
10/29/2006 CSCI 311 Data Structures 1

Hash Functions

10/29/2006 CSCI 311 Data Structures 2

Last Time: Hash Table
0

h(k1)

h(k3)

h(k4)

h(k2)

M-1

U (universe of keys)

K (actual keys)
k1

k2

k3

k4

function hash)(=kh
}1,,2,1,0{: −→ MUh K

slot. same the tohashmay keys two, When

).addressing-direct (unlike when works thisClearly,

MK

MU

>

>

Ideally, h scrambles the key values well enough so that each slot is equally likely.
When more than one key hashes to the same slot, we have collisions.

10/29/2006 CSCI 311 Data Structures 3

where 110, 111, and 119, respectively, are the ASCII encodings of
“n”, “o”, and “w”.

How do we now hash this number x? If we say h(k)= x mod M, where
M=64, the slot in the table will be determined only by the last 6
bits in x. A good hash function should consider all the bits in
the key, especially when the keys are strings of characters.

Hash Functions
The data type of the key determines the hash function one needs.

Example: The keys are strings of characters. Assume characters use
7-bit encoding. We treat the key as a base 128 number, that is,
each character in the key will correspond to one base-128 digit.

012 128119128111128110 now"" ⋅+⋅+⋅== x

10/29/2006 CSCI 311 Data Structures 4

Hash Functions

now 1816567 55 29

tip 1914096 50 20

ilk 1734251 43 18

dim 1651949 45 21

tag 1913063 39 22

nob 1816546 34 8

sob 1898466 34 6

hut 1719028 52 16

ace 1602021 37 3

bet 1618676 52 11

jot 1751028 52 24

egg 1668071 39 23

gig 1701095 39 1

men 1798894 46 26

cab 1634530 34 24

ASCII 21-bit decimal M=64 M=31

10/29/2006 CSCI 311 Data Structures 5

Hashing Strings
When dealing with keys that take more than a 32-bit word, there are

two issues to deal with: First, we want to compute the hash function
in a reasonable amount of time (linear in the string length). Second,
we must deal with large numbers that might cause overflow.

To deal with the first issue, we apply Horner’s method. The string:

ckck-1ck-2…c2c1c0

is equal to the integer:

ck×128k + ck-1×128k-1 + ck-2×128k-2 + … + c2×1282 + c1×128 + c0

This can also be written in the following form, which allows the value to
be computed using one multiply and one addition for each character:

((…((ck×128 + ck-1)×128 + ck-2)×128 + … + c2)×128 + c1)× 128 + c0

10/29/2006 CSCI 311 Data Structures 6

Hashing Strings
Note that if we try to compute the value

[((…(ck×128 + ck-1)×128 + … + c2)×128 + c1)× 128 + c0] mod M

we will run into overflow problems. However,
using properties of the mod function, we can
compute this value correctly without overflow as
follows:

[([([(…[(ck×128 + ck-1) mod M]×128 +…+ c2) mod M]
×128 + c1) mod M]× 128 + c0)] mod M

10/29/2006 CSCI 311 Data Structures 7

Improving String Hashing
• The hash function must produce an integer less than M and should

consider all the bits in the key value.
• We choose M to be prime so as spread the hashed key values

evenly in the range [0, M-1].
• When we look at keys as numbers in a base-R system, if the table

size M and R have common factors (or sometimes even when they
don’t), the distribution of hashed values may be far from even.

• What we need is to pick M and R values that are relatively prime.

int hash(String v, int M) {

int h = 0, a = 127;

for (int i = 0; i < length[v]; i++)

h = (a*h + v[i]) % M;

return h;

}

Note that we picked R=127,
which is prime and will therefore
be relatively prime to the chosen
table size M if it is also prime.

	Last Time: Hash Table
	Hash Functions
	Hash Functions
	Hashing Strings
	Hashing Strings
	Improving String Hashing

