
Sorting Lab 10

1 Purpose

In this lab you will practice sorting a vector of elements.
If you have not already done so, create a sub-directoryLab10 within yourLabs

directory. This new directory is where you will do work for this lab.

2 Sorting a Vector of Fractions

In class we have talked about the insertion sort algorithm. In this lab you will
write an insertion sort for a vector of Fractions. To do so you will need to read the
fractions from the file~cs203/Labs/Lab10/sample-fracs.dat. The lines in
the file contain numerator and denominator pairs, e.g., 1 2. Make no assumptions
about the number of values in the file.

2.1 Copy the Files

Copy the files in~cs203/Labs/Lab10/ into yourLab10 directory. You will have
a copy of theFraction class, a skeleton for a class calledSortedFracs, a main
program, a data file, and aMakefile.

2.2 Read Fractions and Display Them

The fileSortedFracs.cc containsstubsfor the methods that you need to com-
plete. A stub is the simplest form of a method that will compile. It is a common
programming practice to create stubs (placeholders) for methods that you need.
Then, fill them in one at at time, verifying that the program works at each step.
This is the approach you will use in this lab. The program currently compiles
but doesn’t do much. Typemake to compile and then run. After you complete a
method, comment out the originalcout in each of the stubs.

You will be doing all of your work in SortedFracs.cc. Begin by
completing the methodreadFromFile(). This method should open the file
sample-fracs.dat, read the fractions and save them in the vectormFractions.
(Use thevector class’push_back method).

Thesize() method reports the size ofmFractions, anddisplay() will dis-
play its contents. Complete these also, compile the program, and convince yourself
that it is working properly. Copy into yourhandin.txt file an execution of your
program to demonstrate that the data is being read properly.

CSCI 203 Page 1 November 25–26, 2002



Sorting Lab 10

2.3 Sort the Fractions

When sorting a list of values there must be an ordering for the values in the list —
in this case the ordering is the ordering of fractional values. While C++ has compar-
ison operators defined for the basic data types (int, char, etc.), these comparison
operators are not defined forFraction objects. It is possible in C++, however, to
extend the definition of an operator so that it will work for a new type. In our case
we want the operator< to be defined forFraction objects. If you look in the file
Fraction.cc you will find the following definition at the end of the file.

bool operator<(const Fraction & inLeft,
const Fraction & inRight) {

return
inLeft.getNumerator()*inRight.getDenominator() <
inLeft.getDenominator()*inRight.getNumerator();

}

This definition treats the operator< as a function with two parameters — both
Fraction objects — and returns a Boolean value.

With this capability to compareFraction objects, complete the method
insertVal(). This method will insert its input parameter at the correct place
in the vector so that the vector is sorted. Then changereadFromFile() so that it
usesinsertVal() to insert values into the vector.

Compile the program and run it to convincing yourself that it is working prop-
erly. Copy to yourhandin.txt file a copy of the input file and a copy of the output
from your program to demonstrate that the insertion method works.

2.4 Write Results to a File

Implement thewriteToFile() method. You should write the fractions to the file
sample-fracs2.dat. Use the original file format for writing.

Compile and run the program and make sure it is writing the values correctly.
Add to yourhandin.txt file a copy of the fileSortedFracs.cc, a sample run,
and a copy ofsample-fracs2.dat.

3 What to Hand In

Print (usinga2ps, of course) a copy of thehandin.txt file you have constructed
and turn it in as usual.

CSCI 203 Page 2 November 25–26, 2002


