of the Itty Bitty Machine, every word in a computer memory
has a numeric address and it must be possible to store any address in one word of memory. So the size of
a memory word defines a maximum size for the computer memory. We will usually represent memory as in
Figure 3.4. Notice that each row represents a word and each word has an address.

15 2 1 078

One Word

Byte BitWord
Address

.

.

.

0

1

2

N

Figure 3.4: Structure of Memory

It is typical, though not universal, that the number of bits in a word is a power of two. So the SPARC-
station memory word size is 32 bits; older PC’s had a word size of 16 bits (really old ones had 8 bits per
word). Every word in memory has the same size. For the purposes of this discussion we will assume a word
size of 16 bits - 32 is a bit inconvenient (ha, ha!). Another division of a word which has become common is
the byte. A byte is 8 bits, so a SPARCstation has 4 bytes per word.

Character Data

Character data, meaning the letters and other symbols which you can type at a keyboard, or that you see
on a computer screen, are easy to represent in a computer. In fact we have seen the technique in the Itty
Bitty Machine. The idea is to assign each symbol to be stored a numeric code. There are several such codes
which have been proposed over the years, but the one which seems to be most common is the ASCII code
- see the table on page 550 in the Riley text. There are 128 characters to be coded so the numbers from
0-127 are the ASCII code values (the associated characters are listed in the table mentioned above). Since
12710 = 11111112, we allow a one bit slop, and always store one character code in a byte. In the case of
the SPARCstation four characters can be stored in one word. Figure 3.5 shows several characters, their
(base-10) ASCII codes and how they would be stored in one byte.

Integer Representation

The method for storing integer values in a computer memory is also straight forward. Each integer stored in
a computer requires a whole word. For small integers, as we will see, this means that some space is wasted,
but this is an accepted part of computer design.

To store an integer there are two things which must be represented: the magnitude of the number and
the sign. In fact, the method of representation is referred to as sign/magnitude. Figure 3.6 shows the layout

3.3. REPRESENTING DATA IN THE COMPUTER 15

Character ASCII
Code

Byte
Layout

A 65 0 1 0 0 0 0 0 1

g 103 0 1 1 0 0 1 1 1

! 40 0 0 1 0 1 0 0 0

4 52 0 0 1 1 0 1 0 0

space 32 0 0 1 0 0 0 0 0

Figure 3.5: Examples of Character Storage

for integer representation in a 16-bit word. The idea is to set the sign bit (the left-most bit) to zero for
positive numbers and one for negative numbers. The magnitude part holds the base-2 representation of the
magnitude of the number, with the magnitude shifted as far to the right as possible. Figure 3.7 shows a few
examples of how an integer is represented in a 16-bit word.

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Sign
Bit

Magnitude

Figure 3.6: Word Format for Integers

Using this representation there is obviously a largest integer which can be stored; that is the number
whose representation is all ones in the magnitude part; if the word size is 16 bits this maximum integer is
215−1. Thus, the integers which can be represented by a word of size n bits using sign/magnitude fall in the
interval [−2n−1 − 1, 2n−1 − 1]. For example, with 32-word (as with the SPARCstations) the integer range is
[−2147483647, 2147483647].

0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1

1 1 0 0 0 0 0 0 1 1 0 1 1 1 1 1

110011 51

-100000011011111 -16607

memory base-2 base-10

Figure 3.7: Examples of Integer Storage

16 CHAPTER 3. REPRESENTING DATA

PROBLEMS

Draw the memory representation for the following integers. Assume a word size of 16 bits and sign/magnitude
format.

1. 2510

2. 103210

3. −150810

4. −20210

PROBLEMS

What number is represented by the following bit patterns, assuming sign/magnitude format.

0 0 0 0 1 0 0 1 1 0 1 0 0 0 0 1

1 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0

Real Number Representation

Representing real numbers are more of a problem. We can see this if we think about numbers like 1/3 and
π, which have infinite decimal expansions. With a fixed number of bits to work with, it will be impossible
to get all that accuracy. So some method of representation must be adopted which stores an approximate
value. The common representation method is inspired by scientific notation. In this notation the number
−13.465 will be written as −0.13465∗102 while 0.00041037 is written as 0.41037∗10−3. In general, we locate
the leftmost non-zero digit and place the decimal point to its immediate left; this is the mantissa. Then
we multiply the mantissa by the power of ten which will restore the original value. The same notation also
works for base-2 representation. To represent this scientific notation in a word requires representing is the
sign of the number, the mantissa and the exponent, both its sign and its magnitude.

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Sign
Bit

Exponent

Mantissa

Exponent
Sign Bit

Figure 3.8: Word Format for Real Numbers

Figure 3.8 shows one way to do this. The sign of the real number is put in the left-most bit, just as for
integers. The next five bits are used for the exponent. Since the exponent is an integer we use the five bits
with the integer representation described above, so the left-most of the five bits is the sign of the exponent
and the other four bits are the magnitude. The remaining ten bits are for the mantissa. The one tricky bit
is that the mantissa is left justified in the 10-bit field. Here are two examples showing bit patterns and the
real numbers represented.

3.3. REPRESENTING DATA IN THE COMPUTER 17

1 1 0 1 0 1 1 0 1 1 0 0 0 0 0 0

0 0 1 0 0 1 1 0 0 0 1 0 0 1 1 1

-0.1011*2
-5

0.1000100111*2
9

memory base-2 base-10

-0.0001011

10001.00111

-0.0859375

17.21875

To see how a number in base-10 notation will store in a word, consider storing the number −13.46510. The
following process is followed. First we convert the number to base-2 notation (using the process described
above) making sure we generate enough “significant” binary digits to fill up the ten mantissa bits in the
word. The fractional part of the number can be converted to 0.0111012 as follows (an approximation, of
course).

n 2−n coefficients sum
1 .5 0 0
2 .25 1 .25
3 .125 1 .375
4 .0625 1 .4375
5 .03125 0 .4375
6 .015625 1 .453125

Since −1310 = −11012, when we combine the two expansions we get

−1101.0111012

which has ten significant (binary) digits. The scientific notation for this number is

−0.1101011101 ∗ 24.

Here is how this number would be stored in one word.

1 0 0 1 0 0 1 1 0 1 0 1 1 1 0 1

18 CHAPTER 3. REPRESENTING DATA

Part II

Specifying and Understanding
Programs

19

Chapter 4

Making Programming Easier

In the previous chapter you studied the basic architectural characteristics of a computer’s hardware. The
CPU, memory, I/O devices and the bus provide a platform on which machine language programs are executed.
When the hardware is “turned on” the fetch/execute cycle is activated and machine language instructions
are fetched from the memory and executed by the CPU. The fetch/execute cycle is set up so that the
CPU automatically fetches the “next” instruction each time, unless directed differently by the execution
of a branch instruction. The obvious thing which has not yet been mentioned explicitly is that the whole
hardware package is absolutely useless without a machine language program in the memory.

Your experience with machine language programs, though rather brief, was probably enough for you to
conclude that “If that’s how you have to program a computer, let me outa here!” Well, you’re not alone. The
early programmers, who had to write directly in machine language, had the same reaction and put some effort
into developing methods for describing programs and then automatically translating these descriptions into
the machine language. The language they developed was called an assembler language. Following naturally
from the machine language, these assembler languages are referred to as second generation programming
languages.

4.1 IBM Assembler Language

An assembler language is the simplest type of program description language. The idea is to make it possible
for the programmer to generate a program without having to remember the opcodes for machine instructions
or to deal with actual memory addresses. If you look back at the examples of machine language programs
earlier in this chapter you will see that most are annotated with comments to help the readers, understand
what is going on in the program. The assembler language described below is similar in flavor to these
annotations.

Description Form - Syntax

The assembler language for the IBM is quite simple. Any language, computer or human, is defined in terms
of ‘words’ and ‘statements’, where the statement is a sequence of words in some specific form (syntax). In
our IBM assembler a program description is a sequence of statements, with each statement appearing on a
separate line. There are two different categories of words in IBM assembler: mnemonics and names. There
are 15 mnemonics, one corresponding to each different type of machine instruction. The mnemonics are
summarized in the following table.

21

22 CHAPTER 4. MAKING PROGRAMMING EASIER

Opcode Mnemonic

0 Load
1 Store
2 Add
3 Subtract
4 Increment
5 Compare
6 BranchE
7 BranchNE
8 Branch
910 ClearACC
920 Halt
930 BlankScreen
940 ShiftLeft
950 ShiftRight
960 Input

Names in IBM assembler are just sequences of letters and digits and are used to represent memory addresses.
The only restriction is that a name cannot start with a digit nor can it be the same as one of the mnemonics.
Finally, the IBM assembler has 20 predefined names: screen1, screen2, ..., screen20 which represent
the memory addresses 80...99, i.e., they are names for the 20 positions on the screen.

So we have defined the building blocks, words, of the IBM assembler, and now we can specify how these
words can be combined into statements and the statements into program descriptions. Rather than writing
down the details first, we will look at an example of an IBM assembler language program, one which would
translate to the program at the end of Section 2.

+datadefs
digit1
digit2
zero 0
+instructions

Input
Store digit1
Input
Store digit2
Subtract digit1
Compare zero
BranchE its2
Load digit1
Branch show

its2 Load digit2
show Store screen1

Halt

In looking at this example you should first notice that much of it is easy to understand, based on your
knowledge of the IBM machine language. Next, we see that the program is in two parts, with the start of
each part signaled by a special name. ‘+datadefs’1 starts every program and indicates that the next lines
of the program will contain name definitions (more on that in a minute). The definition part extends up to
but not including the line with ‘+instructions’. This line marks the beginning of the program’s statement
section.

A statement in the +instructions part has a specific form: a label (name), which is optional, followed
by a mnemonic, followed by operand (name), which is required for some mnemonics and not allowed for
others. A label names the memory address where the instruction is stored. Notice that the label show also

1The use of the + as the first character of the two words is to distinguish them from words in the assembler language.

4.2. DESCRIPTION TRANSLATION - SEMANTICS 23

appears as the operand in the Branch statement. The only reason to have a label in a description is to
name an address which will be referenced in one of the three branch instructions.

The operands in the other statements refer to memory locations where data is stored. Locations in
memory where data is stored are referred to as variables and the names which reference them are called,
obviously, variable names. The purpose of the +datadefs part of the program description is to define
which names are variables and, as in the case of zero, to assign an initial value; because it is not intended
that the value of zero change, we refer to such variables as constants. The following definitions sum up the
terminology just presented.

Definitions

• Variable: A named location in memory for storing
data.

• Constant: A Variable whose value is determined
when a program description is written and doesn’t
change from that value during program execution.

• Label: A named location in memory for storing a
program instruction.

4.2 Description Translation - Semantics

Remember that we use the assembler language to write program descriptions. These descriptions cannot be
run on the IBM because they are not in a form the machine can “understand”. There must be a mechanism
for translating a description to an equivalent machine language program. When this machine language
program is executed we give meaning to the description we started with. The meaning or semantics of a
description language is defined by the translation process. For our assembler language the translation process
involves two basic steps and results in a machine language program consisting of a sequence of address/value
pairs, where the value is either a machine instruction or an initial variable value and the address is the
memory location where the value is to be stored.

Assign Addresses Assign consecutive memory addresses to each statement in the +in-
structions part and for each variable in the +datadefs part. A
side effect of this process will be to associate with each label an
actual memory address. This step generates a list of name/address
pairs.

Translate and Resolve Create a machine language program by converting each descrip-
tion statement in the +datadefs part into an address/value pair,
where the address is that associated with the particular variable
name and the value is either the one specified in the definition or 0
(as a default value). Similarly convert each statement in the +in-
structions part to an address/value pair where the address is the
one already assigned the particular statement and the value is the
opcode for the statement mnemonic or, if appropriate, the opcode
along with the address associated with the statement’s operand.

We can follow this process on the program description at the beginning of this section. Notice, that the
program we generate may not be exactly like the program at the end of the previous chapter because we
may not choose the same starting address for the program or the same addresses for the variables.

24 CHAPTER 4. MAKING PROGRAMMING EASIER

Assign Addresses Translate
=⇒ =⇒

+datadefs
digit1 12
digit2 13
zero 0 14 0
+instructions

Input 0 Input 0 960
Store digit1 1 Store digit1 1 1-12
Input 2 Input 2 960
Store digit2 3 Store digit2 3 1-13
Subtract digit1 4 Subtract digit1 4 3-12
Compare zero 5 Compare zero 5 5-14
BranchE its2 6 BranchE its2 6 6-09
Load digit1 7 Load digit1 7 0-12
Branch show 8 Branch show 8 8-10

its2 Load digit2 9 Load digit2 9 0-13
show Store screen1 10 Store screen1 10 1-80

Halt 11 Halt 11 920
12 0

its2 9 13 0
show 10 14 0
digit1 12
digit2 13
zero 14

This translation process is simple and, in fact, can be easily automated. Before the end of this semester
you will have learned all the techniques necessary to write a C++ description for a program which carries out
the translation process just described. You would then be able to write an assembler language description,
translate it with your program and then run the resulting IBM machine language program on the IBM
simulator.

4.3 Virtual Machine Levels

In this section we have developed a new language which can be used to write machine language programs.
Well, not quite. We can use the assembler language to write a program and then translate it to an equivalent
machine language program. This process frees us from the problems associated with memory addresses,
specifically, where the data and program are located in memory.

What the assembler language allows us to do is to use mnemonics in the place of machine codes and
variable and label names in the place of memory addresses. In a way, the assembler language is a “machine”
language for a new kind of machine which has a less well defined notion of memory. This machine has the
same organization as the IBM, but in place of main memory’s address/value pairs the new machine has
identifier/value pairs. We have abstracted the notions of address and op-code to a more convenient level
where they are represented by identifiers (names).

The history of programming can be seen as a continuing attempt to abstract a real machine to a level
where it is really easy to program. When you learn a high-level language such as C++ you see that addresses
continue to be represented by identifiers. The kind of data that the virtual machine can handle is much
more extensive (integer, reals, character, boolean) with the added capability for the user to define new data
types. The real machine’s op-codes are abstracted, not to mnemonics as in the assembler language, but to
new instructions not obviously related to those of the underlying machine.

Chapter 5

A Formal Approach to Programming

Of course you are not in this course to learn about programming in assembler language. But this description of
the IBM assembler language illustrates several basic aspects of programming languages. First, a programming
language is used to write descriptions which can then be translated (in an automated way) into machine
language programs. The descriptions themselves cannot be run on a computer. Though programming
languages vary considerably in form, they all must in some way describe two separate aspects of a program
description, namely the variables and the instructions. When we look at Pascal you will see that every Pascal
description has these two basic parts: data description and statement description.

5.1 Syntax

In the previous section it became clear that an IBM assembler description has a very specific form. This
form is determined by the syntax of the language. Every programming language has a very specific syntactic
structure, just as English, German and Chinese have specific syntactic structure. This structure starts, at
the most detailed level, with a listing of the legal characters which can appear in the language, usually
alphabetic and punctuation characters along with the ten digits. The syntax goes on to specify how these
characters can be legally combined into words, how words can be legally combined, perhaps with a smattering
of punctuation symbols, into statements, and how the statements can be combined into program descriptions.

5.2 Semantics

Of course, form is of little use without a corresponding meaning. The notion of syntax is easily recognized in
programming languages1, but the meaning of a particular program description...what does that even mean?
What we mean by the semantics or meaning of a program description is the intended effect on the machine of
executing the corresponding machine language program. Since a machine executes one machine instruction
at a time, presumably we can talk about the semantics of not just a complete description, but even of a
particular statement.

In order to talk about the effect on a machine of executing an instruction, we must understand what in
a machine can be affected by executing an instruction. When put this way the answer is clear - the only
things which change when an instruction is executed are register and memory values (and, indirectly, the
screen and keyboard). We will refer those elements of the machine which can be changed by executing a
program as the program’s state. The state should include all the registers, since they can change, and any
memory addresses which can be modified by the program. If we reflect on the previous section we arrive at
the following preliminary definition.

1Both art and music are forms of communication in which the language has a structure which is not necessarily obvious
to the viewer or listener. We know that color and tones are in there, but their combinations don’t always have an apparent
structure.

25

26 CHAPTER 5. A FORMAL APPROACH TO PROGRAMMING

Program State

The state of a program is the set of register/value pairs
for the CPU along with the set of address/value pairs for
those addresses modified by the program.

Using this we can give a definition of what we mean by the semantics of a sequence of statements.

Semantics

The semantics of a sequence of statements is the change
in the program state resulting from the execution of the
statements.

Now, if you refer back to the section on the IBM instruction set in the first chapter, you will see that the
table there, in fact, describes in a very precise way the semantics of each instruction in the machine language.

Though this discussion has been oriented around the IBM machine and its assembler language, it is
important that these concerns of syntax and semantics will pervade our studies throughout the semester.
The basic notions of words, statements, and program state will be discussed in the context of the language
you study.

