
The calculated photon: Visualization of a quantum field
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We calculate spatial localization and phase properties of spontaneously emitted photons. Our model
is simple yet fully quantized: the emitting atom is a two-level atom located in a one-dimensional
multimode optical cavity. Although the photon state vector does not have a position-space
representation, the expectation value of the square of the electric field operator~intensity! is
spatially localized and this pattern shifts at the speed of light. The emitted photon exhibits
classical-like phase properties in the intensity expectation value when it ‘‘interferes with itself’’ after
reflection. The phase properties of the emitted radiation are also evident at times sufficiently long for
the radiation to have returned to the emitting atom before the decay of excited atomic state is
complete. ©2002 American Association of Physics Teachers.
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I. INTRODUCTION

The dual wave–particle nature of quantum objects is d
cussed in almost all introductory texts on modern phys
and quantum mechanics, but it is not always clear wh
aspects of classical wave behavior are retained in a f
quantum-mechanical treatment, or where to draw the
between wave-like aspects and particle-like aspects and
to justify the division. Photons are perhaps the simplest
jects that can be treated with a quantum field theory t
makes the distinctions clear. In this paper we presen
simple yet fully quantized model of spontaneous emiss
and use it to illustrate graphically some of the properties
the emitted electromagnetic field. Speaking loosely, we
swer the question ‘‘What does a photon look like?’’ and p
vide a quantitative complement to discussions of the conc
of the photon like those found in Refs. 1–3.

A conceptual understanding of quantized electromagn
radiation, or photons, is complicated by~at least! two factors.
First, the quantum state vectors that represent photons do
have position-space representations that are analogous t
familiar wave functions of nonrelativistic quantum
mechanics.4 Thus there is no quantity analogous toucu2 giv-
ing a probability density for finding the photon in spac
Second, the definition of a quantum operator correspond
to the classical phase of an electromagnetic wave has
problematic.5 We sidestep these somewhat tricky issues
investigating other quantum mechanical quantities that g
information related to the classical concepts of phase
spatial localization.

We consider the field spontaneously emitted by a sin
two-level atom with a fixed position in a one-dimension
multi-mode optical cavity. The atom is coupled to all of th
modes of the cavity, and due to this coupling an atom tha
initially in the excited state can potentially emit a photon in
any of the cavity modes. More precisely, the state of
system evolves from an excited atom with no photons t
linear combination of the initial state and all the one-pho
states. The fact that the atom is located within a cavity s
plifies the calculations, and the cavity walls also produ
reflections that cause the radiation to return to the emit
atom, in some sense interfering with itself along the way

In order to see the spatial localization of the photon,
calculate the expectation value of the square of the elec
field operator, which is proportional to the energy density
58 Am. J. Phys.70 ~1!, January 2002 http://ojps.aip.org
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the field.~See Ref. 4 for a more complete discussion of t
problem of photon localization.! The results are displaye
graphically in the figures of Sec. IV. The energy density e
pectation has a spatial envelope that accords with class
intuition appropriate to radiation emitted by a classical os
lating damped dipole. This envelope travels with a speedc as
expected. However, unlike a classical traveling wave, ther
no sinusoidal modulation of the energy density at the cla
cal wavelength as the radiation pulse travels away from
atom. Thus there is no obvious analog to the classical ph
associated with the radiation.

Phase properties of the emitted radiation reveal themse
after reflection from the cavity walls. At times after radiatio
could have reached the end walls, the expectation valu
intensity reveals a pattern that can be interpreted as outg
and returning pulses, and in the region of overlap the rad
tion ‘‘interferes with itself,’’ producing a standing wave pa
tern appropriate for the classical resonance wavelength.
interaction of the reflected radiation with the emitting ato
also exhibits classical-like phase effects: the effect of
radiation on the quantumamplitudefor the atom to be in the
excited state depends critically on the distance traveled
the radiation.

Many of the properties of the emitted photon have clo
analogs in the classical radiation emitted by an oscillat
dipole, and many of the phenomena of cavity quantum e
trodynamics can be understood in terms of these qu
classical properties. Dowling6 has pointed out the classica
nature of spontaneous emission in cavities, and our w
provides a fully quantum mechanical counterpart to his cl
sical calculations.

In Sec. II we describe the mathematical model we use
the emitting atom in a cavity, and in Sec. III we derive t
expressions we use for the observable properties of our
tem. The graphical results are displayed in Sec. IV. T
points that we make about the nature of spontaneously e
ted photons can be understood by reference to the graph
Sec. IV alone.

II. PHYSICAL SYSTEM: HAMILTONIAN, BASIS
STATES, AND OPERATORS

We consider the problem of a single two-level atom in
one-dimensional multi-mode optical cavity. The ground a
excited states of the atom will be denotedug& and ue&, re-
58/ajp/ © 2002 American Association of Physics Teachers
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spectively, and the zero-field energy separation betw
atomic states is\veg . The cavity extends fromx50 to x
5L with perfectly reflecting mirrors at the ends, and t
atom is fixed at positionxa . The classical electromagnet
modes of the system have spatial dependence

E~x!;sinS npx

L D , ~1!

wheren is a positive integer. The angular frequencies of
modes are given by

vn5
npc

L
, ~2!

and the modes are equally spaced with angular freque
separation

Dc5
pc

L
. ~3!

Some radiation modes will closely match the resonant
quency of the two-level atom, and others will not. It is n
necessary for any mode to match the atomic resonance
actly, but it is convenient to enumerate modes from the ev
numbered mode that is closest to the atomic resonance
designate the mode number for this near-resonant mod
j 0 , and label the frequency of this mode asv0 . The detuning
of this mode from atomic resonanceveg is d, defined such
that

v05veg1d. ~4!

Mode numbers for general modes will then be written
terms of their separation from the most nearly resonant m
asn5 j 01 j , wherej is an integer. Throughout this paper w
assume that the resonant frequency is much larger than
cavity mode spacing, that is,veg@Dc . We do not, however,
assume anything about the relative magnitude ofDc and the
free-space natural linewidth of the atom.

The quantization of the free electromagnetic field is co
ered in many standard references~see, for example, Refs. 4
7–9! and has been reviewed in a recent article in t
journal.10 The modes of the cavity are treated as independ
quantized harmonic oscillators, and the eigenstates of
free field are denoted by the occupation numbers of the
dividual modes:un1 ,n2 ,n3 , . . . &. In this paper we will be
concerned with situations in which there are either 1 o
photons in the field, so that either all occupation numbers
0, or all but one of the occupation numbers is 0. We w
condense the notation in the following manner.

• u0,0,0, . . .&→uB&: No photons in the field (ni50 for
all i ).

• u0,0,. . . 0,nj51,0, . . .&→u j &: One photon in modej
(nj51, ni50 for iÞ j ).

The free-field Hamiltonian is written in terms of the low
ering and raising operatorsaj andaj

† for each mode, and is
equivalent to a sum of independent harmonic oscilla
Hamiltonians:

Hfield5(
j

\v j S aj
†aj1

1

2D . ~5!

~The photon number operator is simplyHfield without the 1
2

terms.!
59 Am. J. Phys., Vol. 70, No. 1, January 2002
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The basis states of the combined atom-field system
given by the direct product of the atom states and the fi
states:

• ue;B&: Atom in the excited state, no photons in the r
diation field.

• ug; j &: Atom in the ground state, one photon in the rad
tion field with a detuning from the even-numbered mo
closest to resonance given byv j2v05v j2(veg1d)
5 j Dc . ~The detuning of the photon from the zero-fie
atomic resonance frequency isv j2veg5 j Dc1d.!

The electric field operator7 is a sum over terms for eac
mode, each term exhibiting a sinusoidal spatial depende
identical to the classical mode structure:

E~x!5(
j

Cj~aj1aj
†!sinF ~ j 01 j !

px

L G , ~6!

where

Cj5S \v j

e0VD 1/2

, ~7!

with V the effective volume of the mode,11 and e0 the per-
mittivity of free space. The modes are enumerated as be
from the even-numbered mode with the frequency closes
the zero-field atomic resonance. As discussed above, we
be assuming that the atomic resonance frequencyveg will be
much greater than the mode spacing in this problem, so
the factorsCj will be not vary significantly for all modes o
interest in the problem, and we will assume that this facto
given by the constantC5A\veg /(e0V) for all modes.

Classically, the energy density of the field is proportion
to E 2. The relevant quantum mechanical analog is the exp
tation value of the operator

E~x!25(
j , j 8

C2sinF ~ j 01 j !
px

L GsinF ~ j 01 j 8!
px

L G
3~ajaj 812aj

†aj 81aj
†aj 8

†
1d j , j 8!. ~8!

If we consider a single-mode field state with definite occ
pation number, the expectation value of the electric field
erator,̂ E&, is zero. But the classical spatial mode structure
such a state is revealed in the expectation value of the sq
of the field operator,̂E 2&.

In the electric-dipole approximation the interaction Ham
tonian is given by

H interaction52eE•r5E•d, ~9!

whered is the electric dipole operator. The dipole opera
connecting the ground and excited states can be written

d5\~degs11deg* s2!, ~10!

wheredeg is the dipole matrix element between the grou
and excited states, and the pseudo-spin operators, whic
as effective raising and lowering operators on the inter
degrees of freedom of the atom, are defined as follows:

s15ue&^gu, ~11a!

s25ug&^eu, ~11b!

s35ue&^eu. ~11c!
59M. Ligare and R. Oliveri
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Writing the electric field operator in terms of raising an
lowering operators and the dipole operator in terms of
pseudo-spin operators gives

H interaction5H(
j

C~aj1aj
†!sinF ~ j 01 j !

pxa

L G J
3~degs11deg* s2!

.(
j

\~Vs1aj1V* s2aj
†!sinF ~ j 01 j !

pxa

L G ,
~12!

where in the last line we have made the standard rotat
wave approximation by neglecting terms withs1aj

† and
s2aj ,7–9 and we have combined constants into

V[degS veg

2\e0VD 1/2

. ~13!

With this interaction Hamiltonian the zero and one-phot
statesue;B& and ug; j & form a complete set of states. Th
interaction Hamiltonian is a multimode version of the sta
dard interaction considered in many quantum optics texts7–9

The terms in the Hamiltonian correspond either to the
sorption of a cavity photon and the transition of the ato
from the ground state to the excited state, or the conve
Note that the photons do not have to be exactly resonant
the atomic transition to be absorbed by the atom. States
ug; j & andue;B& are not eigenstates of the total Hamiltonia
Therefore, if the system starts in the state with an exc
atom and no photons (ue;B&), it is not in a state of definite
energy, and absolute energy conservation should not be
pected.

The total Hamiltonian is

H5Hatom1Hfield1H interaction

5\vegs31(
j

\v j S aj
†aj1

1

2D1(
j

\~Vs1aj

1V* s2aj
†!sinF ~ j 01 j !

pxa

L G . ~14!

The sum overj includes all the modes of the cavity, and f
veg@Dc , this sum overj will be effectively a sum of an
infinite number of terms. This Hamiltonian is the same
that used by Wigner and Weisskopf in their pioneering wo
on spontaneous emission12 with the modification that the
atom-radiation coupling is mode specific, and depends on
position of the atom relative to the spatial structure of
classical mode.

III. CALCULATION OF OBSERVABLES

In what follows the initial state of the system will be
state with an excited atom and no photons, that is,

uc~0!&5ue;B&. ~15!

Because the basis states with well defined photon num
and atomic energies arenot eigenstates of the total Hami
tonian, the state of the system evolves into a linear com
nation of the basis states, which can be written as

uc~ t !&5ce~ t !ue;B&1(
j

cg, j~ t !ug; j &. ~16!
60 Am. J. Phys., Vol. 70, No. 1, January 2002
e

g-

-

-

e.
th
ke
.
d

x-

s
k

he
e

rs

i-

Our goal is to find physical quantities such as:

~1! the time dependent amplitude for the atom to be found
the excited state with no field modes excited,ce(t)
5^e;Buc(t)&;

~2! the time dependent amplitudes for a photon to be fou
in one of the cavity modes,cg, j (t)5^g; j uc(t)&; and

~3! the time- and space-dependent expectation value for
square of the electric field operator,^c(t)uE 2(x)uc(t)&.

It is the last of these quantities that will give the best pictu
of the localized intensity of the photon and that will giv
some insight into the classical phase information that is p
served in the quantum domain.

One straightforward way to solve this problem is to fin
the eigenstates of the total Hamiltonian and their energ
and then project the initial state of the system onto the eig
states. Theqth eigenstate of the system with energyE(q) can
be written as the linear combination

uE(q)&5de
(q)ue;B&1(

j
dg, j

(q)ug; j &, ~17!

wherede
(q) and dg, j

(q) are time-independent constants chos
such that

H totaluE(q)&5E(q)uE(q)&. ~18!

The determination of the eigenvalues and eigenvectors
straightforward numerical problem; a technique for rapid c
culation of large numbers of eigenvalues and eigenvec
has been presented in Ref. 13. It is also easy to determ
eigenvectors and eigenvalues numerically with compu
tional packages such asMAPLE or MATHEMATICA . Details on
such calculations are reviewed in the Appendix. From t
point on, it will be assumed that the energiesE(q) and the
coefficientsde

(q) and dg, j
(q) are known numerically.@It also is

possible to use Laplace transform techniques to solve
time-dependent Schro¨dinger equation directly for the coeffi
cientsce(t) andcg, j (t) that appear in Eq.~16!. See, for ex-
ample, Ref. 14.#

To determine the time evolution of the system that starts
a stateuc(0)&, the initial state is projected onto the eige
states of the total Hamiltonian

uc~0!&5ue;B&5(
q

uEq&^Equc~0!&, ~19!

and because the time evolution of the energy eigenstate
known, so is the evolution of the state of interest:

uc~ t !&5(
q

e2 iEqt/\uEq&^Eque;B&. ~20!

If we expanduEq& as in Eq.~17!, and usê e;BuEq&5de
(q)

and ^g; j uEq&5dg, j
(q) , we find

uc~ t !&5(
q

e2 iEqt/\S de
(q)ue;B&1(

j
dg, j

(q)ug; j & Dde
(q)*

5S (
q

e2 iEqt/\ude
(q)u2D ue;B&

1S (
j ,q

e2 iEqt/\dg, j
(q)de

(q)* D ug; j &, ~21!
60M. Ligare and R. Oliveri
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and the coefficients of the basis vectors give the tim
dependent amplitudes

ce~ t !5^e;Buc~ t !&5(
q

e2 iEqt/\ude
(q)u2 ~22!

and

cg, j~ t !5^g; j uc~ t !&5(
q

dg, j
(q)de

(q)* e2 iEqt/\. ~23!

The energy density of the field is proportional to the e
pectation value ofE(x)2 that was given explicitly in Eq.~8!.
It is a straightforward exercise to use this expression
E(x)2 along with Eq. ~21! to calculate an expression fo
^E(x)2&. This exercise involves a sum over six indices, b
the fact that each of the operator terms only involves a pr
uct of two raising or lowering operators simplifies the calc
lation considerably. The resulting expectation value is

^c~ t !uE 2~x!uc~ t !&

52U(
j ,q

Cde
(q)* dg, j

(q)e2 iEqt/\sinF ~ j 01 j !
px

L GU2

1(
j

C2sin2F ~ j 01 j !
px

L G . ~24!

The last sum is just the vacuum expectation value ofE 2. The
contribution of this term to the total field energy in the cav
is infinite and, as is customary, this term will be subtrac
from all field expectation values in the remainder of th
paper. Equivalently, theE 2 operator could be written in nor
mal ordered form from the start. Thus,

^c~ t !uE 2~x!uc~ t !&

52C2U(
j ,q

de
(q)* dg, j

(q)e2 iEqt/\sinF ~ j 01 j !
px

L GU2

52C2U(
k

^g;kuc~ t !&sinF ~ j 01 j !
px

L GU2

, ~25!

where in the last line we have used Eq.~23!. Each term in
this sum is the amplitude for a photon with detuningj D
times the spatial mode function for that photon.

IV. RESULTS

The principal results of this paper are presented in F
1–6 in which we plot the time-dependent amplitude for t
basis state of the systemce(t), and the expectation value fo
the square of electric field operator. In all cases the sys
starts att50 in the stateue;B&.

In the calculations illustrated in Figs. 1–6 we use units
which

L

c
51, ~26!

which means that the time for a photon to travel the length
the cavity is 1. This choice of units implies that the spac
between cavity modes for all subsequent calculations wil

Dc5
pc

L
→p. ~27!
61 Am. J. Phys., Vol. 70, No. 1, January 2002
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The simplest case to treat is an atom at the center of
cavity, that is,xa5L/2. All odd-numbered modes have ant
nodes at this position, so the atom–field coupling has
same magnitude for all odd modes, although the sign of
coupling alternates. Because the atom is located at a nod
all even-numbered modes, it does not couple to these mo
~The decay of the atom and spontaneous emission of
photon is due to the coupling of the atom to a large num
of cavity modes, and the atom might not actually couple
the mode nearest resonance.!

The results for an atom whose resonance frequency
actly matches that of an even-numbered mode (d50) are
presented in Figs. 1–3.~Notes on the details of the calcula
tion are presented in the Appendix.! The amplitude for the
atom to remain in the excited state is plotted in Fig. 1. T
atom exhibits exact exponential decay untilt5L/c51, at
which time the ‘‘photon’’ returns to the atom after reflectio

Fig. 1. The amplitudêe;Buc(t)& for an initially excited atom to remain in
the excited state, with no photons in the field. The amplitude for the atom
be found in the excited state rises abruptly at timet51 corresponding to the
time at which the photon returns to the atom after reflection from the en
the cavity.~The atomic resonance frequency matches exactly the freque
of an even-numbered mode of the cavity, and the atom-field coupling
this decay isV54.!

Fig. 2. The expectation value^E 2& of the square of the electric field operato
at time t50.2 ~solid line! and t50.4 ~dotted line!. The exponential spatia
dependence of the intensity reflects the exponential temporal dependen
the atomic decay.~The atom–field coupling for this decay isV54.!
61M. Ligare and R. Oliveri
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off the ends of the cavity. Fort,L/c, the amplitude to find
an atom in the excited state with no photons in the cavity
exactly14

ce~ t !5^e;Buc~ t !&5e2gt, ~28!

where the decay constant is

g5
puVu2

2Dc
. ~29!

We find it remarkable that the single sum of Eq.~22! gives
the exact exponential behavior at early times, and also g
the abrupt change in atomic excitation as the radiation
turns to the atom.~The re-excitation due to the returnin
radiation will be discussed further below.!

The expectation value of the square of the electric field
illustrated att50.2 andt50.4 in Fig. 2. ~All plots of the
expectation value ofE 2 were made forj 0510 000. The ex-
act value forj 0 does not affect any of the qualitative featur
of the graphs; it affects only the spatial scale of the interf
ence effects that will be discussed below.! The intensity of
the field has an abrupt leading edge traveling to the right

Fig. 3. The expectation value^E 2& of the square of the electric field operato
at timet50.6 shortly after the leading edge of the intensity expectation
hit the end wall and has reflected back on itself. The expectation v
exhibits a standing wave pattern in the region where the classical outg
and returning pulses would overlap. The region of overlap (0.9,x,1.0) is
shaded in~a!, and the details of the standing wave are illustrated in~b!,
which covers a much smaller spatial range within the overlap region.
minima of the standing wave pattern do not go to zero, and the stan
wave ratio is exactly that which would be calculated for two classical in
fering waves whose amplitude gives the exponential spatial pattern i
trated in Fig. 2.
62 Am. J. Phys., Vol. 70, No. 1, January 2002
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the left, and in both directions the intensity tails off expone
tially in space, which reflects the exponential decay in tim
of the atom.~The sharpness of leading edge is an artifact
the somewhat artificial initial condition that att50 the state
of the system is purelyue;B&.! The expectation value o
intensity exhibits no spatial modulation other than the ex
nential envelope; there is no apparent phase information
contrast to the sinusoidal variation of the classical travel
wave emitted by an oscillating dipole. While the expectati
value of the intensity is simultaneously nonzero to the rig
and the left of the atom, the expectation value for the num
of photons in the field is still always less than 1, and a ph
ton could not simultaneously be detected on both sides of
atom.

At times greater thant50.5, the radiation is reflected from
the ends of the cavity. For such times, the wave can ‘‘int
fere with itself,’’ and the expectation value of intensity e
hibits spatial modulation in the region of overlap between
outgoing pulse and its reflection. This effect is illustrated

s
e

ng

e
g

-
s-

Fig. 4. As in Fig. 1, the amplitudêe;Buc(t)& for an initially excited atom
to remain in the excited state, with no photons in the field, but in this c
the atomic resonance frequency matches the frequency of an odd-num
cavity mode of the cavity, and the amplitude for the atom to return to
excited state at timet51 due to the reflection is negative.~The atom–field
coupling for this decay isV54.!

Fig. 5. As in Fig. 1, the amplitudêe;Buc(t)& for an initially excited atom
to remain in the excited state, with no photons in the field. As in Fig. 1
atomic resonance frequency matches that of an even-numbered mode
cavity, but in this case the atom–field coupling is reduced toV51, and the
radiation has returned to the atom before the spontaneous decay is com
In this case, the decay is interrupted.
62M. Ligare and R. Oliveri



t

in

in
as
x-
a
t

on
ap
p

in

f
u
d

an
t

s

ry
th
i
e
h

u
d
th
si
th
pl
b

d
e
b

i

gs.
ven-
en-
-
the
ges
ood
nant
the
alf-
on
r of

in
t an
r of
g
h a
e
ase
In
ning

n the

de
ans-

ted
d

is

to
hat

the
le
ears

ial
ond
d

in a
gs. 5

at
ies
alls
is,
it
se-

ing
es a
bi
17
the
e-

as
de

n

Fig. 3, which shows the intensity expectation value at
50.6. At locations in the cavity such that 0.1,x,0.9 the
tail of the exponential intensity distribution is visible, but
the region of overlap, that is,x,0.1 andx.0.9, we see an
interference pattern that is identical to the transient stand
wave that would be formed by outgoing and reflected cl
sical waves. The wavelength of this ‘‘standing wave’’ is e
actly that which would be predicted for two counterprop
gating classical waves at the resonance frequency of
atom.~In Fig. 3 the details of the standing wave in the regi
of overlap are on too fine a scale to be observed in a gr
covering the whole cavity. Therefore Fig. 3 contains a gra
covering the whole cavity with the standing-wave region
dicated with shading, and an additional graph covering
much smaller region of the cavity.! The modulation depth o
the standing wave is largest near the wall, where the co
terpropagating waves have almost equal amplitudes, and
creases toward the middle of the cavity, where the right-
left-traveling components have different amplitudes due
the exponential envelope.

Our results foroutgoing spontaneously emitted photon
clearly exhibit the idea expressed by Mandel and Wolf15 that
for small photon numbers ‘‘the very idea of an oscillato
field of definite phase . . . is meaningless according to
quantum theory of radiation.’’ However, there is a sense
which spontaneously emitted single photons do have a d
nite internal phase that is revealed in regions where the p
ton can be said to interfere with itself due to reflection.

As discussed earlier, the excitation of a single mode wo
result in an expectation value of intensity that exten
throughout the cavity with the sine-squared structure of
classical mode. The localized expectation value of inten
exhibited by the spontaneously emitted photon requires
the emitted field be comprised of many modes. The am
tudes for finding photons in the various modes are given
the coefficientscg, j (t) of Eq. ~21!. At times long compared
to the atomic decay time, but before the atom is re-excite
t51, our model gives the exact Lorentzian frequency sp
trum that would be expected given the decay rate given
Eq. ~29!.13,14

Just as the photon exhibits a phase when interfering w

Fig. 6. As in Fig. 1, the amplitudêe;Buc(t)& for an initially excited atom
to remain in the excited state, with no photons in the field, but in this c
the atomic resonance frequency matches that of an odd-numbered mo
the cavity. The atom–field coupling is reduced toV51, and the radiation
has returned to the atom before the spontaneous decay is complete. I
case, the decay is accelerated.
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itself, it has a phase relative to the emitting atom. In Fi
1–3 the atom was assumed to be resonant with an e
numbered mode. If the atom is detuned from the ev
numbered mode byd5Dc so that it is resonant with an odd
numbered mode, the amplitude for the atom to be in
excited state due to the reflection from the end walls chan
sign, as illustrated in Fig. 4. This change can be underst
in terms of classical phase arguments: if the atom is reso
with an even-numbered mode, it is located at a node of
resonant mode, and thus an integer number of h
wavelengths from the cavity walls. The reflected radiati
must travel a total distance equal to an integer numbe
wavelengths before returning to the atom. If the atom is
resonance with an odd-numbered mode, it is located a
antinode, and the radiation must travel an integer numbe
wavelengthsplus another half-wavelength before returnin
to the atom. Classically, the reflected radiation returns wit
phase difference ofp in the two cases, and classically th
power delivered to a driven oscillator depends on the ph
of the driving force relative to the phase of the oscillation.
the quantum case illustrated here, we see that the retur
radiation can cause theamplitudefor the atom to be in the
excited state to either increase or decrease, depending o
path length traveled by the reflected radiation.

More generally, the revival in the excited state amplitu
may have any phase. It is possible to use the Laplace tr
form techniques of Stey and Gibberd14 to find analytical ex-
pressions for the amplitude for the atom to be in the exci
state. One of us~ML ! has extended the work of Stey an
Gibberd to general values of the detuning parameterd, and
for times long enough that the effect of the first reflection
included, that is, 0<t<2L/c, the analytical form for the
amplitude to find the atom in the excited state is16

ce~ t !5^e;Buc~ t !&

5e2gt1Q~ t2L/c!eipd/Dce2g(t2L/c)~ t2L/c!, ~30!

where as beforeg is given by Eq.~29!, and Q is the step
function that ‘‘turns on’’ at the time the radiation returns
the atom.~Subsequent reflections add additional terms t
‘‘turn on’’ at later times.!

The effect of the phase of the returning radiation on
probability to find the atom in the excited state is negligib
in the cases illustrated in Figs. 4 and 1; the phase disapp
upon the squaring of the amplitude. The effect isnot negli-
gible if the radiation returns to the atom before the init
excitation has died away. If the phase factor in the sec
term in Eq.~30! gives11, then the decay can be interrupte
before its completion, and if the factor gives21, the atom
can be driven to the ground state faster than it would be
simple decay. Results for such cases are presented in Fi
and 6.

Re-excitation of atoms by properly phased reflections is
the origin of many quantum optical phenomena. In cavit
that are short enough that the reflections from the end w
return before the atom has decayed significantly, that
L/c!1/g, returning reflections interrupt the decay before
is even identifiable on the scale of Figs. 5 and 6, and sub
quent returns continue to modify the decay. For return
reflections phased as in Fig. 6, the interrupted decay mak
transition to sinusoidal oscillation, known as vacuum Ra
oscillation. This transition has been investigated in Refs.
and 18. For returning reflections phased as in Fig. 5,
decay can be inhibited altogether. The total inhibition of d

e
of

this
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by
cay is an artifact of the model one-dimensional cavity, b
inhibited decay in more realistic cavities has been stud
theoretically and experimentally. Early work on the modi
cation of the lifetimes of fluorescent dye molecules near
flecting surfaces is summarized in Ref. 19, and more rec
studies of modified decays, mostly in the context of cav
quantum electrodynamics, are reviewed in Refs. 20–22.

V. CONCLUSION

In elementary treatments of modern physics, photons
treated as objects with a dual wave–particle nature. In
paper we have presented a fully quantized model of spo
neous emission in which the emitted radiation is treated a
excitation of a quantum field. By calculating physical o
servables of the atom-field system using the machinery
simple quantum field theory, we are able to elucidate m
clearly the way in which classical behavior of radiation fiel
manifests itself in the quantum regime.
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APPENDIX

The calculations discussed in this paper are all straight
ward once the eigenvectors and eigenvalues of the t
Hamiltonian of Eq.~14! have been determined. If we repr
sent the basis vectors by the column vectors
s

n-

e
th
a

d
si
tiv
ld
e
b

lue
-
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ue;B&→S 1

0

0

•

•

0

D , ug;2n&→S 0

1

0

•

•

0

D ,

~31!

ug;2n11&→S 0

0

1

•

•

0

D , etc.,

and we label the constants giving the coupling of the atom
the mode with labelj in the following way,

f j[V sin
~ j 01 j !pxa

L
, ~32!

then the matrix representation of the Hamiltonian is given
Ĥ→\1
0 • f 22 f 21 f 0 f 1 f 2 •

• • • • • • • •

f 22 • 22Dc1d 0 0 0 0 •

f 21 • 0 2Dc1d 0 0 0 •

f 0 • 0 0 d 0 0 •

f 1 • 0 0 0 Dc1d 0 •

f 2 • 0 0 0 0 2Dc1d •

• • • • • • • •

2 . ~33!
(

rly
asy
uter
it
s of
and
ch
We have calculated the eigenvalues and eigenvector
this matrix in two ways. The simplest method is to use
computer package likeMATHEMATICA or MAPLE. Sample
MATHEMATICA code is illustrated at the end of this Appe
dix, with representative plots from a 3003300 matrix repre-
sentation of the Hamiltonian.~In the case of an atom at th
center of the cavity, half of the modes do not couple to
atom, so the matrices in the sample program are actu
unnecessarily large.! Matrices of this size give very goo
results for the complex amplitudes for the individual ba
states. Although they produce results that give the qualita
behavior of the expectation value of the square of the fie
accurate representations near the abrupt rises at the edg
the pulses of expectation value require more terms to
included.

It is possible to derive an analytical form of the eigenva
equation in the limit of an infinite number of modes follow
of
a

e
lly

s
e
,

s of
e

ing the methods used by Ligare and Becker.13 For example,
in the case of an atom located at the center of a cavityxa

50.5) the eigenvalue equation is

pV2

2Dc
2

cot
1

2 S E

\Dc
2

d

Dc
11D5

E

\Dc
. ~34!

The roots of this equation are bracketed by the regula
spaced singularities of the cotangent function, and it is e
to calculate thousands of roots in a few seconds of comp
time using the simplest of root-finding algorithms. Explic
expressions for the elements of the eigenvectors in term
the energy eigenvalues can be derived as in Ligare
Becker.13 A program in a low-level language that uses su
expressions is much faster than theMATHEMATICA program
listed below, but theMATHEMATICA code is much more
transparent.
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