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Randomized Binary Search Trees
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Insertion at the root
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Make the new item the root node 
of a new tree. The old root will be 
the left subtree of the new item. 
The right subtree of the old root 
will be the right subtree of the 
new root. 
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Insertion at the root
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A potential problem with this 
rationale is that you may end up 
with a tree that is getting 
needlessly deeper and deeper, 
more and more unbalanced. 

What is needed is a mechanism 
to restructure the tree after each 
insertion so that it doesn’t 
degenerate. 

It is inefficient to do this globally, 
but perhaps we can do something 
locally that is not bad for 
performance. 
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Rotations
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A rotation is a local change involving two nodes and three links. Note that 
although it restructures a portion of the tree, it does not change the tree’s 
global properties. 

It is easy to verify that the inorder traversal of the rotated tree is the same 
as the original’s.
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Insertion at the root
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Insertion at the root
A

S

XG

RE

H

Right-Rotate(T, S)

C

A

G

S

R

E

H

Left-Rotate(T, A)

C
X

G

A S

RE

HC

X



10/29/2006 CSCI 311 Data Structures 7

The basic BST operations run in O(h), where h is the height of the tree. It 
is important to note that h depends on the order in which items are 
inserted in the tree. 

Question: What would the tree look like if the keys were inserted in 
strictly increasing order?

If the order of item insertion were to follow equally likely permutations of 
the possible (distinct) keys, the expected height of the tree with n
nodes would be lg n.  In the next slide we will show how to make any 
insertion order look random, and thus give good expected (average) 
performance.

Note, however, that even when the key insertion order is random, there 
is no guarantee that the height of the tree will be lg N - we may get a 
bad permutation.  Therefore we cannot guarantee that operations on 
the BST are O(lg n).

Randomly Built BSTs
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Randomized Insertion
We can make it look like the order of key insertion is random by

choosing the insertion point at random. Say that the number of 
nodes in the current subtree is k before the insertion. 

Simple recursive procedure: When inserting at the root of a subtree, 
toss a biased coin:

With probability 1/(k+1), insert new key at the root of the current 
subtree using the algorithm given above (there is no further 
randomization for this insertion).  
With probability (k/k+1), recursively apply randomized insertion 
in the appropriate subtree.
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Performance: a mix of N insertions and searches will take O(N lg N)  on 
average and O(N2) in the worst case.  
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