
More onemacs Editor;Makefiles; Multiple Selection Lab 7

1 Purpose

1. Exploring theemacs editor further.

2. Exploring the use of UNIX make facility.

3. Exploring multiple selection in C++ programs.

2 Theemacs Editor

Create aLab7 directory and do your work there.
In the following sections, you will be introduced to additional features

of emacs editor. These features become increasingly useful as you begin to
develop more complex programs.

CSCI 203 Page 1 October 28–29, 2002

More onemacs Editor;Makefiles; Multiple Selection Lab 7

2.1 Directory Editor — dired

You have learned about the Sun system’s file manager and its capabilities.
Theemacs editor has a similar feature which makes managing and access-
ing files easier. This feature ofemacs, called the Directory Editor ordired,
will allow you to list the contents of directories and to easily move up and
down in the directory tree. This first exercise will help you to navigate
through the directory structure.

Begin by enteringdired with the keystrokesC-x d — alternatively
you can click on the folder icon (the second one) in the tool bar at the top.
This should bring up a directory path in the mini-buffer at the bottom of
theemacs window. Modify the path to indicate your Home directory and
then pressRET (the Return or Enter key). This action should produce a list
of files similar to what one might see if the commandls -l is entered on
the command line. Commands can now be entered for particular entries to
accomplish things that might normally be done at the UNIX prompt — we
will investigate some of these capabilities in later labs.

For now, using the mouse or arrow keys, move the cursor to the entry for

CSCI 203 Page 2 October 28–29, 2002

More onemacs Editor;Makefiles; Multiple Selection Lab 7

theCS203 directory which should be in the listing — click the left mouse
button to set the cursor point on that entry (small black rectangle). To enter
the directory pressRET.

Continue into yourLabs directory, and then into yourLab7 directory.
Return to yourHome directory by using thê key twice — this keystroke
has the effect of ‘cd ..’ on the command line. Now go back to theLab7
directory, and this time return to theHome directory by selecting the..
directory twice. So there are two ways of going down the directory tree.

You may select a file for editing by using the mouse or arrow keys to
select the file in the directory listing and then pressingRET.

2.2 Compiling Programs From Within emacs

Theemacs editor also has features which are designed specifically to help
programmers with a specific programming language. You should be familiar
with the wayemacs will format your C++ code, but this is not the only C++

help provided. It is also possible to compile a program fromemacs.
Some of you may have already discovered theemacs C++ menu at the

CSCI 203 Page 3 October 28–29, 2002

More onemacs Editor;Makefiles; Multiple Selection Lab 7

top-right of the menu bar in theemacs window. The entries on the C++ menu
have been added by the Bucknell staff to makeemacs a more convenient
environment for the Computer Science students here at Bucknell. Click on
the menu button now and look at the list of options listed there.

The first option we will discuss is theCompile Buffer action. Open
up a C++ file using the technique described above. When the program file is
loaded intoemacs notice on the information line at the bottom of theemacs
window that it says (‘C++ Fill’) — this indicates that a special C++ editing
environment has been loaded intoemacs.

You can compile the file which you see in the edit window simply by
choosing theCompile Buffer command on theC++ menu. Your edit win-
dow should split into two windows, with your program in one window and
the compilation results (e.g., any error messages indicating syntax errors
and/or completion messages) in the other. This second window has its own
background menu to help you find your errors. To use the menu, move the
cursor point into the compilation-results window and click, to set the cur-
sor in that window. Now from the C++ menu, chooseFirst Error and the
cursor should switch back to the other window and locate the first error in

CSCI 203 Page 4 October 28–29, 2002

More onemacs Editor;Makefiles; Multiple Selection Lab 7

the buffer. You can then find the subsequent errors by using theNext Er-
ror item in the menu, or by using its equivalentC-x ‘ keystroke (that’s a
backwards single quote!

Another useful item in the C++ menu is theComment block action and
the relatedUncomment blockaction. This has nothing to do with compil-
ing, but it allows you to comment out multiple lines of code very quickly.
You use the comment action by selecting (highlighting) the appropriate se-
quence of lines of your code and then choose theComment block item in
the menu. When commenting a selection, be sure to select the entire line for
each line in the selection range. To remove the comment from that region,
place the cursor anywhere in the commented region and chooseUncom-
ment block in the menu.

2.3 Using aMakefile

You have seen in the last week or so that when compiling a C++ program it
is sometimes necessary to compile more than one file and then to combine
them in a step calledlinking. As programs get larger and have more classes,

CSCI 203 Page 5 October 28–29, 2002

More onemacs Editor;Makefiles; Multiple Selection Lab 7

the compiling process gets more complex. There is a command in UNIX ,
themake command, which is designed to make it easier to do routine activ-
ities with a collection of files. It is the command most commonly used to
automate the compilation process.

Themake command makes use of a special text file, called aMakefile
— it is traditional to name the fileMakefile. TheMakefile has a special
format which, if understood, can be used by a programmer to considerably
simplify the compiling and linking process.

Here is the usual process followed by a programmer at the beginning of a
new project. First create a new directory in which all files for the project will
be maintained. Then aMakefile is created for the project — it may require
modification as the project goes along. While the format for aMakefile is
a bit complex, creating a new one isn’t that hard. In fact many programmers
just take one from a previous project and make appropriate modifications
for the next project. Here are some rules to follow.

CSCI 203 Page 6 October 28–29, 2002

More onemacs Editor;Makefiles; Multiple Selection Lab 7

2.3.1 AMakefile Entry

A Makefile entry refers to a sequence of 1 or more lines which are used to
accomplish a particular file operation; an entry has two parts — the target
name part and the command part. The target name part comes first and con-
sists of a name followed by a colon and then followed by a list of file names
on which the entry depends. The command part comes next and begins on
a new line; it begins with aTAB character and then a UNIX command. Here
is an example:

Clicker.o: Clicker.cc Clicker.h
g++ -O -Wall -c Clicker.cc

This entry creates a target nameClicker.o which depends on the files
namedClicker.cc andClicker.h. The command part, notice, is just the
UNIX command to compile theClicker.cc file. With this command in a
file namedMakefile, you can just enter on the command line the command

make Clicker.o

CSCI 203 Page 7 October 28–29, 2002

More onemacs Editor;Makefiles; Multiple Selection Lab 7

and the corresponding command for the target name will be executed.
Just a couple of comments about the command part of the entry above.

With the “-c” option, g++ only compiles, i.e., it does not try to link, and
creates the object file namedClicker.o. We list two filesClicker.cc,
Clicker.h asdependencieson the first line meaning if we ever edit either
of them, we wantmake to recompile and make a new version ofClicker.o.

During the software development phase of a project, we may need to
recompile many times. Themake tool keeps track of the last time a file was
modified and recompiles only those files that have been modified. With a
larger project, this can result in a significant saving in your time.

Study theMakefile we used in Lab 6. You should be able to understand
it now.

Creating Your Own Makefile

Create a file calledMakefile and type in the following simple example of
a Makefile. Be sure to begin eachindentedline (i.e., the command part)
with aTAB key, and not spaces. You will use thisMakefile to compile the

CSCI 203 Page 8 October 28–29, 2002

More onemacs Editor;Makefiles; Multiple Selection Lab 7

programs that you create in the following three exercises.

A comment for CSCI 203 Lab 7 Makefile
all: ex1.exe ex2.exe ex3.exe

ex1.exe: ex1.cc
g++ -O -Wall -o ex1.exe ex1.cc

ex2.exe: ex2.cc
g++ -O -Wall -o ex2.exe ex2.cc

ex3.exe: ex3.cc
g++ -O -Wall -o ex3.exe ex3.cc

clean:
rm -f core *.o ex1.exe ex2.exe ex3.exe

CSCI 203 Page 9 October 28–29, 2002

More onemacs Editor;Makefiles; Multiple Selection Lab 7

This Makefile works by examining the dependencies set down in the
file and whether any modifications to the files imply that an executable needs
to be re-compiled. For example, the second line of the file indicates that to
build the target,all, the three filesex1.exe, ex2.exe, andex3.exe are
needed. It then proceeds to build each according to the rules found later in
the Makefile. The rule for buildingex1.exe says that it depends upon
ex1.cc. Now if ex1.exe does not exist orex1.cc is newer than (i.e., been
modified since last build)ex1.exe, then it executes the commands under
the dependency, in this case, the compile ofex1.cc.

You runmake from the UNIX prompt by typing the following:

make <target>

where<target> is the target to make. If you type nothing after themake
command, themake facility creates thefirst target in the file, in this case,
all.

You may also runmake by typingM-x compile while insideemacs.
Although the advantages of themake facility may not be completely

clear at this time, you can appreciate the advantage with regards to compil-

CSCI 203 Page 10 October 28–29, 2002

More onemacs Editor;Makefiles; Multiple Selection Lab 7

ing more than one file at a time as you were doing in the previous lab with
theClicker class. TheCompile via theemacs menu does not work in that
case butM-x compile does.

3 Multi-way Selection

3.1 Exercise 1

Write a C++ program to solve the following problem. Call your fileex1.cc.
to conform with yourMakefile.

“The National Earthquake Information Center has asked you to write a
C++ program implementing the following table to characterize an earthquake
based on a Richter scale number. Your program should ask the user for the
Richter number,n, and display the appropriate message.”

CSCI 203 Page 11 October 28–29, 2002

More onemacs Editor;Makefiles; Multiple Selection Lab 7

Richter Scale Numbern Characterization

0≤ n < 5.0 little or no damage

5.0≤ n < 5.5 moderate damage

5.5≤ n < 6.5 serious damage

6.5≤ n < 7.5 disaster

n≥ 7.5 catastrophic damage

• Write the program using only amain function — no input validation
needed.

• Also remember to usemake ex1.exe to compile your program.

• Place in yourhandin.txt file a listing of your working program, and
test runs for the following values forn: 4.4, 5.2, 5.5, 6.6, 7.7.

CSCI 203 Page 12 October 28–29, 2002

More onemacs Editor;Makefiles; Multiple Selection Lab 7

3.2 Exercise 2

Make a copy of your fileex1.cc and call itex2.cc. Modify ex2.cc to in-
clude an input-validation function which is called appropriately in themain.
The input function has the following interface.

double getBoundedLow(const string & inPrompt, double inLow)

// Pre: inPrompt and inLow have values AND

// cin == <v1 v2 ... vn ...> AND

// v1 <= inLow, v2 <= inLow ,..., v(n-1) <= inLow AND

// vn > inLow

// Post: cin == <...> AND returns vn

This function will read (i.e., input) a value from the user and will keep
reading a value from the user until that value is greater than the parameter
inLow. In your call togetBoundedLow() use 0.0 as the lower bound for
input value.

Place in yourhandin.txt file a listing of your working program and
test runs for the following values forn: 0.0,−10.0, 5.5, 10.0, 100.0. Again,
remember to usemake ex2.exe to compile your program.

CSCI 203 Page 13 October 28–29, 2002

More onemacs Editor;Makefiles; Multiple Selection Lab 7

3.3 Exercise 3

An if construct may be used inside of anotherif construct. This is referred
to as “nestedifs”. We indent the constructs to show the nesting as shown
below: (Note: using theemacs tabbing feature makes formatting easy! To
do this, press theTab key before you pressReturn key when entering a
line.)

if (betType == "win") {
if (position == 1)

cout << "Bet pays $20." << endl;
else

cout << "Too bad!" << endl;
} else {

if (position == 1)
cout << "Bet pays $10." << endl;

else if (position == 2)
cout << "Bet pays $5." << endl;

CSCI 203 Page 14 October 28–29, 2002

More onemacs Editor;Makefiles; Multiple Selection Lab 7

else
cout << "Bet pays $2." << endl;

}

This problem is somewhat complex but not difficult to understand. The
main problem is to carry out different actions depending on whether there
is a"win" or not. The action for each of these two cases is also a selection
problem. So the nesting structure comes naturally from the nature of the
problem.

1. Rewrite the selection statement above making use of a aswitch
statement rather than theif structure. Copy the new version of the
code (the whole thing) to yourhandin.txt file.

2. Using nestedifs, write a C++ program where the user types in “small”
or “large”, for a small or large pizza, and the number of toppings.
Depending on the size and number of toppings, the program should
print the appropriate price of the pizza based on the chart below. Use

CSCI 203 Page 15 October 28–29, 2002

More onemacs Editor;Makefiles; Multiple Selection Lab 7

thestring class to input the pizza size. You may use string literals
to output the pizza cost. Here are the details on size/toppings/cost.

Toppings small large

0 $4.99 $6.99
1–2 $5.99 $7.99
3–5 $6.49 $8.19
6–9 $6.99 $8.89
10+ $7.99 $9.49

Be sure to implement the data input using functions, but you don’t
have to worry about validating the data — you can assume it is entered
correctly.

Call your fileex3.cc to conform with yourMakefile.

(a) Go through the selection design process to design the selection

CSCI 203 Page 16 October 28–29, 2002

More onemacs Editor;Makefiles; Multiple Selection Lab 7

based on size. Make a table and describe the action in each case
in words.

(b) Now go through the same process for each action in the table
just produced. You should find that each action also involves
selection.
In this part, design each of these selections separately represent-
ing each design in a table.

Complete the program, compile it withmake ex3.exe and test for 6
different size and number of toppings combinations.

Place in yourhandin.txt file a listing of your working program and
the output from your test runs.

Try make all and see what happens.

Now do amake clean to remove the.exe files and redo themake
all. What happened?

At the end of the lab, remember to do amake clean to remove any
unwanted files.

CSCI 203 Page 17 October 28–29, 2002

More onemacs Editor;Makefiles; Multiple Selection Lab 7

4 What To Hand In

Your handin.txt file should now contain:

• Exercise 1 — program and test runs

• Exercise 2 — program and test runs

• Exercise 3 — code for theswitch statement; program and test runs

CSCI 203 Page 18 October 28–29, 2002

