The calculated photon: Visualization of a quantum field
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We calculate spatial localization and phase properties of spontaneously emitted photons. Our model
is simple yet fully quantized: the emitting atom is a two-level atom located in a one-dimensional
multimode optical cavity. Although the photon state vector does not have a position-space
representation, the expectation value of the square of the electric field opé@ragorsity) is
spatially localized and this pattern shifts at the speed of light. The emitted photon exhibits
classical-like phase properties in the intensity expectation value when it “interferes with itself” after
reflection. The phase properties of the emitted radiation are also evident at times sufficiently long for
the radiation to have returned to the emitting atom before the decay of excited atomic state is
complete. ©2002 American Association of Physics Teachers.
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[. INTRODUCTION the field.(See Ref. 4 for a more complete discussion of the
problem of photon localization.The results are displayed

The dual wave—particle nature of quantum objects is disgraphically in the figures of Sec. IV. The energy density ex-
cussed in almost all introductory texts on modern physicgectation has a spatial envelope that accords with classical
and quantum mechanics, but it is not always clear whicHntuition appropriate to radiation emitted by a classical oscil-
aspects of classical wave behavior are retained in a fulljating damped dipole. This envelope travels with a speasl
guantum-mechanical treatment, or where to draw the lin€&xpected. However, unlike a classical traveling wave, there is
between wave-like aspects and particle-like aspects and ho? sinusoidal modulation of the energy density at the classi-
to justify the division. Photons are perhaps the simplest obcal wavelength as the radiation pulse travels away from the
jects that can be treated with a quantum field theory tha@tom. Thus there is no obvious analog to the classical phase
makes the distinctions clear. In this paper we present &ssociated with the radiation. o
simple yet fully quantized model of spontaneous emission Phase properties of the emltted radlatllon reveal themsglves
and use it to illustrate graphically some of the properties offter reflection from the cavity walls. At times after radiation
the emitted electromagnetic field. Speaking loosely, we ancould have reached the end walls, the expectation value of
swer the question “What does a photon look like?” and pro-Ntensity rgveals a pattern t_hat can b_e interpreted as outgoing
vide a quantitative complement to discussions of the concegind returning pulses, and in the region of overlap the radia-
of the photon like those found in Refs. 1-3. tion “interferes with itself,” producing a standing wave pat-

A conceptual understanding of quantized electromagnetiéern appropriate for the classical resonance wavelength. The
radiation, or photons, is complicated tat least two factors. ~ interaction of the reflected radiation with the emitting atom
First, the quantum state vectors that represent photons do n@0 exhibits classical-like phase effects: the effect of the

have position-space representations that are analogous to tidiation on the quantummplitudefor the atom to be in the
familiar wave functions of nonrelativistic quantum €Xcited state depends critically on the distance traveled by

mechanicé. Thus there is no quantity analogous| 2 giv-  the radiation. _ .
ing a probability density for finding the photon in space. Many of the properties of the emitted photon have close

Second, the definition of a quantum operator correspondingn@/0gs in the classical radiation emitted by an oscillating
ole, and many of the phenomena of cavity quantum elec-

to the classical phase of an electromagnetic wave has be X . :
problematic We sidestep these somewhat tricky issues byffodynamics can be understood in terms of these quasi-
lassical properties. Dowlifighas pointed out the classical

investigating other quantum mechanical quantities that giv& SN L
ure of spontaneous emission in cavities, and our work

information related to the classical concepts of phase anfatur . .
spatial localization. provides a fully quantum mechanical counterpart to his clas-

We consider the field spontaneously emitted by a singl§iCal calculations. .
two-level atom with a fixed position in a one-dimensional N Sec. Il we describe the mathematical model we use for
multi-mode optical cavity. The atom is coupled to all of the the emitting atom in a cavity, and in Sec. Ill we derive the
modes of the cavity, and due to this coupling an atom that i§XPressions we use for the observable properties of our sys-
initially in the excited state can potentially emit a photon into t€M- The graphical results are displayed in Sec. IV. Th?
any of the cavity modes. More precisely, the state of thdPoints that we make about the nature of spontaneously emit-

system evolves from an excited atom with no photons to és'ad photons can be understood by reference to the graphs in

linear combination of the initial state and all the one-photon=€C: V alone.
states. The fact that the atom is located within a cavity sim-
plifies the calculations, and the cavity walls also produce|. PHYSICAL SYSTEM: HAMILTONIAN, BASIS
reflections that cause the radiation to return to the emittingsTATES, AND OPERATORS
atom, in some sense interfering with itself along the way.
In order to see the spatial localization of the photon, we We consider the problem of a single two-level atom in a
calculate the expectation value of the square of the electrione-dimensional multi-mode optical cavity. The ground and
field operator, which is proportional to the energy density ofexcited states of the atom will be denotgy) and|e), re-
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spectively, and the zero-field energy separation between The basis states of the combined atom-field system are
atomic states igiwqy. The cavity extends fromx=0 to x given by the direct product of the atom states and the field
=L with perfectly reflecting mirrors at the ends, and thestates:
atom is fixed at positiorx,. The classical electromagnetic  * |€;Z): Atom in the excited state, no photons in the ra-
modes of the system have spatial dependence diation field.

*|g;j): Atom in the ground state, one photon in the radia-
tion field with a detuning from the even-numbered mode
closest to resonance given by;—wo=w;—(weqyt J)

wheren is a positive integer. The angular frequencies of the:jAC' (The detuning of the photon from the zero-field
modes are given by atomic resonance frequencydg— weq=jAc+ 5.)

The electric field operatbris a sum over terms for each
mode, each term exhibiting a sinusoidal spatial dependence

nmX

€(x)~sin( T) , (1)

nwmc

@n = (2)  identical to the classical mode structure:
and the modes are equally spaced with angular frequency _ (a+aDsin (i+i X
separation &x) 2 Cj(aj+aj)sin (jot+i) 1|, (6)

e where
ACZT. (3)
ﬁwj 1/2
Some radiation modes will closely match the resonant fre- Ci= PRV 7

guency of the two-level atom, and others will not. It is not
necessary for any mode to match the atomic resonance ewith V the effective volume of the modé,and ¢, the per-
actly, but it is convenient to enumerate modes from the evemittivity of free space. The modes are enumerated as before
numbered mode that is closest to the atomic resonance. Weom the even-numbered mode with the frequency closest to
designate the mode number for this near-resonant mode @se zero-field atomic resonance. As discussed above, we will
jo, and label the frequency of this mode@g. The detuning  be assuming that the atomic resonance frequengywill be
of this mode from atomic resonaneg,q is 9, defined such much greater than the mode spacing in this problem, so that
that the factorsC; will be not vary significantly for all modes of
@ interest in the problem, and we will assume that this factor is
given by the constant = Vi wegy/(€,V) for all modes.
Mode numbers for general modes will then be written in Classically, the energy density of the field is proportional
terms of their separation from the most nearly resonant modt® £2. The relevant quantum mechanical analog is the expec-
asn=j,+j, wherej is an integer. Throughout this paper we tation value of the operator
o mX
sin (jo+1") T~

assume that the resonant frequency is much larger than the y
ar.
£x)°=2 Czsir{(joﬂ)T
x(ajaj,+2aj*aj,+a?a;r,+51-'1-,).

W= Wy 0.

cavity mode spacing, that is,>A.. We do not, however,
assume anything about the relative magnitudé gaind the i
free-space natural linewidth of the atom.

The quantization of the free electromagnetic field is cov-

(8)
ered in many standard referendsse, for example, Refs. 4, . . i . . . )
7-9 and has been reviewed in a recent article in thiSIf we consider a single-mode field state with definite occu

journal’® The modes of the cavity are treated as independerﬁaﬂon number, the expectation value of the electric field op-

guantized harmonic oscillators, and the eigenstates of th%rator,(f), is Zero. But th_e classical spaf[ial mode structure of
free field are denoted by the oé:cupation numbers of the inSuch a state is revealed in the expectation value of the square

; 2
dividual modesny,n,,ng,...). In this paper we will be of the field opgrat_or(é‘ )- S . . .

concerned with situations in which there are either 1 or g1 the electric-dipole approximation the interaction Hamil-
photons in the field, so that either all occupation numbers arfPnian is given by

0, or all but one of the occupation numbers is 0. We will H. o _efr=£d
condense the notation in the following manner. interaction ’

(€)

* |0,0,0,..)—|J): No photons in the field ;=0 for
all i).

¢ 10,0,...00n;=1,0,...)—]j): One photon in modeg
(nj=1,n;=0 fori#j).

The free-field Hamiltonian is written in terms of the low-

ering and raising operatoeg and aJ-Jr for each mode, and is

whered is the electric dipole operator. The dipole operator

connecting the ground and excited states can be written
d=7(dego+ +dggo ), (10

whered, is the dipole matrix element between the ground
and excited states, and the pseudo-spin operators, which act

equivalent to a sum of independent harmonic oscillator,g effective raising and lowering operators on the internal

Hamiltonians:

L1

Hfiela= 2 fiw; 5

(The photon number operator is simpeq Without the 3
terms)
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degrees of freedom of the atom, are defined as follows:

o =le)Xql, (113
o_=|g)(el, (11b)
o3=|e)el. (110
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Writing the electric field operator in terms of raising and Our goal is to find physical quantities such as:
lowering operators and the dipole operator in terms of th

pseudo-spin operators gives P(l) the time dependent amplitude for the atom to be found in

the excited state with no field modes excitezi(t)

] = (e; D] Y(1));

X4

Hinteraction: [ 2 C(aj + aJT)SW{(J O+j) L

(2) the time dependent amplitudes for a photon to be found
. in one of the cavity modes, ;(t)=(g;j|¥(t)); and

X (dego+ +dggo—) (3) the time- and space-dependent expectation value for the
square of the electric field operatdg(t)|£2(x)|(t)).

=2 f(Qoia+Q*g_a)sin
J

o wxa}

+ - ’
(o*1) L It is the last of these quantities that will give the best picture
(12) of the localized intensity of the photon and that will give

] ] ~some insight into the classical phase information that is pre-
where in the last line we have made the standard rotatingserved in the quantum domain.

wave approximation by neglecting terms Wiﬂ‘lu’sljT and One straightforward way to solve this problem is to find
o_a, ,"~%and we have combined constants into the eigenstates of the total Hamiltonian and their energies
U2 and then project the initial state of the system onto the eigen-
Q=d, (ﬂ (13 states. Theth eigenstate of the system with enefg{?) can
% 2%V be written as the linear combination
With this interaction Hamiltonian the zero and one-photon
states|e; ) and|g;j) form a complete set of states. This |E(C‘)>=d(em|e;®>+; di®g;j), 17)

interaction Hamiltonian is a multimode version of the stan-
dard interaction considered in many quantum optics tExts.
The terms in the Hamiltonian correspond either to the ab
sorption of a cavity photon and the transition of the atom
from the ground state to the excited state, or the converse. H,_ IE@)=E@|E@), (18)

Note that the photons do not have to be exactly resonant with

the atomic transition to be absorbed by the atom. States likéhe determination of the eigenvalues and eigenvectors is a
|g;j) and|e; ) are not eigenstates of the total Hamiltonian. straightforward numerical problem; a technique for rapid cal-
Therefore, if the system starts in the state with an excitegulation of large numbers of eigenvalues and eigenvectors
atom and no photondé;@)), it is not in a state of definite has been presented in Ref. 13. It is also easy to determine

energy, and absolute energy conservation should not be egig9envectors and eigenvalues numerically with computa-
pected tional packages such as\PLE or MATHEMATICA . Details on

The total Hamiltonian is such calculations are reviewed in the Appendix. From this
point on, it will be assumed that the energie®’ and the
coefficientsd(® andd{") are known numerically{lt also is

whered(® and d{) are time-independent constants chosen
such that

H = H atomt Hiela ™ Hinteraction

1 possible to use Laplace transform techniques to solve the
=foegst 2 hoj| alaj+ 5|+ h(Qoya time-dependent Schdinger equation directly for the coeffi-
J J cientsce(t) andcgy(t) that appear in Eq(16). See, for ex-
Xy ample, Ref. 14,
+Q* a'ajT)Sil’{(j otl) T} (14 To determine the time evolution of the system that starts in

a state|#(0)), the initial state is projected onto the eigen-
The sum ovej includes all the modes of the cavity, and for states of the total Hamiltonian
weg>Ac, this sum overj will be effectively a sum of an
infinite number of terms. This Hamiltonian is the same as e\ —
that used by Wigner and Weisskopf in their pioneering work [9(0))=e:2) % [BaX(Eql #0)). 19
on spontaneous emissidnwith the modification that the . . . .
atom-radiation coupling is mode specific, and depends on th@"d because the time evolution of the energy eigenstates is
position of the atom relative to the spatial structure of theknown, so is the evolution of the state of interest:
classical mode.

[p(0)=2 e B EQ)(Eq|e:D). (20)
I1l. CALCULATION OF OBSERVABLES a
i . )
In what follows the initial state of the system will be a If we ggpand|E?g) asmn 'Eq.(17), and use(e;J|Eq)=d¢
state with an excited atom and no photons, that is, and(g;j|Eq)=dg}, we find

ON=Ie2). 1 ue)=3 eS| a2+ S oo ol
Because the basis states with well defined photon numbers q j '

and atomic energies armt eigenstates of the total Hamil-

tonian, the state of the system evolves into a linear combi- =
nation of the basis states, which can be written as

% e—ieq/h|dgq)|2)|e;®>

Iw(t)>=ce(t)le:®>+; cq,i(Dg:]). (16) + > e“eq’hdé‘?}d‘e“)*)Ig:J% (21)

1.9
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and the coefficients of the basis vectors give the time- 1.0
dependent amplitudes 08
ce() =(e:@| ()= e "B d{V|2 (22) 06
q 04
and =
= 0.2
. i =
Cai(D=(giilw(V) =2 dgjdP*e . (23 v
0.2 + .
The energy density of the field is proportional to the ex- 04 L _
pectation value of(x)? that was given explicitly in Eq(8).
It is a straightforward exercise to use this expression for 06 1 7]
&(x)? along with Eq.(21) to calculate an expression for -0.8 Lo 1)
(£(x)?). This exercise involves a sum over six indices, but 0 02 04 06 08 10 12 14 16
the fact that each of the operator terms only involves a prod- time

uct of two raising or lowering operators simplifies the calcu-

. . . . " Fig. 1. The amplitudée;J|(t)) for an initially excited atom to remain in
lation considerably. The resulting expectation value is 9 plitudee; 3| (1)) Y

the excited state, with no photons in the field. The amplitude for the atom to

<¢//(t)|52(x)| 1//(I)> be found in the excited state rises abruptly at tirvel corresponding to the
time at which the photon returns to the atom after reflection from the end of
) x]|? the cavity.(The atomic resonance frequency matches exactly the frequency
=2|>, Cd@* dgqj)e_'eq/ﬁSin (o+1) —} of an even-numbered mode of the cavity, and the atom-field coupling for
i.q ' L this decay i) =4.)
mX
+Ej C3sir? GotD) | (24)

The last sum is just the vacuum expectation valu€ofThe The simplest case to treat is an atom at the center of the
contribution of this term to the total field energy in the cavity caVvity, that is,x,=L/2. All odd-numbered modes have anti-

is infinite and, as is customary, this term will be subtractedtodes at this position, so the atom-field coupling has the
from all field expectation values in the remainder of thisSame magnitude for all odd modes, although the sign of the

paper. Equivalently, thé2 operator could be written in nor- coupling alternates. Because the atom is located at a node for
mal ordered form from the start. Thus all even-numbered modes, it does not couple to these modes.

) (The decay of the atom and spontaneous emission of the
(pO[E200[ (1)) photon is due to the coupling of the atom to a large number
112 of cavity modes, and the atom might not actually couple to
(jo+j)~— the mode nearest resonarce.

JoT ] L

The results for an atom whose resonance frequency ex-
2 actly matches that of an even-numbered mode Q) are
' (25)  presented in Figs. 1-8Notes on the details of the calcula-
tion are presented in the Appendixhe amplitude for the
atom to remain in the excited state is plotted in Fig. 1. The
atom exhibits exact exponential decay urti#L/c=1, at
which time the “photon” returns to the atom after reflection

=2C? Y d* dWeEq/hsin

1.9

=2C?

X
(Joﬂ)T}

§ (g; K| g(1))sin

where in the last line we have used Eg&3). Each term in
this sum is the amplitude for a photon with detunipdy
times the spatial mode function for that photon.

IV. RESULTS 5 T T T T
t=04
The principal results of this paper are presented in Figs. 4l i
1-6 in which we plot the time-dependent amplitude for the t=02
basis state of the systerg(t), and the expectation value for sk R
the square of electric field operator. In all cases the system &)
starts at=0 in the statde; ). oL i i
In the calculations illustrated in Figs. 1-6 we use units in e o
which L |
L Do
—=1, (26) 0 MR TR P
c 0 02 04 06 08 10

which means that the time for a photon to travel the length of
the cavity is 1. This choice of units implies that the spacing
between cavity modes for all subsequent calculations will besig. 2. The expectation value?2) of the square of the electric field operator
s at timet=0.2 (solid line) andt= 0.4 (dotted ling. The exponential spatial
Ac:__) ar. (27) dependence of the intensity reflects the exponential temporal dependence of
L the atomic decay(The atom—field coupling for this decay &=4.)

Position in cavity (z)
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Position in cavity (z)

(a)

time

Fig. 4. As in Fig. 1, the amplitudée;d|#(t)) for an initially excited atom

40 to remain in the excited state, with no photons in the field, but in this case
3.5 the atomic resonance frequency matches the frequency of an odd-numbered
" cav?ty mode of the cavity, and the amplit_ude_ for the _atom to returr_l to the
excited state at time=1 due to the reflection is negativ@he atom—field

2.5 coupling for this decay i§)=4)

(€% 20
1.5 . . . . . .
o0 the left, and in both directions the intensity tails off exponen-

’ tially in space, which reflects the exponential decay in time
00 of the atom.(The sharpness of leading edge is an artifact of
N L : 09'502 : 09504 the somewhat artificial initial condition that &0 the state

’ ’ of the system is purelye;).) The expectation value of

Position in cavity (z) intensity exhibits no spatial modulation other than the expo-
(b) nential envelope; there is no apparent phase information, in

contrast to the sinusoidal variation of the classical traveling
Fig. 3. The expectation value 2) of the square of the electric field operator wave emitted by an oscillating dipole, While the expectation
at timet=0.6 shortly after the leading edge of the intensity expectation hasyglue of the intensity is simultaneously nonzero to the right
hitht.gi end t"""’:j”. and has “’g'em‘?d tgac" on itsf]'f' T'tf e’l‘pec.tat:"” t"a'.“%md the left of the atom, the expectation value for the number
exhibits a standing wave pattern in the region where the classical outgoin . . . .
and returning pulses would overlap. The region of overlap<{<&.€1.0) is of photons in the field is still always less than 1, a'f‘d a pho-
shaded in(a), and the details of the standing wave are illustratedbin ton could not S|multaneously be detected on both sides of the
which covers a much smaller spatial range within the overlap region. Thetom.
minima of the standing wave pattern do not go to zero, and the standing At times greater thab= 0.5, the radiation is reflected from
wave ratio is exactly that which would be calculated for two classical inter-the ends of the cavity. For such times, the wave can “inter-
fering waves whose amplitude gives the exponential spatial pattern iIIusfere with itself,” and the expectation value of intensity ex-
trated in Fig. 2. hibits spatial modulation in the region of overlap between the

outgoing pulse and its reflection. This effect is illustrated in

off the ends of the cavity. Far<L/c, the amplitude to find

an atonj1 in the excited state with no photons in the cavity is 10 eT——T—T——
exactly os b
Ce(t) =(e; D[ (1)) =€, (28) 0.6 .
where the decay constant is . 04f .
| Q? 9 % 02| i
= —, = e -
Y 2A. 5 0
o : : 02 -
We find it remarkable that the single sum of EB2) gives
the exact exponential behavior at early times, and also gives 04 r 7
the abrupt change in atomic excitation as the radiation re- 0.6 |- -
turns to the atom(The re-excitation due to the returning 0.8 I O S R R !
radiation will be discussed further belgw. 0 02 04 06 08 10 12 14 1.6

The expectation value of the square of the electric field is
illustrated att=0.2 andt=0.4 in Fig. 2.(All plots of the
expectation value of > were made fofj,=10 000. The ex- Fig. 5. Asin Eig- L Fh% amp'itUdéz;@W(r:)) for an ir:“ti?“?’dexdt?d atom A
act value forj, does not affect any of the qualitative features 0 'émain in the excited state, with no photons in the field. As in Fig. 1 the

- . . atomic resonance frequency matches that of an even-numbered mode of the
of the graphs, it aﬁe_CtS Onl_y the spatlal scale _Of the_ Interfer'cavity, but in this case the atom—field coupling is reducef tel1, and the
ence effects that will be dl_SCUSSGd bel))Whe mtenSlt}’ of  radiation has returned to the atom before the spontaneous decay is complete.
the field has an abrupt leading edge traveling to the right anch this case, the decay is interrupted.

time
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1.0 e itself, it has a phase relative to the emitting atom. In Figs.
08 - - 1-3 the atom was assumed to be resonant with an even-

0.6 - | numbered mode. If the atom is detuned from the even-

numbered mode by= A so that it is resonant with an odd-

~ 04r 1 numbered mode, the amplitude for the atom to be in the
% 0.2 - T excited state due to the reflection from the end walls changes
N S sign, as illustrated in Fig. 4. This change can be understood
< ook | in terms of classical phase arguments: if the atom is resonant
) with an even-numbered mode, it is located at a node of the
04k ] resonant mode, and thus an integer number of half-
0.6 - . wavelengths from the cavity walls. The reflected radiation
0.8 T S SO B SR must travel a total distance equal to an integer number of

0 02 04 06 08 10 1.2 14 16 wavelengths before returning to the atom. If the atom is in

resonance with an odd-numbered mode, it is located at an
antinode, and the radiation must travel an integer number of
Fig. 6. As in Fig. 1, the amplitudée; | ¢(t)) for an initially excited atom  wavelengthsplus another half-wavelength before returning
to remain in the excited state, with no photons in the field, but in this casgg the atom. Classically, the reflected radiation returns with a
the atomlc resonance f_requency_mat_ches that of an odd-numbergd 'mode ﬁﬁase difference ofr in the two cases, and classically the
the cavity. The atom—field coupling is reducedQc=1, and the radiation . . .
has returned to the atom before the spontaneous decay is complete. In P wer dgl;vered toa dr!ven oscillator depends On, th? phase
case, the decay is accelerated. of the driving force relative to the phase of the oscillation. In
the quantum case illustrated here, we see that the returning
radiation can cause themplitudefor the atom to be in the
excited state to either increase or decrease, depending on the
Fig. 3, which shows the intensity expectation valuetat path length traveled by the reflected radiation.
=0.6. At locations in the cavity such that 8:k<0.9 the More generally, the revival in the excited state amplitude
tail of the exponential intensity distribution is visible, but in may have any phase. It is possible to use the Laplace trans-
the region of overlap, that i%<0.1 andx>0.9, we see an form techniques of Stey and Gibbétdo find analytical ex-
interference pattern that is identical to the transient standingressions for the amplitude for the atom to be in the excited
wave that would be formed by outgoing and reflected clasState. One of usML) has extended the work of Stey and
sical waves. The wavelength of this “standing wave” is ex- Gibberd to general values of the detuning paraméteand
actly that which would be predicted for two counterpropa-for times long enough that the effect of the first reflection is
gating classical waves at the resonance frequency of thiacluded, that is, &st<2L/c, the analytical form for the
atom.(In Fig. 3 the details of the standing wave in the regionamplitude to find the atom in the excited stat¥ is
of overlap are on too fine a scale to be observed in a graph ,,. , .
covering the whole cavity. Therefore Fig. 3 contains a grapte(t) =(e;D|y (1)
covering the whole cavity with the standing-wave region in- —e "4+ O(t—L/c)e'™hee Lo (t—/c), (30)
dicated with shading, and an additional graph covering a
much smaller region of the cavijyThe modulation depth of where as beforey is given by Eq.(29), and©® is the step
the standing wave is largest near the wall, where the courfunction that “turns on” at the time the radiation returns to
terpropagating waves have almost equal amplitudes, and dée atom.(Subsequent reflections add additional terms that
creases toward the middle of the cavity, where the right- andturn on” at later times)
left-traveling components have different amplitudes due to The effect of the phase of the returning radiation on the
the exponential envelope. probability to find the atom in the excited state is negligible
Our results foroutgoing spontaneously emitted photons in the cases illustrated in Figs. 4 and 1; the phase disappears
clearly exhibit the idea expressed by Mandel and Wadliat ~ upon the squaring of the amplitude. The effech negli-
for small photon numbers “the very idea of an oscillatory gible if the radiation returns to the atom before the initial
field of definite phase ... is meaningless according to theXxcitation has died away. If the phase factor in the second
quantum theory of radiation.” However, there is a sense irterm in Eq.(30) gives + 1, then the decay can be interrupted
which spontaneously emitted single photons do have a defbefore its completion, and if the factor givesl, the atom
nite internal phase that is revealed in regions where the ph@an be driven to the ground state faster than it would be in a
ton can be said to interfere with itself due to reflection. simple decay. Results for such cases are presented in Figs. 5
As discussed earlier, the excitation of a single mode wouldind 6.
result in an expectation value of intensity that extends Re-excitation of atoms by properly phased reflections is at
throughout the cavity with the sine-squared structure of thehe origin of many quantum optical phenomena. In cavities
classical mode. The localized expectation value of intensitthat are short enough that the reflections from the end walls
exhibited by the spontaneously emitted photon requires thakturn before the atom has decayed significantly, that is,
the emitted field be comprised of many modes. The amplii /c<1/y, returning reflections interrupt the decay before it
tudes for finding photons in the various modes are given bys even identifiable on the scale of Figs. 5 and 6, and subse-
the coefficientscy j(t) of Eq. (21). At times long compared quent returns continue to modify the decay. For returning
to the atomic decay time, but before the atom is re-excited ateflections phased as in Fig. 6, the interrupted decay makes a
t=1, our model gives the exact Lorentzian frequency spectransition to sinusoidal oscillation, known as vacuum Rabi
trum that would be expected given the decay rate given byscillation. This transition has been investigated in Refs. 17
Eq. (29).1314 and 18. For returning reflections phased as in Fig. 5, the
Just as the photon exhibits a phase when interfering witlilecay can be inhibited altogether. The total inhibition of de-

time
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cay is an artifact of the model one-dimensional cavity, but
inhibited decay in more realistic cavities has been studied

theoretically and experimentally. Early work on the modifi- 1
cation of the lifetimes of fluorescent dye molecules near re- 0
flecting surfaces is summarized in Ref. 19, and more recent |e;J)— . lg—n)y— :
studies of modified decays, mostly in the context of cavity ' '
guantum electrodynamics, are reviewed in Refs. 20-22.

0 0

V. CONCLUSION 31)

In elementary treatments of modern physics, photons are

treated as objects with a dual wave—particle nature. In this 0
paper we have presented a fully quantized model of sponta- 0
neous emission in which the emitted radiation is treated as an .
excitation of a quantum field. By calculating physical ob-
a Y g phy lg;—n+1)— , etc.,

servables of the atom-field system using the machinery of a
simple quantum field theory, we are able to elucidate more
clearly the way in which classical behavior of radiation fields

manifests itself in the quantum regime. 0
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APPENDIX

f=q gpiot)™a 32
The calculations discussed in this paper are all straightfor- L '
ward once the eigenvectors and eigenvalues of the total
Hamiltonian of Eq.(14) have been determined. If we repre-
sent the basis vectors by the column vectors then the matrix representation of the Hamiltonian is given by
|
o - f, fq fo fq fs
f, —2A.+6 0 0 0
fq 0 —A.+6 O 0 0
H—nf ¢, 0 0 s 0 0 (33
fi 0 0 0 A.+6 0
f, 0 0 0 0 2A.+6

We have calculated the eigenvalues and eigenvectors d@fig the methods used by Ligare and BecRefor example,
this matrix in two ways. The simplest method is to use ain the case of an atom located at the center of a cawy (

computer package likeMATHEMATICA or MAPLE. Sample =0.5) the eigenvalue equation is

MATHEMATICA code is illustrated at the end of this Appen-

dix, with representative plots from a 38B00 matrix repre- mQ? 1/ E o E

sentation of the Hamiltoniar{In the case of an atom at the 2A_§ C°t§ Ah. A_c+1 = AA, (34)

center of the cavity, half of the modes do not couple to the

atom, so the matrices in the sample program are actuallyhe roots of this equation are bracketed by the regularly
unnecessarily large Matrices of this size give very good spaced singularities of the cotangent function, and it is easy
results for the complex amplitudes for the individual basisto calculate thousands of roots in a few seconds of computer
states. Although they produce results that give the qualitativeme using the simplest of root-finding algorithms. Explicit
behavior of the expectation value of the square of the fieldexpressions for the elements of the eigenvectors in terms of
accurate representations near the abrupt rises at the edgesii®¢ energy eigenvalues can be derived as in Ligare and
the pulses of expectation value require more terms to b8ecker*® A program in a low-level language that uses such
included. expressions is much faster than thaTHEMATICA program

It is possible to derive an analytical form of the eigenvaluelisted below, but themATHEMATICA code is much more
equation in the limit of an infinite number of modes follow- transparent.
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SampleMATHEMATICA program

Clear [nmodes, dim, Q, xa, A, jO, §, h, vals, vecs, atomamp, photonamp, e2, x,
t, J, 1, xomin, xmax, np, dx]

nmodes = 299; (* Number of radiation modes to include in calculation x)
dim = nmodes + 1; (* Dimension of Hamiltonian matrix *)
Q= 4.; (* Atom-field coupling constant *)
xa = .5; (» Posgition of atom within cavity *)
A = m; (* Angular frequency spacing between cavity modes *)
jo = 10000; (* Even-numbered mode closest to resonance *)
é = 0; (» Detuning of mode j0 from atomic resonance *)

(# Pill Hamiltonian matrix. See Eqgs. 14 & 33 in text «)

h = Table[0, {i, dim}, {J, dim}];

Do[{h[[1, §]] = h[[J, 1]] = Chop[ QSin[(jO+-dim/2-1+3) xan]],
hi[j, J1] = (-dim/2. -1+ j) *A+ 6},
(jl 2, dim}];

{vals, vecs} = Eigensystem[h]; (* Calculate eigenvalues and eigenvectors =)

(* Amplitude to find the atom in the excited state with no radiation *)
(» modes excited. See Eq. 22 in text. *)

dim
atomamp[t_] = > Exp[-Ivals[[ql] *t]xvecs[[q, 1]]*2;
a1 :

(* Calculate amplitude to find photon in mode detuned by angular frequency =)
(* jA from central mode (and atom in ground state. See Eq. 23 in text. *)

aim
photonamp[t_, j_] := ZExp[-Ivals[[q]] *xt ] %
gq=1

Conjugate([vecs|[[q, 1]] *vecs[[q, dim/2 + 1 + j]]]:

(* Calculate expectation value of the square of the electric field operator x)
(* See Eg. 25 in text. *)
(nmodes-1) /2
e2[x_, t_] = | Abs][ Z photonamp[t, 1] Sin[ (30 +1) mx]]|~2;
1=- (omodes-1) /2

Plot [Abs [atomamp[t]], {t, 0, 2}, PlotRange -> All,
AxesLabel -> {"Time", "Atomic Excitation Amplitude"}];

Atomic Excitation Amplitude

1
0.8
0.6
0.4
0.2
— 51T 15 3 e

xmin

*¥max

time

np = 40; (* Number of points to plot «)

dx = (xmax - xmin) /np;

ListPlot[Table[ {xmin + i +dx, e2[xmin + ixdx, time]}, {i, 0, np}],
PlotStyle -> PointSize[.03], ]
AxesLabel -> {"Position", "Expectation Value of E+2"}];
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