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We present two simple soluble quantum optical models in which an atomic system is coupled to a 
bath containing an infinite number of reservoir states. The total system is treated conservatively, but 
the atomic subsystem of interest exhibits decay. The first system consists of a single two-level atom 
coupled to an infinite number of modes of a one-dimensional cavity which are equally spaced in 
frequency. The coupling results in spontaneous emission by an excited atom into the modes of the 
cavity. The model also exhibits the subsequent re-excitation of the atom after the spontaneously 
emitted radiation is reflected from the ends of the cavity. The second is a single two-level atom 
coupled to a single mode of a damped optical cavity where the damping is provided by coupling to 
quantized oscillators in the walls of the cavity. The damped cavity alters the spontaneous emission 
rate from its free space value. The simplicity of both models makes them attractive as a method for 
introducing quantum mechanical damping phenomena. © 1995 American Association of Physics 
Teachers. 

I. INTRODUCTION 

Damping phenomena are ubiquitous in physics. Canonical 
quantization procedures are, however, strictly applicable 
only to conservative systems. The usual approach to quan­
tum mechanical damping involves the coupling of a system 
of interest to a bath or reservoir consisting of a large number 
of particles or modes of a field. The entire system consisting 
of the subsystem of interest plus the bath is then treated 
conservatively. In the limit of a large number of degrees of 
freedom in the bath, the dynamical variables of the sub­
system of interest may then exhibit irreversible decay, or 
damping. Such problems can often be simplified by remov­
ing uninteresting information about the reservoir states using 
density matrix techniques. This approach has been used in 
systems of varying levels of complexity.1-3 In quantum op­
tics, spontaneous emission is perhaps the most fundamental 
manifestation of damping. In this paper, we present two 
simple soluble models of damped atomic excitation in which 
the entire system can be treated using elementary quantum 
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mechanics. Both models have been treated previously using 
other techniques, but the simplicity of our methods should be 
of interest to readers of this journal. 

The first system we consider is the well-known Wigner­
Weisskopf model of spontaneous emission4 in which an ex­
cited two-level atom is coupled to the empty modes of the 
radiation field of a one-dimensional cavity, i.e., a cavity at 
temperature T=O. Using elementary techniques, we derive 
exact expressions fer the time evolution for all variables of 
the system, including the decay of the atomic excitation. We 
also note and interpret periodic revivals of the atomic exci­
tation. The price for the ease of derivation is that the formu­
las we arrive at are not as transparent as the usual expres­
sions describing such damping, although they are easy to 
evaluate with the aid of a personal computer. Our result is an 
extension of an often neglected portion of Wigner and Weis­
skopf's original paper. This extension is now possible due to 
the advent of computers. The second model we consider is a 
single two-level atom coupled to a single mode of a damped 
optical cavity. Using the same techniques that we develop in 
solving the Wigner-Weisskopf model, we are able to relate 
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the Q of the cavity to the fundamental properties of the cou­
pling between photons in the cavity and the quantized modes 
of excitations in the mirrors of the cavity, and then derive 
expressions which demonstrate the effect of the properties of 
the cavity on the decay of the atomic excitation. 

II. DECAY AND REVIVAL OF AN ATOM IN A ONE· 
DIMENSIONAL CAVITY 

Perhaps the simplest model for the decay of a quantum 
mechanical system is that first given by Wigner and 
Weisskopr in which an excited state of a single two-level 
atom (with resonance frequency Wo) is coupled to an infinite 
number of empty modes of the radiation field (with frequen­
cies wJ In the simplest case the couplings of the atom to the 
radiation modes which comprise the reservoir are all equiva­
lent. The Hamiltonian for this system5

,6 is given by 

H == H .tom + H field + Hinter.ction 

X(bt +b), (1) 

where a i and a; are the annihilation and creation operators 
respectively for photons in the mode specified by i, and b t 
and b are the raising and lowering operators for the two level 
atomic excitation, i.e., if the atomic ground state and excited 
state are represented by 1 g) and 1 e) respectively, then 

b==lg)(el and bt=le)(gl. (2) 

The magnitudes of the couplings of the photon modes to the 
atom are given by the constants ni . In a one-dimensional 
cavity, the dipole aPRroximation coupling parameter for the 
ith mode is given by6 

( 
Wo ) 1/2 

ni= h2E'oV fi(r)d, (3) 

where fj(r) is a function with a maximum value of unity 
which describes the spatial dependence of the electric field in 
the mode, V is the effective volume of the mode given by 
V= flf(r)1 2 d3r, and d is the dipole matrix element between 
the two atomic levels, l(elqeRlg)l. The fact that the coupling 
constant does not depend on frequency is a result of the 
dipole approximation. There is, of course, a slight depen­
dence on w in better approximations. However, as Wigner 
and Weisskopf demonstrated,4 and as we will see in this 
paper, the only photon modes that play a significant role in 
spontaneous emission are those that are very near the atomic 
resonance frequency. In the neighborhood of the resonance, 
the variation of the coupling constant with frequency is very 
slight. 

We simplify the following calculations in two additional 
ways. First, we begin by assuming that the atom is located at 
the center of the cavity. At this position the field modes have 
either nodes or antinodes, which are described by values of 
fi which are either 1, -1, or 0. For the atom at the center, we 
thus need only consider interactions of the atom with half of 
the cavity modes, and the coupling constant for all of the 
relevant modes is a constant, which we call n. 

The second simplification we make is the standard rotating 
wave approximation5 in which terms involving the products 
b tar and aib are dropped from Hinter.ction' (We note that this 
approximation is exactly that made by Wigner and Weis-
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skopf in their original 1930 paper,4 although the expression 
"rotating wave approximation" was not used at that time.) 

Although we will assume that the number of modes of the 
cavity becomes large, we emphasize that we do not assume 
that the spacing between the modes becomes small. In terms 
of our one-dimensional cavity this means that we do not 
assume that the length L necessarily goes to infinity, but we 
do assume that the atomic resonance frequency is large com­
pared to the mode spacing, i.e., Wo}>'TTc/L. This insures that 
there are a large number of modes on either side of the reso­
nance with which the atom will interact. Our model accom­
modates the continuum limit, if we let L go to infinity, as 
well as the case where the discreteness of the field energy 
levels is manifest in revivals of atomic excitations. 

The combined states of the atom and field may be denoted 
by the atomic state (e or g) along with the number of pho­
tons in each mode of the field. As an example, the state in 
which the atom is in the excited state with no field photons 
can be written as le;0), while a ground state atom with one 
photon in the "kth" mode of the field can be written as 
1 g; k). These states are eigenstates of 

Ho=H.tom+H field , (4) 

but they are not eigenstates of the complete Hamiltonian 
including the interaction term. For convenience, we assume 
that the atom is interacting with a finite number of modes, 
and we will eventually take the limit as this number becomes 
very large. In a model one-dimensional cavity the modes will 
be equally spaced in angular frequency by fl.=2'TT( c/2L) 
= 'TTc/L. For an atom situated at the center of the cavity the 
effective spacing is twice this value because, as mentioned 
before, the atom only interacts with the modes which do not 
have nodes at this position. Therefore, fl.--'>2'TTc/L. We as­
sume that the central mode of our finite number is exactly 
resonant with the atomic frequency. Thus, the detunings of 
the various modes from the atomic resonance are given by 
-nfl., - (n -1 )fl., .. . ,0, . .. nfl., where we will initially con­
sider 2n + 1 modes. The labelings of the modes in the kets 
Ig;j) will correspond to the integer which describes the de­
tuning of the mode in units of fl.. 

In this rotating wave approximation model the state con­
taining an excited atom and no photons, le;0), is coupled to 
all of the states with a ground state atom and one photon, 
such as Ig; - n), and these are the only nonzero couplings. 
We represent the state vectors with the following column 
vectors 

1 

° le;0)--'> ° 
° 

(5) 

If we subtract off the zero-point energy of the radiation 
modes plus the excited state atomic energy, the Hamiltonian 
of Eq. (1) can be represented by the matrix 
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0 1i0 -1i0 1i0 -1i0 

1i0 -nlil1 0 0 

-1i0 0 - (n -1)1i11 0 

1i0 0 0 

1i0 nlil1 
(6) 

The time evolution governed by a Hamiltonian of this 
form has been calculated previously using at least two dif­
ferent approaches. A technique of Wigner and Weisskopf that 
has been summarized in many current texts7

,8 begins by writ­
ing the general state of the system as a linear combination of 
the states we have described above in Eq. (5) with time­
dependent coefficients. Substitution of this general state vec­
tor into the Schrodinger equation results in an integrodiffer­
ential equation for the coefficient of the state \e;0). By 
letting the spacing between the modes of the field go to zero 
this equation can be solved using various approximations. A 
different approach using Laplace transform techniques has 
been developed by Stey and Gibberd9 for the model Hamil­
tonian of Eq. (6), giving an exact solution. In the following 
paragraphs, we derive an exact solution in a different man­
ner. The mathematics of our method is much simpler than 
that of Stey and Gibberd although the form in which our 
solution is expressed is not as transparent as theirs. 

Our strategy is to find the exact representations for the 
eigenstates of our model Hamiltonian. Once the eigenstates 
are known, the initial state of the system is projected onto 
these eigenstates, and the time evolution of the system can be 
calculated easily because the time dependence of the eigen­
states is trivial. In mathematical language, we find the eigen­
states of the total Hamiltonian: 

(7) 

The initial state of the system, with the atom excited and no 
photon in the cavity, can be written as a linear combination 
of these energy eigenstates 

I r/J(O» = le;0)= 2: IE;)(E;le;0)= 2: a;IE;}. (8) 
i i 

At a later time t, the state of the system is given by 

I r/J(t» = ~ a; exp( -iE;t/Ii)IE;), (9) 

and the amplitude for the atom to still be in the excited state 
is given by 

(e;01 r/J(t)) = 2: a; exp( - iE;t/1i )(e;0IE;) 
; 

(10) 

The only difficulty in this procedure is the determination 
of the eigenvalues and the eigenstates of the complete 
Hamiltonian. The problem, in matrix representation, is to 
find the eigenvectors, x(i), and eigenvalues, E; , of the matrix 
iI in Eq. (6): 

(11) 
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Writing out each of the 2n + 2 individual equations which are 
contained in Eq. (11) gives 

1i0(x(i) - x(i) + ... + x(i) ) = E ·x(i) 
2 3 2n+2' 1 , 

(12) 

where x~i) is the jth component of the eigenvector associated 
with energy E; . Each of the lower 2 n + 1 of these equations 
can be rewritten to .find expressions for each of the x~;)'s 
(j > 1) in terms of xi'). These can than be inserted in the first 
equation. Upon cancellation of the common xii) in all of the 
terms, we are left with the characteristic equation 

1 1 1 
-:-::::----:--:--:- + + ... + .,------:--:--:-
(E;+nlil1) (E;+(n-l)IiI1) (E;-nlil1) 

=E;l1i202, (13) 

from which to determine the energies of the eigenstates. 
For numerical work, it is easier to write in Eq. (13) terms 

of the dimensionless variable 

y=E;lIiI1, (14) 

so that the characteristic equation becomes 

1 1 1 2 

(y+n) + (y+(n-l) + ... + (y-n) =(11/0) y. (15) 

In the limit of large n, the series on the left-hand side can be 
expressed simply, 0 and the characteristic equation becomes 

(16) 

This transcendental characteristic equation was developed by 
Weisskopf and Wigner,4 but its utility to them was limited by 
the difficulty in finding and using the roots without a com­
puter. Examination of the cotangent function makes it clear 
that there will be a root of this transcendental equation be­
tween each of the integers. It is a simple and quick matter 
using a personal computer to find such well-bracketed roots 
to arbitrary precision. 

Once the energies of the states are known, it is easy to 
construct the eigenvectors themselves. Normalization of the 
eigenvectors combined with the co~ditions on the compo­
nents contained in Eq. (12) gives xi') 

or 
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[ 
02 {I 1 

= 1+~ (y+n)2+ (y+n-l)2+'" 

1 }] -1 (17) 
+ (y-n)2 

The series in Eq. (17) also has a simple expression in the 
large n limit,lO so that Eq. (17) becomes 

Ix~i)12= [1 + (027T2/ A2)csc2(Ei7T/hA) r 1 

= [1 + (027T2/ A2)(1 +cot2(Ei7T/hA) )]-1 

[ 
027T2 E2 ]-1 

= 1+~+ h2~2 , (18) 

where we have used the characteristic equation, Eq. (16), to 
simplify the final result. 

The coefficients ai in Eq. (10) are equal to the components 
X~i), so the amplitude for the system to be found in its initial 
state with the atom excited is 

.~ .. 

(19) 

In arriving at the final line of Eq. (19), we have used the fact 
that each energy E i is matched with an energy of equal mag­
nitude and opposite sign. This is clear because the character­
istic equation is odd in E i' The sum in the final line is only 
over positive eigenvalues. 

The expression in Eq. (19) resembles a conventional 
Fourier series in that it is a sum over cosine functions, but 
the arguments of the cosine are not equally spaced. They 
are, rather, proportional to the roots of the transcendental 
characteristic equation. The behavior of this expression as a 
function of time is not obvious. The numerical evaluation of 
this equation is easy, however, once the eigenvalues are de­
termined. Upon plotting this function two remarkable fea­
tures become immediately apparent, as illustrated in Fig. l. 
First, the amplitude for the system to remain in the state 
Ie ;0) with the atom excited exhibits exponential decay for 
t<27T/A: 

(e;01 o/(t» = exp( - yt), 

where the decay constant is given by 

7T02 

y=T' 

(20) 

(21) 

The decay constant may appear to depend on the length of 
the cavity because of the length dependence of A. The factor 
0 2 is proportional to 1/V, though, and the length dependence 
cancels. The second feature of the time evolution is that the 
amplitude for finding the atom in its excited state undergoes 
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Fig. 1. Single atom at center of multimode cavity: Amplitude for the system 
to be found in the state ie;0) (excited atom and no photon) as a function of 
time. This is a plot of Eq. (19) in the text. Note the initial exponential decay 
and the subsequent revivals. The atom-field coupling strength, n, for this 
plot is set equal to the mode frequency spacing, A. 

abrupt r~currences. The onsets of these recurrences are 
spaced by a regular tihle interval, 

T recurrence = 2 7T / A. (22) 

It is not easy to see that Eq. (19) should yield exponential 
decay, but Stey and Gibberd9 have demonstrated by different 
techniques that Eq. (20) is indeed the exact solution for the 
amplitude in the interval 0<t<27T/A. In the next interval, 
27T/A<t<47T/A, Stey and Gibberd have expressed the ampli­
tude as 

xexp{ _ 7T~2 (t-27T/A)} 

for 27T/A<t<47T/A, (23) 

which displays the first recurrence of the atomic excitation in 
the second term. After each interval of 27T/ A, they show that 
an additional term is added on to the amplitude which is in 
the form of a Laguerre polynomial times an exponentially 
decaying factor. This is exactly the behavior that arises from 
the sum in our Eq. (19), which is valid as written for all 
times. 

The recurrences are easy to interpret in the context of 
quantum optics. As mentioned above, for an atom at the 
center of a cavity of length L, the effective spacing in angu­
lar frequency between the modes with which the atom inter­
acts is 27Tc/L. Thus, the recurrences in the atomic excitation 
occur every Llc, which is simply the time it takes the "pho­
ton" to propagate to the ends of the cavity and return, with 
the resultant probability of re-exciting the atom. The speed of 
light is built into the problem via the electromagnetic mode 
spacing in the cavity. 
. Conventional treatments of spontaneous emission using 
the Wigner-Weisskopf Hamiltonian 7-8 result in the same 
exponential decay that we obtain, although all informa­
tion about the recurrences of the atomic excitation is lost in 
these treatments due to the continuum limit for the field 
spectrum and the approximations that make it possible to 
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solve the integrodifferential equation for the amplitude of the 
state Ie; 0). More sophisticated treatments of spontaneous 
emission that do not include the approximations inherent 
in the Wigiler-Weisskopf model are known to give small 
deviations from exact exponential decay at very long and 
very short times.11

-
15 These features do not appear in our 

solution:. We find it somewhat surprising that in the exact 
solution of the Wigner-Weisskopf Hamiltonian, which re­
tains information about recurrences at long times, the decay 
maintains its exact exponential form during the finite inter­
vaIO<t<27T/D... 

The preceding calculations assumed that the atom was sta­
tionary at the center of the cavity. For atoms which are not at 

0 IiO IiO/v'2 0 

IiO -nliD.. ' 0 0 

IiO/v'2 0 -(n-l)IiD..' 0 

0 0 0 - (n-2)1iD..' 

In Eq. (25), D..'=27T(c/2L), whereas before the effective 
mode spacing was 27T(c/L). 

The mathematics follows exactly the same lines as before, 
and the resulting characteristic equation is 

7T{ cot( 7) + ~ cot[ ~ (y + 1) ] + ~ cot[ ~ (y - 1) ]} 

(
D..')2 

=4 n y. (26) 

The time-dependent amplitude to find the atom in the excited 
state is again given by 

(27) 

where now the first components of the eigenvectors are given 
by 

Ix~i)12= [ 1 + :~ (~, r { 4 + 2 cot2[ ~ Y] 

+cot2[ ~ (y+ 1)] +cot2[ ~ (y-1)]} r1 

(28) 

Figure 2 illustrates a plot of Eq. (26) for the case of the 
atom at L/4 from the end. The atom decays as before, but the 
amplitude for the atom to be in the excited state exhibits 
recurrences spaced by one-half of the previous value, or 

r:ecurrence = 27T/4D..' = L/2c. (29) 

This is just the time it takes for the light to travel to the 
nearest end wall of the cavity and back, and then be reab­
sorbed by the atom. 

Interaction of a bound quantum system with a continuum 
is often said to result in irreversible decays of quantum sys­
tems. In this example, an atom interacts with a quasicon­
tinuum and exhibi~s revivals in the amplitude for excitation. 
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the center of the cavity, the problem is only slightly more 
complicated. For example, when the atom is at a position L/4 
from one end of the cavity, the coupling strengths to the 
modes with which the atom interacts are not equivalent, due 
to the sinusoidal spatial dependence of the radiation mode. 
The effective coupling constants are 

o 
On=O sin(n7T/4)=±O,±v'2' or O. (24) 

Thus, the top row and left column of the matrix of Eq. (6), 
which contain the coupling constants, must be modified. The 
new matrix to be diagonaliz~d is 

(25) 

nliD.. ' 

The revival in the excitation will not be realized in practice 
in a system like this if the mode spacing is so small as to 
push the recurrence time too far into the future. If the recur­
rence time is too long, the interaction of the atom 
+quasicontinuum system with the outside world will cer­
tainly destroy any chance to observe such recurrences. 

The phenomenon of decay and revival of the atomic exci­
tation in this model is very reminiscent in some respects of 
the periodic spontaneous collapses and revivals predicted for 
Rabi oscillations in the coherent state Jaynes-Cummings 
model discovered by Eberly et al. 16 They examined a single 
two level atom interacting with a single mode of a radiation 
field prepared in a coherent state, i.e., the most nearly clas­
sical of quantum radiation states. In a single photon number 
state, the Rabi frequency characterizes the time scale of the 
atom's oscillation between the ground and excited states un­
der the influence of the single radiation mode. If the field is 
in a coherent state, the time evolution of the system involves 
a sum over many sinusoidal Rabi oscillations because of the 
distribution of the photon number states which make up the 
coherent state field. The oscillations begin in phase, but as 
they dephase, the observable Rabi oscillations of the atom 
die out. Eberly et al. 16 pointed out that the oscillations in­
duced by the various number states must eventually, at least 
partially, rephase. This occurs because only a finite number 
of terms contribute significantly to the sum, and thus they 
will rephase in a time characterized by their frequency sepa­
ration. 

Collapses and revivals due to dephasing and rephasing of 
quantum states have been' observed experimentally in a sys­
tem consisting of an atom interacting with the modes of a 
micro maser cavity.17 The phenomenon is a general one, and 
has also been observed in-the rephasing of spatially localized 
wave packets in Rydberg atoms.18 In the case of the Rydberg 
atoms, it is the discrete spacing of the Rydberg levels that 
leads to the revivals. In the model presented in this paper, the 
eigenvalues of the total Hamiltonian are approximately sepa-
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Fig. 2. Single atom in multimode cavity at position L/4 from nearest end 
wall: Amplitude for the system to be found in the state le;0) (excited atom 
and no photon) as a function of time. This is a plot of Eq. (27) in the text. 
The atom initially exhibits exponential decay, but the subsequent revivals 
occur with half the period of those illustrated in Fig. 1. The atom-field 
coupling strength, 0:, for this plot is set equal to twice the mode frequency 
spacing, .1,. 

rated by the intermode spacing a, and only a finite number 
of them contribute appreciably to the sum in Eq. (19) which 
gives the time evolution of the system. The different terms in 
this sum will certainly depl)ase in time because the spacings 
are not exact multiples of a; but simple consideration of the 
discrete nature of the spectrum leads to the expectation of 
rephasing at a time characterized by 1/ a. 

III. SPECTRUM OF AN ATOM IN A ONE­
DIMENSIONAL MULTIMODE CAVITY 

In order to find the spectrum of the photons emitted by the 
atom in the one-dimensional cavity treated in Sec. II, it is 
necessary to examine the amplitudes for the states which 
contain one photon and a ground state. atom. Consider the 
amplitude for the mode which is detuned from the atomic 
resonance frequency by ma, i.e., the amplitude for the sys­
tem to be in the state Ig;m). Using the results from Sec. II 
gives . 

(g;ml I/!(t»=(g;ml}: {exp( - iEit/1i )IEi)(Eile;0)} 
i 

_ ~ (i) (i)* _ . 
- £oJ Xl Xn+m+2 exp( zEit/ii). 

i 
(30) 

Now using Eq. (12) to rewrite Xnm+2 in terms of x~i), we 
obtain 

= ± ~ h[l[ ( 1 + O~:2 + 1i;~2) (Ei-mlia) rl 

X exp( - iE it/Ii). (31) 

The sign of this amplitude is given by the sign of the cou­
pling coefficient Om. 

The corresponding probabilities as a function of time for 
several representative photon modes are plotted in Fig. 3. 
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Fig. 3. Single atom in center of multimode cavity: Probabilities for the 
system to be in representative states Ig;n) (ground state atom, one photon in 
mode with detuning n.1,) as a function of time. The probabilities initially 
grow with time and then reach a relatively constant value until the first 
revival of the atomic excitation at time Trecurrence=27T/.1,. Atomic parameters 
are the same as in Fig. 1. 

After the initial decay of the atom is essentially complete, 
and before the first revival of the atomic excitation, the sys­
tem is in a relatively stable state and none of the amplitudes 
change appreciably with time. At such times the spectrum of 
the photons emitted by the decay can be inferred from the 
probabilities of photons being in the various modes. These 
are given by the square of amplitudes like those in Eq. (31). 
Representative probabilities at times long compared with the 
atomic decay time are plotted versus mode detunings in Fig. 
4. An analytic expression for the spectrum is difficult to de­
rive exactly from Eq. (31), but the form of the spectrum is 
clear from the numerical calculations. The probabilities fit a 
Lorentzian curve with full width at half maximum exactly 
equal to twice the decay rate y of Eq. (21). This gives the 
usual Iifetime-linewidth uncertainty relationship. 

In the model above, the spectrum is centered exactly on 
the value of the bare atomic resonance. This must be the case 
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Fig. 4. Single atom at center of multimode cavity: Spectrum of photon 
probabilities at "long" times. The points are taken from the data plotted in 
Fig. 3 at time t=6/.1,. This time is well after the atom has decayed, but 
before the first revival at time T recurrence = 27r/.1,. The line is a Lorentzian 
curve with a full width at half-maximum equal to 2")'. 
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because there is perfect symmetry in the Hamiltonian be­
tween states with 'photons of equal and opposite detunings, 
e.g., between Ig;m) and Ig;-m). Spectral shifts will occur 
when the coupling to the continuum does not display this 
symmetry. 

IV. DECAY OF AN ATOM IN A DAMPED, SINGLE­
MODE, RESONANT CAVITY 

Another problem involving damping that can be handled 
easily with the techniques employed above is that of an atom 
interacting with a single mode of a damped cavity. The 
damping of the cavity mode strongly modifies the decay of 
the atom from the exponential decay the atom would un­
dergo in free space. These effects have been studied in detail 
by Sachdev,19 Haroche,2o and Knight.2l In a high Q cavity 
the photon lifetime in the cavity is long enough that the atom 
undergoes damped Rabi oscillations, while in the low Q, or 
highly damped cavity, the atoms will decay exponentially, 
but at a rate which is enhanced from the free space decay rate 
by a factor proportional to Q. Such effects have been experi­
mentally observed in open Fabry-Perot cavities at millimeter 
wavelengths in Rydberg atoms22 as well as at optical 
frequencies.23 

To model the effect of the damping of the cavity mode, we 
assume that the electromagnetic radiation within the cavity is 
coupled to a quasicontinuum of oscillator states in the cavity 
walls or mirrors. For ease of calculation, we assume that this 
bath of wall states consists of a set of harmonic oscillators 
which are equally spaced in angular frequency by an amount 
I:!... The coupling of the radiation mode to each of the bath 
states is assumed equivalent, and analogous to the rotating­
wave-approximation coupling of a radiation mode to a two 
level atom. The atom is not directly coupled to the wall 
states, but only indirectly coupled through the interaction 
with the single mode of the electromagnetic field. The single 
radiation mode will be assumed to be resonant with the 
atomic frequency Wo. 

The Hamiltonian for the total system can be written 

H = H atom + H field + H wall + H atom-field + H field-wall, (32) 

where H atom is the unperturbed two-level atomic Hamil­
tonian, H field is the Hamiltonian for the single radiation 
mode, H wall is the Hamiltonian for the oscillators in the walls 
of the cavity, and the remaining terms express the interac­
tions between the atom and radiation, and the radiation and 
the walls. If C i and c! are the annihilation and creation op­
erators for the modes in the walls, and 0 1 and O2 are the 
radiation-atom and radiation-wall coupling constants re­
spectively, then the rotating wave approximation Hamil­
tonian can be written 

H=hwobtb+hwoata+ L hWiC!Ci+hOl(abt +atb) 
i 

As a set of basis states we use the following: 

le;0;0)~e.s. atom, no photon, no wall excitation, 
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I g; 1 ; 0) ~ g.s. atom, one photon, no wall excitation, 

Ig;O;m)~g.s. atom, no photon, one wall excitation 

in mode with detuning mI:!... 
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(33) 

A matrix representation of the Hamiltonian of Eq. (33) is 
given by 

0 hOI 0 0 

hOI 0 h0 2 h0 2 

0 h0 2 -nhl:!.. 0 

0 h02 0 -(n-1)hl:!.. 

0 h02 +nhl:!.. 
(34) 

The procedures applied to the atom in a multimode cavity 
in Sec. II are also easy to apply in this case. For a finite 
number of wall oscillators spanning a range of detunings 
from -nl:!.. to nl:!.., the matrix in Eq. (34) has 2n + 3 dimen­
sions. Writing out the energy eigenValue equations analogous 
to Eq. (12) reveals an eigenvalue of E=O, and in the limit of 
large n, the remaining eigenvalues are given by the charac­
teristic equation 

(35) 

where once again, y = E / hI:!... Like Eq. (16), this equation 
has roots between each of the integers, which makes it easy 
to solve numerically. We calculate the amplitude for the atom 
to be in the excited state in a manner similar to that used in 
Sec. II and find as before 

(e;0;011fr(t»= L l(e;0;0IEiW exp( -iEit/h), (36) 
i 

where 

l(e;0;0IE;)12 

The time behavior of the amplitude is once again not trans­
parent, but we will demonstrate that the amplitude displays 
either overdamped or underdamped oscillations, depending 
on the characteristics of the cavity. 

Cavities are conventionally characterized by their Q value, 
or equivalently by a damping constant, Ycav, which describes 
the loss rate of energy from the cavity. These two quantities 
are related by 

Q= WO/Ycav· (37) 

To relate these quantities to the cavity parameters O2 and I:!.., 
consider the Hamiltonian of Eq. (33) in the absence of any 
atomic degrees of freedom. This is then exactly the Hamil­
tonian of Sec. II, with the radiation mode playing the role of 
the atomic excitation, and the cavity oscillators playing the 
role of the multimode radiation field. The decay rate for en­
ergy initially in the electromagnetic radiation mode is twice 
the decay rate for the amplitude. The decay rate for the am­
plitude can be read off directly from the results of our earlier 
calculation as expressed in Eq. (21). This gives 

(38) 

or 
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Fig. 5. Single atom in a single mode, damped cavity: Amplitude for the 
system to be in the state le;0;0) (excited atom, no photon, no wall excita­
tions) as a function of time. This is a plot of Eq. (36) in the text. In curve 
"a" the atom-field oscillations are overdamped (yc.vl01 =40), in "b" the 
oscillations are critically damped (Oc.vlO) =4), and in "c" the oscillations 
are underdamped (yc.vlOI =0.63). 

woA 
Q= 2'lTO~' (39) 

Figure 5 gives representative plots of the time-dependent 
amplitude for the atom to be in its excited state as given by 
Eq. (36). Plot" a" illustrates the case of a low Q cavity. In 
terms of fundamental parameters this means that the cou­
pling of the atom to the walls of the cavity is stronger than 
the coupling to the radiation field, or Ycav~Ol' In this limit 
the decaying amplitude is fit well by the exponential 

( A (0 ) 2 ) (2Q02
) (e;0;011/1(t)=exp -;. 0: t =exp -7, t . 

(40) 

The effect of the damped cavity is to alter the decay rate of 
the atom from the rate in free space. To compare the decay 
rate of Eq. (40) to the free-space decay rate of probability we 
need to recall the explicit form for the constant 0 1 which 
characterizes the coupling between the field and the atom 
which is given in Eq. (3), and use it in conjunction with the 
expression24 

1 4w3d2 

Yrree= 41TEo 3fic3 , 

with the result that 

( 
3QA 3) 

Yatom in cavity = 4 'lT2 V Y free' 

(41) 

(42) 

In a Fabry-Perot cavity, the mode volume V is on the order 
of A3

, which means that the spontaneous decay rate in this 
limit will be enhanced by a quantity on the order of Q of the 
cavitY:i a result which was first suggested by Purcell in 
1946. 5 

In the high Q limit, or 01~Ycav' the cavity retains photons 
long enough that the energy will be exchanged between the 
atom and the electromagnetic mode several times before the 
ultimate loss of the energy to the modes in the walls of the 
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cavity. This underdamped oscillation of the amplitude for the 
system to be found in the state le;0;0) is displayed in Fig. 5, 
and is well fit by 

(e;0;01 I/I(t) = e - Ycavt/4 cos( ~oi- Y~avl16t). (43) 

This is consistent with the analytical results of Knight21 and 
Haroche2o which were derived using other techniques. 

V. CONCLUSIONS 

We have solved, exactly, two simple quantum optical 
models in which the system of interest is coupled to a large 
number of external degrees of freedom. The resulting damp­
ing of the system of interest depends on the properties of the 
external reservoir and the coupling to the reservoir. The un­
derstanding of damping phenomena that such models give 
has lead to many investigations in recent years which dem­
onstrate that spontaneous emission, a seemingly fundamental 
property of an atom, can be significantly modified by altering 
the properties of the vacuum to which the atom is coupled. 
Such research has been summarized recently by Haroche and 
Kleppner.26 The simple quantum mechanical methods used 
in this paper to solve simple models of spontaneous emission 
should make the fundamental ideas of such research widely 
accessible. 
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Observing thermomigration of air bubbles in a fluid under gravity 
at an undergraduate research laboratory 

J.-F. Simard, A. Houdayer, R. Boudreault, S. Belanger, and A. Laaouan 
Physics Department, College militaire royal de Saint-lean, Saint-lean-sur-Richelieu, 
Quebec lOJ iRO, Canada 

(Received 8 June 1994; accepted 26 January 1995) 

An educational experimental project in fluid mechanics for space science or physics honors 
undergraduates is presented. The motion of air bubbles in a viscous silicone oil in response to 
buoyancy and Marangoni convection is studied with an experimental setup adapted to the 
undergraduate laboratory. The Marangoni effect or thermocapillary convection occurs when a 
temperature gradient is present in the oil which generates a surface tension differential over the 
bubbles. Results of measured radii and temperature gradients necessary to balance the buoyancy and 
Marangoni forces, along with computed Marangoni velocities are in good agreement with previous 
terrestrial and space experiments. © 1995 American Association of Physics Teachers. 

I. INTRODUCTION 

Finding a fluid mechanics phenomenon for an advanced 
undergraduate space science experimental project that can be 
observed both at 1 and 0 g is not obvious. The Marangoni 
effect or "thermocapillary convection," a phenomenon now 
considered critical to control the manufacturing process and 
production of homogeneous materials in space, was in fact 
observed in both environments. Materials processing and 
manufacturing in space under microgravity conditions is the 
subject of intensive research and is a burgeoning field of 
physics. Under microgravity, bubbles resulting from solidifi­
cation during materials processing do not move because of 
the absence of buoyancy. However, under the same condi­
tions, the presence of electric and magnetic fields, tempera­
ture and concentration gradients, for example, can cause 
bubble motion alone.1 

The thermomigration phenomenon, which was discovered 
in 1871 by the Italian scientist C. G. M. Marangoni, is in­
duced by a temperature gradient as a consequence of the 
temperature dependence of the surface tension which gives 
rise to bubble motion. Marangoni convection is in reality a 
very complex physical phenomenon, most notably if treated 
tridimensionally. Theoretical models have been attempted 
with reasonable success, but the true solution seems to lie in 
the use of computational fluid dynamics. Axisymmetric mod­
els have, however, been attempted and experimental results 
are in surprisingly good agreement with theory. Young 
et al} a classical paper, were the first to study the combined 
effects of buoyancy and thermocapillary convection by 
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adapting the model that Hadamard3 and Rybczynski4 had 
separately developed for the motion of a droplet in a liquid 
due to buoyancy only (assuming creeping flow). The experi­
mental method of Young et al. was quite original: bubbles 
were injected in a vertical liquid column which was heated 
from below and cooled from above in such a way that the 
buoyancy force and the Marangoni effect would cancel out 
and the bubble would become motionless. This is due mainly 
to the fact that the bubbles will move to the hot side to 
minimize their surface tension energy. In 1979, Hardy5 per­
fected the procedure and was able to obtain more accurate 
results. Our experimental setup is based on Young's and Har­
dy's method but was adapted for the undergraduate labora­
tory and requires essentially only basic instrumentation. The 
following treatment of an uncommon physical phenomenon 
such as the Marangoni effect can be of interest to the under­
graduate curriculum for those who may want to reproduce 
current space experiments under gravity conditions. 

II. THEORY 

The complete derivation of the Young model is beyond the 
reach of an advanced undergraduate fluid mechanics course 
but can be adapted for undergraduates without loss of under­
standing if the emphasis is put on the underlying physics. In 
summary, the axisymmetric model is derived from the linear­
ized Navier-Stokes equations solved for the creeping flow 
approximation (Le., for very small bubbles in a nonconvec­
tive fluid) allowing the use of Laplace's equation to define 
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