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Abstract

I use Laplace transforms to find a complete analytical solution to the problem

of a single two-level atom interacting with the quantized modes of a one-

dimensional multimode optical cavity. The techniques were used by Stey and

Gibberd [Physica, 60, 1-26 (1972)] on several model Hamiltonians, and this

paper is essentially a translation of one of their model Hamiltonians into the

language of quantum optics. The results of this paper are a complement to

the numerical work presented in Ligare and Becker [Am. J. Phys., 63, 788-796

(1995)] and Ligare and Oliveri [Am. J. Phys., 70 58-66 (2002)].
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Simple fully quantized models of spontaneous emission and re-absorption have been

investigated previously by the author [1,2]. In this paper I show how Laplace transforms

can be used to find analytical solutions to the previously considered problems using the

techniques introduced by Stey and Gibberd [3]. In this note I develop a Hamiltonian for

a quantum optical system that is identical to a Hamiltonian considered in their paper.

Additional mathematical details are presented in reference [3].

The system considered consists of a single two-level atom located at the position xa in

an optical cavity of length L. The atom is coupled to all of the quantized radiation modes

of the cavity. The angular frequencies of the modes are given by

ωj = (j0 + j)πc/L, (1)

where j0 is the label for the even-numbered mode closest to the atomic resonance, ωeg. The

modes are evenly spaced with angular frequency separation

∆c =
πc

L
(2)

and the detuning from atomic resonance of the mode with j = 0 is

δ = ω0 − ωeg. (3)

I make the standard rotating-wave and electric-dipole approximations, so that the Hamil-

tonian is

H = Hatom +Hfield +Hinteraction

= h̄ωegσ3 +
∑

j

h̄ωj

(

a†jaj +
1

2

)

+
∑

j

h̄
(

gjσ+aj + g∗jσ−a
†
j

)

= h̄ωegσ3 +
∑

j

h̄ωj

(

a†jaj +
1

2

)

+
∑

j

h̄
(

Ωσ+aj + Ω∗σ−a
†
j

)

sin
[

(j0 + j)
πxa

L

]

, (4)

where σi are the elements of the atomic pseudospin operators, and the strength of the

coupling of the atom to the field is characterized by

Ω = d
(

ωeg
2h̄ε0V

)1/2

. (5)
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The sum over j includes all the modes of the cavity, and for ωeg À ∆c this sum over j will

be effectively a sum of an infinite number of terms. For more discussion of the Hamiltonian

see references [1,2].

In the remainder of this paper I will consider the specific case of an atom at the center

of the cavity, i.e., xa = L/2 (although it is possible to treat other positions xa = L/m,

where m is an integer, in a similar manner). In this case half of the terms in the interaction

Hamiltonian go to zero, because the even numbered modes have nodes at the center of the

cavity.

The basis states of the combined atom-field system are given by the direct product of

the atom states and the field states:

• |e; ∅〉: Atom in the excited state, no photons in the radiation field,

• |g; j〉: Atom in the ground state, one photon in the radiation field with a detuning

from the even-numbered mode closest to resonance given by ωj−ω0 = ωj− (ωeg+δ) =

j∆c. (The detuning of the photon from the zero-field atomic resonance frequency is

ωj − ωeg = j∆c + δ.)

In what follows the initial state of the system will be a state with an excited atom and

no photons, that is,

|ψ(0)〉 = |e; ∅〉. (6)

Because the basis states with well defined photon numbers and atomic energies are not

eigenstates of the total Hamiltonian, the state of the system evolves into a linear combination

of the eigenstates, which can be written as

|ψ(t)〉 = c(t)|e; ∅〉+
∑

j

bj(t)|g; j〉. (7)

The Schrödinger equation gives the following set of coupled differential equations:

iċ =
∑

j

gjbj (8)

iḃj = (j∆c + δ)bj + g∗j c (9)
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Taking the Laplace transform of these equations turns the coupled differential equations into

coupled algebraic equations for the transform variables c̃(s), b̃j(s):

i(sc̃(s)− 1) =
∑

j

b̃j(s)gj (10)

isb̃j(s) = c̃(s)g∗j + b̃j(s)(j∆c + δ) (11)

Solving this set of algebraic equations for c̃ gives

c̃(s) =



s+ i
∑

j

|gj|
2

(is− δ)− j∆c





−1

. (12)

For an atom at the center of the cavity the square of the coupling coefficient |gj|
2 is zero for

all even j, and Ω2 for all odd j. Using this fact, the sum in Eq. 12 can be written

c̃(s) =



s+ i
|Ω|2

2∆c

∑

k=0,±1,±2,...

1
(

is+∆c−δ
2∆c

)

− k





−1

. (13)

In the case in which the atomic transition frequency is much greater than the fundamental

frequency, i.e., ωeg À ∆c, the sum in Eq. 13 is approximately the sum of an infinite number

of terms. Using a trigonometric identity [4] this equation can be written

c̃(s) =

[

s+ i
π|Ω|2

2∆c

cot

(

π
is+∆c − δ

2∆c

)]−1

. (14)

For convenience I make the definitions

γ =
π|Ω|2

2∆c

(15)

and

r =
δ

∆c

. (16)

I then rewrite Eq. 14 in terms of exponentials, and expand the result in powers of

exp(−πs/∆c), giving

c̃(s) =
1

(s+ γ)
+

2γ exp [−iπ(r + s/∆c)]

(s+ γ)2
−

2γ(s− γ) exp [−2π(ir + s/∆c)]

(s+ γ)3
+ · · · (17)

Taking the inverse Laplace Transform of Eq. 17 term-by-term gives
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c(t) = exp(−γt) + Θ
(

t−
L

c

)

2 exp(−iπr) exp
[

−γ
(

t−
L

c

)]

γ
(

t−
L

c

)

−Θ
(

t−
2L

c

)

2 exp(−i2πr) exp
[

−γ
(

t−
2L

c

)]

[

γ
(

t−
2L

c

)

+ γ2
(

t−
2L

c

)2
]

+ · · · (18)

where Θ is the unit step function. The successive terms in this expression all “turn on” at

successive multiples of the round trip time of flight for photons from the atom to an end

mirror and back to the atom.
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