
More onemacs Editor;Makefiles; Multiple Selection Lab 7

1 Purpose

1. Exploring theemacs editor further.

2. Exploring the use of UNIX make facility.

3. Exploring multiple selection in C++ programs.

2 Theemacs Editor

Create aLab7 directory and do your work there.
In the following sections, you will be introduced to additional features of

emacs editor. These features become increasingly useful as you begin to develop
more complex programs.

2.1 Directory Editor — dired

You have learned about the Sun system’s file manager and its capabilities. The
emacs editor has a similar feature which makes managing and accessing files eas-
ier. This feature ofemacs, called the Directory Editor ordired, will allow you
to list the contents of directories and to easily move up and down in the directory
tree. This first exercise will help you to navigate through the directory structure.

Begin by enteringdired with the keystrokesC-x d — alternatively you can
click on the folder icon (the second one) in the tool bar at the top. This should
bring up a directory path in the mini-buffer at the bottom of theemacs window.
Modify the path to indicate your Home directory and then pressRET (the Return
or Enter key). This action should produce a list of files similar to what one might
see if the commandls -l is entered on the command line. Commands can now
be entered for particular entries to accomplish things that might normally be done
at the UNIX prompt — we will investigate some of these capabilities in later labs.

For now, using the mouse or arrow keys, move the cursor to the entry for the
CS203 directory which should be in the listing — click the left mouse button to set
the cursor point on that entry (small black rectangle). To enter the directory press
RET.

Continue into yourLabs directory, and then into yourLab7 directory. Return
to yourHome directory by using thê key twice — this keystroke has the effect of
‘cd ..’ on the command line. Now go back to theLab7 directory, and this time
return to theHome directory by selecting the.. directory twice. So there are two
ways of going down the directory tree.

You may select a file for editing by using the mouse or arrow keys to select the
file in the directory listing and then pressingRET.

CSCI 203 Page 1 October 28–29, 2002

More onemacs Editor;Makefiles; Multiple Selection Lab 7

2.2 Compiling Programs From Within emacs

The emacs editor also has features which are designed specifically to help pro-
grammers with a specific programming language. You should be familiar with the
wayemacs will format your C++ code, but this is not the only C++ help provided. It
is also possible to compile a program fromemacs.

Some of you may have already discovered theemacs C++ menu at the top-right
of the menu bar in theemacs window. The entries on the C++ menu have been
added by the Bucknell staff to makeemacs a more convenient environment for the
Computer Science students here at Bucknell. Click on the menu button now and
look at the list of options listed there.

The first option we will discuss is theCompile Buffer action. Open up a C
++ file using the technique described above. When the program file is loaded into
emacs notice on the information line at the bottom of theemacs window that it
says (‘C++ Fill’) — this indicates that a special C++ editing environment has been
loaded intoemacs.

You can compile the file which you see in the edit window simply by choosing
the Compile Buffer command on theC++ menu. Your edit window should split
into two windows, with your program in one window and the compilation results
(e.g., any error messages indicating syntax errors and/or completion messages) in
the other. This second window has its own background menu to help you find your
errors. To use the menu, move the cursor point into the compilation-results window
and click, to set the cursor in that window. Now from the C++ menu, chooseFirst
Error and the cursor should switch back to the other window and locate the first
error in the buffer. You can then find the subsequent errors by using theNext Error
item in the menu, or by using its equivalentC-x ‘ keystroke (that’s a backwards
single quote!

Another useful item in the C++ menu is theComment block action and the
relatedUncomment block action. This has nothing to do with compiling, but it
allows you to comment out multiple lines of code very quickly. You use the com-
ment action by selecting (highlighting) the appropriate sequence of lines of your
code and then choose theComment block item in the menu. When commenting a
selection, be sure to select the entire line for each line in the selection range. To re-
move the comment from that region, place the cursor anywhere in the commented
region and chooseUncomment block in the menu.

2.3 Using aMakefile

You have seen in the last week or so that when compiling a C++ program it is
sometimes necessary to compile more than one file and then to combine them in a

CSCI 203 Page 2 October 28–29, 2002

More onemacs Editor;Makefiles; Multiple Selection Lab 7

step calledlinking. As programs get larger and have more classes, the compiling
process gets more complex. There is a command in UNIX , themake command,
which is designed to make it easier to do routine activities with a collection of
files. It is the command most commonly used to automate the compilation process.

Themake command makes use of a special text file, called aMakefile — it is
traditional to name the fileMakefile. TheMakefile has a special format which,
if understood, can be used by a programmer to considerably simplify the compiling
and linking process.

Here is the usual process followed by a programmer at the beginning of a new
project. First create a new directory in which all files for the project will be main-
tained. Then aMakefile is created for the project — it may require modification
as the project goes along. While the format for aMakefile is a bit complex, cre-
ating a new one isn’t that hard. In fact many programmers just take one from a
previous project and make appropriate modifications for the next project. Here are
some rules to follow.

2.3.1 AMakefile Entry

A Makefile entry refers to a sequence of 1 or more lines which are used to ac-
complish a particular file operation; an entry has two parts — the target name part
and the command part. The target name part comes first and consists of a name
followed by a colon and then followed by a list of file names on which the entry
depends. The command part comes next and begins on a new line; it begins with a
TAB character and then a UNIX command. Here is an example:

Clicker.o: Clicker.cc Clicker.h
g++ -O -Wall -c Clicker.cc

This entry creates a target nameClicker.o which depends on the files named
Clicker.cc andClicker.h. The command part, notice, is just the UNIX com-
mand to compile theClicker.cc file. With this command in a file named
Makefile, you can just enter on the command line the command

make Clicker.o

and the corresponding command for the target name will be executed.
Just a couple of comments about the command part of the entry above. With

the “-c” option, g++ only compiles, i.e., it does not try to link, and creates the
object file namedClicker.o. We list two filesClicker.cc, Clicker.h asde-
pendencieson the first line meaning if we ever edit either of them, we wantmake
to recompile and make a new version ofClicker.o.

CSCI 203 Page 3 October 28–29, 2002

More onemacs Editor;Makefiles; Multiple Selection Lab 7

During the software development phase of a project, we may need to recompile
many times. Themake tool keeps track of the last time a file was modified and
recompiles only those files that have been modified. With a larger project, this can
result in a significant saving in your time.

Study theMakefile we used in Lab 6. You should be able to understand it
now.

Creating Your Own Makefile

Create a file calledMakefile and type in the following simple example of a
Makefile. Be sure to begin eachindentedline (i.e., the command part) with a
TAB key, and not spaces. You will use thisMakefile to compile the programs that
you create in the following three exercises.

A comment for CSCI 203 Lab 7 Makefile
all: ex1.exe ex2.exe ex3.exe

ex1.exe: ex1.cc
g++ -O -Wall -o ex1.exe ex1.cc

ex2.exe: ex2.cc
g++ -O -Wall -o ex2.exe ex2.cc

ex3.exe: ex3.cc
g++ -O -Wall -o ex3.exe ex3.cc

clean:
rm -f core *.o ex1.exe ex2.exe ex3.exe

ThisMakefile works by examining the dependencies set down in the file and
whether any modifications to the files imply that an executable needs to be re-
compiled. For example, the second line of the file indicates that to build the target,
all, the three filesex1.exe, ex2.exe, andex3.exe are needed. It then proceeds
to build each according to the rules found later in theMakefile. The rule for
building ex1.exe says that it depends uponex1.cc. Now if ex1.exe does not
exist orex1.cc is newer than (i.e., been modified since last build)ex1.exe, then it
executes the commands under the dependency, in this case, the compile ofex1.cc.

You runmake from the UNIX prompt by typing the following:

make <target>

CSCI 203 Page 4 October 28–29, 2002

More onemacs Editor;Makefiles; Multiple Selection Lab 7

where<target> is the target to make. If you type nothing after themake com-
mand, themake facility creates thefirst target in the file, in this case,all.

You may also runmake by typingM-x compile while insideemacs.
Although the advantages of themake facility may not be completely clear at

this time, you can appreciate the advantage with regards to compiling more than
one file at a time as you were doing in the previous lab with theClicker class.
The Compile via theemacs menu does not work in that case butM-x compile
does.

3 Multi-way Selection

3.1 Exercise 1

Write a C++ program to solve the following problem. Call your fileex1.cc. to
conform with yourMakefile.

“The National Earthquake Information Center has asked you to write a C++

program implementing the following table to characterize an earthquake based on
a Richter scale number. Your program should ask the user for the Richter number,
n, and display the appropriate message.”

Richter Scale Numbern Characterization

0≤ n < 5.0 little or no damage

5.0≤ n < 5.5 moderate damage

5.5≤ n < 6.5 serious damage

6.5≤ n < 7.5 disaster

n≥ 7.5 catastrophic damage

• Write the program using only amain function — no input validation needed.

• Also remember to usemake ex1.exe to compile your program.

• Place in yourhandin.txt file a listing of your working program, and test
runs for the following values forn: 4.4, 5.2, 5.5, 6.6, 7.7.

CSCI 203 Page 5 October 28–29, 2002

More onemacs Editor;Makefiles; Multiple Selection Lab 7

3.2 Exercise 2

Make a copy of your fileex1.cc and call itex2.cc. Modify ex2.cc to include
an input-validation function which is called appropriately in themain. The input
function has the following interface.

double getBoundedLow(const string & inPrompt, double inLow)
// Pre: inPrompt and inLow have values AND
// cin == <v1 v2 ... vn ...> AND
// v1 <= inLow, v2 <= inLow ,..., v(n-1) <= inLow AND
// vn > inLow
// Post: cin == <...> AND returns vn

This function will read (i.e., input) a value from the user and will keep reading
a value from the user until that value is greater than the parameterinLow. In your
call togetBoundedLow() use 0.0 as the lower bound for input value.

Place in yourhandin.txt file a listing of your working program and test runs
for the following values forn: 0.0,−10.0, 5.5, 10.0, 100.0. Again, remember to
usemake ex2.exe to compile your program.

3.3 Exercise 3

An if construct may be used inside of anotherif construct. This is referred to as
“nestedifs”. We indent the constructs to show the nesting as shown below: (Note:
using theemacs tabbing feature makes formatting easy! To do this, press theTab
keybeforeyou pressReturn key when entering a line.)

if (betType == "win") {
if (position == 1)

cout << "Bet pays $20." << endl;
else

cout << "Too bad!" << endl;
} else {

if (position == 1)
cout << "Bet pays $10." << endl;

else if (position == 2)
cout << "Bet pays $5." << endl;

else
cout << "Bet pays $2." << endl;

}

CSCI 203 Page 6 October 28–29, 2002

More onemacs Editor;Makefiles; Multiple Selection Lab 7

This problem is somewhat complex but not difficult to understand. The main prob-
lem is to carry out different actions depending on whether there is a"win" or not.
The action for each of these two cases is also a selection problem. So the nesting
structure comes naturally from the nature of the problem.

1. Rewrite the selection statement above making use of a aswitch statement
rather than theif structure. Copy the new version of the code (the whole
thing) to yourhandin.txt file.

2. Using nestedifs, write a C++ program where the user types in “small” or
“large”, for a small or large pizza, and the number of toppings. Depending
on the size and number of toppings, the program should print the appropriate
price of the pizza based on the chart below. Use thestring class to input
the pizza size. You may use string literals to output the pizza cost. Here are
the details on size/toppings/cost.

Toppings small large

0 $4.99 $6.99
1–2 $5.99 $7.99
3–5 $6.49 $8.19
6–9 $6.99 $8.89
10+ $7.99 $9.49

Be sure to implement the data input using functions, but you don’t have to
worry about validating the data — you can assume it is entered correctly.

Call your fileex3.cc to conform with yourMakefile.

(a) Go through the selection design process to design the selection based
on size. Make a table and describe the action in each case in words.

(b) Now go through the same process for each action in the table just pro-
duced. You should find that each action also involves selection.

In this part, design each of these selections separately representing each
design in a table.

Complete the program, compile it withmake ex3.exe and test for 6 differ-
ent size and number of toppings combinations.

Place in yourhandin.txt file a listing of your working program and the
output from your test runs.

CSCI 203 Page 7 October 28–29, 2002

More onemacs Editor;Makefiles; Multiple Selection Lab 7

Try make all and see what happens.

Now do amake clean to remove the.exe files and redo themake all.
What happened?

At the end of the lab, remember to do amake clean to remove any un-
wanted files.

4 What To Hand In

Your handin.txt file should now contain:

• Exercise 1 — program and test runs

• Exercise 2 — program and test runs

• Exercise 3 — code for theswitch statement; program and test runs

CSCI 203 Page 8 October 28–29, 2002

