
Mixed Mode Expressions, Errors, and Samba Lab 3

1 File Manager

Go to the CSCI 203 home page and click on the “File Manager” tutorial and
complete it.

2 Mixed Mode Arithmetic

If you have not already done so, create a sub-directoryLab3 within your
Labs directory. Move into the new directory and complete the following
lab work there. Remember to insert your banner file at the beginning of
each file and update it.

Type in the following program and save it astemp.cc in your Lab3
directory. Compile and run the program. Inemacsuse theTab key to
indent.

#include <iostream>

// illustrates I/O of ints and doubles

CSCI 203 Page 1 September 16–17, 2002

Mixed Mode Expressions, Errors, and Samba Lab 3

// illustrates arithmetic operations

int main() {
int intFahr;
double doubleFahr;

// convert ’int’ temperature
cout << "Enter a Fahrenheit temperature ";
cin >> intFahr;

cout << intFahr << " = "
<< (intFahr - 32) * 5/9
<< " Celsius" << endl;

// convert ’double’ temperature
cout << "Enter another temperature ";
cin >> doubleFahr;

CSCI 203 Page 2 September 16–17, 2002

Mixed Mode Expressions, Errors, and Samba Lab 3

cout << doubleFahr << " = "
<< (doubleFahr - 32.0) * 5/9
<< " Celsius" << endl;

return 0;
}

Note: This program illustrates that it is possible to use an expression in an
output statement — this is done in bothcout statements.

Include in yourhandin.txt file answers to the following questions.
Notice that the word “why” appears in each question. Be sure to answer
appropriately.

1. Run the program, entering the value 40 for both temperatures. Why
does the program return two different answers?

2. If the output expressions in the program are changed as follows

CSCI 203 Page 3 September 16–17, 2002

Mixed Mode Expressions, Errors, and Samba Lab 3

cout << intFahr << " = "
<< (intFahr - 32) * (5/9)
<< " Celsius" << endl;

....
cout << doubleFahr << " = "

<< (doubleFahr - 32.0) * (5/9)
<< " Celsius" << endl;

the value printed by both statements will be 0. Why is this?

3. What is printed (and why) if parentheses are not used in either of the
output expressions? In other words, the output statements are

cout << intFahr << " = "
<< intFahr - 32 * 5/9
<< " Celsius" << endl;

....
cout << doubleFahr << " = "

CSCI 203 Page 4 September 16–17, 2002

Mixed Mode Expressions, Errors, and Samba Lab 3

<< doubleFahr - 32.0 * 5/9
<< " Celsius" << endl;

4. If the output statement usingintFahr is changed as follows

cout << intFahr << " = "
<< (intFahr - 32.0) * 5/9
<< " Celsius" << endl;

what will the output be if the value of 40 is entered? Why?

3 Dealing with Errors

Copy the fileerrors.cc from ~cs203/Labs/Lab3 into yourLab3 direc-
tory. Spend some time and study the program. Compile this program as
follows:

g++ errors.cc -o errors.exe

and run it.

CSCI 203 Page 5 September 16–17, 2002

Mixed Mode Expressions, Errors, and Samba Lab 3

3.1 Syntax Errors

Remove thesemicolonfrom the end of line 9 (the one withint a;), save
the file and recompile the program. Remember to use the up arrow to re-
trieve the last command in a Terminal window.

Study the error message. It is important that you learn how to deal with
error messages. Notice that the first error message says:

errors.cc: In function ‘int main()’:
errors.cc:10: parse error before ‘double’
errors.cc:28: ‘b’ undeclared (first use this function)
errors.cc:28: (Each undeclared identifier is reported
errors.cc:28: only once for each function it appears in.)

This says the firstsyntax errorwas detected in the functionint main(),
at line 10, before the occurrence ofdouble. The problem, of course, is that
there is nothing on line 10 before thedouble. This can only mean that the
error is at the end of line 9 — the semicolon is missing. This error mes-
sage seems odd, but remember that the message is given when the compiler

CSCI 203 Page 6 September 16–17, 2002

Mixed Mode Expressions, Errors, and Samba Lab 3

discovers an error. In this case the compiler doesn’t know there is an error
until it readsdouble — the compiler knows thatdouble cannot terminate a
statement. This is a very common occurrence when reading compiler errors.
Remember: Compiler errors are often in the linebeforethe indicated line.

Now look at the second error message. On line 28b is undeclared. This
must mean, because of the error on line 9, the compiler doesn’t have a defi-
nition for the identifierb. So later, on line 28, the compiler reports thatb (in
line 28) has not been declared. This illustrates another common situation —
an error on one line can make the compiler think there are errors on other
lines, even though the other lines are correct — these are phantom errors
and they will go away when the original error is corrected. (It’s interest-
ing to notice thata on line 22 hasn’t caused an error. So even though the
declaration ofa was improperly terminated, the declaration ofa was still
recognized.)

Therefore, agood strategyis to fix the first error or the first few errors
and then recompile.

Go to line number 9 by enteringC-c g and then the line number, i.e. 9,
when prompted at bottom. Add the semicolon at the end of line 9.

CSCI 203 Page 7 September 16–17, 2002

Mixed Mode Expressions, Errors, and Samba Lab 3

3.2 Missing Include Errors

Comment out the line with#include <cmath> and recompile. “Comment
out” usually means to add the// comment marker at the beginning of the
specified line as follows.

// #include <cmath>

Study the error message which results.

errors.cc: In function ‘int main()’:
errors.cc:28: implicit declaration of function

‘int pow(...)’

This message indicates that the functionpow() has been used, but there is
no definition. Remove the comment marking from the#include <cmath>
line before moving on.

CSCI 203 Page 8 September 16–17, 2002

Mixed Mode Expressions, Errors, and Samba Lab 3

3.3 Semantic Errors

Comment out line 28 and add a new assignment statement before it as fol-
lows.

b = sqrt(-2.0);
// b = pow(2.0, 4.0);

Recompile and run the program — we know something funny should hap-
pen since we shouldn’t be able to take the square root of a negative number!
The error which results is asemantic error— an error due to wrong mean-
ing — is signaled by theNaN (not a number) reported as the value ofb. This
is one way a running program can report a faulty computation.

Another related problem involves division by zero. If you replace the
call to sqrt(-2.0) by the expression ‘a/0’, the compiler gives a general
warning that division by zero will occur on line 28. If you run the resulting
program, it will print the error message “Floating Exception” when line 28
is executed.

Do notchange the program from its current configuration.

CSCI 203 Page 9 September 16–17, 2002

Mixed Mode Expressions, Errors, and Samba Lab 3

3.4 More Semantic Errors

Some semantic errors are caught by the compiler. Replace the’a/0’ with
sqrt(s3) and recompile the program. Remember thats3 is declared as a
string object. Study the error message. In this case,g++ can detect the
improper use or meaning — you can’t take the square root of a string object.
Change the argument ofsqrt to 2.0 (not−2.0).

3.5 Intent Errors

Some programming errors are referred to asintent errors. A program may
run and execute without errors, but it may not be correct. Modify thecout
statement just before thereturn statement to the following.

cout << "b is " << a << endl;

Now compile and run the program. Although no errors are generated, the
output of the program is not correct. Do you see why?

Note: It is important for you to learn how to read and extract useful
information from the compiler’s error messages. After a reasonable attempt

CSCI 203 Page 10 September 16–17, 2002

Mixed Mode Expressions, Errors, and Samba Lab 3

at deciphering them yourself, you should ask someone else for help. It is
equally important to verify that the output generated by your program is
correct. Remember, a program can compile and execute without errors, yet
still not be correct.

4 Animation in Samba

Copy the filebullseye.cc from ~cs203/Labs/Lab3 into yourLab3 di-
rectory. Read and study the program.

Compile the program by typing the following:

g++ bullseye.cc -L/home/hydra/COURSES/cs203/lib -lSamba -o bullseye.exe

Run the program and feed the output to Samba by typing the following:

bullseye.exe | samba

Remember, you must move the main Samba window in order to get access to
the control panel containing theStart button. Press “Start” to see picture.

CSCI 203 Page 11 September 16–17, 2002

Mixed Mode Expressions, Errors, and Samba Lab 3

Next, change the color ofCircle objectc2 to “blue”.
Now, modify the program to have eachCircle object start in a differ-

ent corner andmoveto the center. Use theMoveToPosition() member
function to move them. Place them after theDisplay() member functions.
For example, to moveCircle c1 from its original position to the position
(0.5,0.5), type the following:

c1.MoveToPosition(0.5, 0.5);

The Samba screen has coordinates of 0.0 to 1.0 in thex direction and 0.0 to
1.0 in they direction. Position (0, 0) is the lower left corner.

Beforeyou press theStart button on thePolka Control Panel, adjust
the speed toSlow. You may alter the speed of the animation as it runs by
adjusting the slider.

After the circles stop, play with theIn andOut buttons on the bottom.
Include in yourhandin.txt file, a listing of your working program.

CSCI 203 Page 12 September 16–17, 2002

Mixed Mode Expressions, Errors, and Samba Lab 3

5 What To Hand In

Hand in the answers to the questions from section 2 and the listing of your
working program from section 4.Don’t forget the banner at the beginning
of the file!

Also: When you hand in a lab or project, pleasestaplethe sheets from
your lab or project together. This will help the graders and instructors a
great deal.Please obtain and use a stapler!!

CSCI 203 Page 13 September 16–17, 2002

