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Abstract

Multiple-pulse NMR experiments are a powerful tool for the investigation of mole-

cules with coupled nuclear spins. The product operator formalism provides a way to

understand the quantum evolution of an ensemble of weakly coupled spins in such

experiments using some of the more intuitive concepts of classical physics and semi-

classical vector representations. In this paper I present a new way in which to inter-

pret the quantum evolution of an ensemble of spins. I recast the quantum problem in

terms of mixtures of pure states of two spins whose expectation values evolve identi-

cally to those of classical moments. Pictorial representations of these classically

evolving states provide a way to calculate the time evolution of ensembles of weakly

coupled spins without the full machinery of quantum mechanics, offering insight to

anyone who understands precession of magnetic moments in magnetic fields.
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1 | INTRODUCTION

The past several decades have seen an explosion in the

development of new and powerful experimental techniques

investigating coupled nuclei using multiple-pulse NMR

experiments. The sophistication of these techniques pre-

sents a pedagogical problem: How can these techniques be

introduced to students and practitioners who may never

have the opportunity to develop a deep understanding of

the quantum mechanical formalism that provides a quanti-

tative description of all aspects of the dynamics of coupled

spins? In this paper I identify classically evolving states in

a fully quantum mechanical treatment of the time evolution

of coupled spins in multiple-pulse NMR experiments. Pic-

torial representations of these quantum states have the

potential to provide physical insight to anyone who under-

stands classical precession of moments in magnetic fields.

The challenge of reconciling quantum and classical pic-

tures of magnetic resonance goes back to the early days of

NMR. Purcell (at Harvard) and Bloch (at Stanford) had

very different perspectives on NMR—differences so great

that their respective achievements were termed “the two

discoveries of NMR” in an excellent review reconciling the

quantum and classical points of view of single-spin NMR.1

It is now understood that classical physics, with accompa-

nying pictorial representations of vector moments, is suffi-

cient to describe and understand the time evolution of

quantum expectation values, and thus the results of all

NMR experiments involving ensembles of single spins.2,3

The correspondence between classical and quantum results

for precessing spins has also been discussed in terms of

Ehrenfest’s theorem in several undergraduate texts.4,5 Iden-

tifying classical descriptions and representations of NMR

experiments on coupled spins has proved a more difficult

challenge. Quantum mechanics provides, of course, a com-

plete description of all experiments, but quantum mechan-

ics is not intuitive for those not well versed in the

formalism. The product operator method was introduced in

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the

original work is properly cited.

© 2017 The Authors. Concepts Magn Reson Part A. published by Wiley Periodicals, Inc.

Received: 20 July 2015 | Revised: 16 August 2017 | Accepted: 30 August 2017

DOI: 10.1002/cmr.a.21398

Concepts Magn Reson Part A. 2017;45A:e21398.

https://doi.org/10.1002/cmr.a.21398

wileyonlinelibrary.com/journal/cmr.a | 1 of 15



19836-8 with the express intent of providing a “middle

course” between the full quantum mechanical density

matrix theory and the more intuitive classical and semicla-

sical vector models. In the ensuing years many authors

have proposed a variety of pictorial models to help students

navigate this “middle course” between classical and quan-

tum mechanical perspectives (see, for example,9-14).

In this paper, I present a new “middle course.” Like the

product operator formalism, my “course” is fully quantum

mechanical, but it is based on the identification of pure

quantum states of two spins that evolve in ways that have

exact analogs in the evolution of classical magnetic

moments. As I show, the terms in the product operator

expansion of the density matrix (which do not evolve anal-

ogously to classical moments) can all be associated with

mixtures of two of these classically evolving pure quantum

states. The pure quantum states I introduce are easy to rep-

resent pictorially, and these representations provide an easy

way to determine the exact density matrix for ensembles of

weakly coupled spins in pulsed NMR experiments.

The formalism I introduce is not intended to replace

product operators as a tool for analyzing experiments on

coupled spins. Rather, it is intended to provide a new per-

spective, informed by classical physics, on the evolution of

the terms in the product operator expansion of the density

matrix. The tools discussed in this paper may also find use

in introducing multiple-pulse NMR experiments to those

without a strong background in quantum mechanics.

2 | CLASSICALLY EVOLVING
QUANTUM STATES OF SINGLE
SPINS

2.1 | Pictorial representations of general
single spin states

In this section I consider individual spin-1/2 nuclei. The nuclei

have a magnetic momentm which is proportional to the angu-

lar momentum, ie, m = cI, where I is the nuclear angular

momentum vector and c is the gyromagnetic ratio. In a con-

stant magnetic field, B, the moments experience a torque

s ¼ m� B; (1)

and precess around the axis of the field; if the field points

in the +z direction in some coordinate system, the moments

precess in a clockwise sense (when looking down from the

+z direction), and the magnitude of the angular frequency

is x0 = cB, so that the azimuthal angle of the moment’s

direction is given by φ = φ0 � x0t. The energy associated

with the orientation of a moment is

E ¼ �m � B: (2)

In quantum discussions of magnetic resonance, it is con-

ventional to use as a basis the “spin-up” and “spin-down”

states |+z〉 and |�z〉 (often labeled as |a〉 and |b〉, respec-
tively). When the magnetic field points along the z-axis,

these states are eigenstates of the operator Îz corresponding

to the observable z-component of angular momentum, with

eigenvalues 1/2 and �1/2, respectively. (Quantum angular

momentum operators will be defined without the factor ℏ.)

These states are simultaneously eigenstates of the Hamilto-

nian with energy eigenvalues �ℏx0/2 and +ℏx0/2. I will

use this conventional basis for all matrix representations of

operators and states in this paper. (Operators will be desig-

nated with a “hat,” and matrix representations of operators

without one.)

Outcomes of measurements made on spins are gov-

erned by the rules of quantum mechanics, and therefore

no classical pictorial representation can completely repre-

sent all aspects of a spin state. On their own, the basis

states |�z〉 do not display many aspects of the general

classical behavior of spins. Measurements of the z-compo-

nent of angular momentum always give the same value,

but measurements of any component in the x-y plane give

random results of �ℏ/2. There is no sense in which

moments in these basis states exhibit precession. States

with behavior that corresponds more closely to classical

expectations, however, are well-known and easy to con-

struct. These states are discussed in many magnetic reso-

nance texts and papers (see, for example2,3,15), and the

general mapping of the dynamics of two-state quantum

systems to the geometry of 3-space was elucidated by

Feynman, et al.16 I will briefly summarize the results that

can be found in the cited texts (as well as many other

texts and articles).

Consider a magnetic moment in the linear combination

state

jh;/i ¼ cos
h

2
jþzi þ ei/ sin

h

2
j � zi

�!
cos h

2

ei/ sin h
2

 !

;
(3)

where h and φ correspond to conventional angular spherical

coordinates in real 3-space. Measurement of the component

of angular momentum along an axis defined by the angles h

and φ will result in a value +ℏ/2 with a probability of 1. In

other words, this is an eigenstate of the operator

Îh;/ ¼ sin h cos/ Îx þ sin h sin/ Îy þ cos h Îz: (4)

The state |h, φ〉 can be represented pictorially by an

arrow along the direction given by the angles h and φ, as

in Figure 1. In this “arrow representation,” the spin-up state

|+z〉 is represented by an arrow pointing in the +z direc-

tion, and the spin-down state |�z〉 by an arrow pointing in

the �z direction. The state with “spin-up” along the x-axis,

given by the linear combination of the |+z〉 and |�z〉 states
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jþxi¼ h¼p=2;/¼0j i¼ 1
ffiffiffi

2
p jþziþj�zið Þ�! 1

ffiffiffi

2
p 1

1

� �

; (5)

is represented by an arrow along the +x-axis, and the gen-

eral state given in Equation (3) is represented by an arrow

in the direction given by h and φ.

The results of measurements of angular momentum

components that do not lie along the axis of an “arrow”

can not be predicted by taking classical geometric projec-

tions of the arrow onto other directions; such measurements

will always yield random values of +ℏ/2 and �ℏ/2. The

arrows display information about the probabilities of

obtaining +ℏ/2 or �ℏ/2 for any measurement, but they can

not be regarded as classical vectors when predicting results

of individual spin measurements. The arrows do, however,

evolve in time identically to classical magnetic moment

vectors, as I will discuss in the next section.

It should be noted that the arrows used in this repre-

sentation are not the same as the arrows representing

magnetization vectors in semi-classical representations of

magnetic resonance, like the well-known Bloch vectors.

As a simple example, consider a 50:50 mixture of spin-up

and spin-down nuclei. Although the magnetization vectors

of the two spin states cancel, the density matrix is not

zero. The information about the density matrix is retained

in the representation with two arrows, with appropriate

weighting factors. In addition, the arrows in the “arrow

representation” do not decompose into components along

the axes.

2.2 | Evolution of single-spin states in
magnetic fields

The advantage of the “arrow representation” of quantum spin

states becomes apparent when the spin is placed in a mag-

netic field. The quantum spin state evolves in such a way that

the arrow representing the state precesses exactly as a classi-

cal magnetic moment with the same orientation. For exam-

ple, in a constant magnetic field in the +z direction, the

arrow representing the state jþxi ¼ jh ¼ p=2; /¼0i (and

pointing in the +x direction) will precess in the x-y plane as

the state evolves into jh ¼ p=2; / ¼ �cti.
In contrast, the spin-up state |+z〉, represented by a

arrow pointing along the direction of the field, is a station-

ary quantum state and does not precess, just as a classical

moment aligned with a field does not precess. Classical

physics provides a complete description of the evolution of

individual quantum spin states; it also describes the time-

dependent quantum expectation values of observables for

ensembles of spins. It is only when measurements made on

individual spins are considered that classical and quantum

predictions differ.

3 | REPRESENTING PURE
QUANTUM STATES OF SPIN PAIRS

3.1 | Basis states for weakly coupled spin
pairs

For weakly interacting inequivalent spins in an isotropic

liquid phase, in a magnetic field with magnitude B0 point-

ing in +z direction, the approximate Hamiltonian is2

Ĥ ’ ��hx0
1 Î1z � �hx0

2 Î2z þ 2p�hJ Î1z Î2z; (6)

where x0
1 ¼ c1B0, x0

2 ¼ c2B0, and the constant scalar J

characterizes strength of the coupling between the spins.

The conventional basis for two spins consists of the

four states |a, a〉 = |+z; +z〉, |a, b〉 = |+z; �z〉, |b, a〉 =

|�z; +z〉, and |b, b〉 = |�z, �z〉. These states are eigenstates

of the Hamiltonian, with energies

Eþz;þz ¼
�h

2
�x0

1 � x0
2 þ pJ

� �

(7a)

Eþz;�z ¼
�h

2
�x0

1 þ x0
2 � pJ

� �

(7b)

E�z;þz ¼
�h

2
x0
1 � x0

2 � pJ
� �

(7c)

E�z;�z ¼
�h

2
x0
1 þ x0

2 þ pJ
� �

: (7d)

As in the case of a single spin, these energy eigenstates do

not exhibit precession around the fields in the z-direction.

3.2 | Pictorial representation of pure states of
spin pairs

In this section I extend the arrow representation appropriate

for single spins and introduce a double-arrow representa-

tion to cover cases of two correlated spins. These states are

FIGURE 1 Arrow representation of the spin state

jh;/i ¼ cos h
2
jþzi þ ei/ sin h

2
j�zi. Measurement of the component of

the angular momentum along the direction of the arrow gives the

value +ℏ/2 with probability 1
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direct products of two single-spin states like those detailed

in Equation (3).

As a first example, consider the two-spin states repre-

sented in Figure 2. The arrows in this figure represent the

two directions for which the simultaneous measurement of

the component of angular momentum for each single spin

are both certain to yield +ℏ/2. For the two-spin state on the

left, simultaneous measurement of the x-component of

angular momentum of spin 1 and the z-component of angu-

lar momentum spin 2 are both certain to yield values of

+ℏ/2; I label this state |+x; +z〉 � |+x〉1 ⊗ |+z〉2. The two-

spin state in the middle yields a similar result for measure-

ment of the y-component of spin 1 and the x-component

for spin 2: both component measurements are certain to

yield values of + ℏ/2. The double-arrow states are not lim-

ited to components along Cartesian axes. An example in

which one of the angular momentum components is mea-

sured along an arbitrary axis in the x-y plane is illustrated

on the right in Figure 2.

These double-arrow states can be written in terms of the

standard basis of projections along the z-axis. For example,

the state on the left in Figure 2 can be written

j þ x;þzi � jþxi1 � jþzi2 ¼
1
ffiffiffi

2
p jþzi1 þ j�zi1ð Þ � jþzi2

¼ 1
ffiffiffi

2
p jþz;þzi þ j�z;þzið Þ �! 1

ffiffiffi

2
p

1

0

1

0

0

B

B

B

@

1

C

C

C

A

:

(8)

More generally, two-spin states can be written

jhA;/A; hB;/Bi � jhA;/AiA � jhB;/BiB

¼ cos
hA

2
jþziA þ ei/A sin

hA

2
j�ziA

� �

� cos
hB

2
jþziB þ ei/B sin

hB

2
j�ziB

� �

¼ cos
hA

2
cos

hB

2

� �

jþz;þzi

þ ei/B cos
hA

2
sin

hB

2

� �

jþz;�zi

þ ei/A sin
hA

2
cos

hB

2

� �

j�z;þzi

þ eið/Aþ/BÞ sin
hA

2
sin

hB

2

� �

j�z;�zi

�!

cos hA
2
cos hB

2

ei/B cos hA
2
sin hB

2

ei/A sin hA
2
cos hB

2

eið/Aþ/BÞ sin hA
2
sin hB

2

0

B

B

B

B

@

1

C

C

C

C

A

:

(9)

4 | TIME EVOLUTION OF DOUBLE-
ARROW STATES

The time evolution of double-arrow pure states is straight-

forward to deduce from the simple time dependence of the

eigenstates of the Hamiltonian given in Equation (6); the

details for a general double-arrow state are given in the

“Appendix.” In some special cases the quantum double-

arrow states remain in a factored form as the product of two

spin states that both evolve in a simple manner. These spe-

cial-case states are the subject of this section, and will be

the states used in the analysis of a multi-pulse experiment.

It should be noted that the classical analogs of these special

case quantum states also exhibit simple time evolution.

Conversely, the quantum states that do not factor in this

manner correspond to those classical configurations with

coupling that leads complicated classical time evolution.

4.1 | Evolution of uncoupled spin pairs in
magnetic fields

For uncoupled spins, the quantum mechanical time evolu-

tion of the double-arrow states in constant magnetic fields

is easy to visualize, because each of the single-arrow states

making up the double-arrow evolves classically and inde-

pendently. (The factoring of these quantum states is illus-

trated in the Appendix.) For example, in a constant field in

the +z direction with magnitude B0, the state |+x, +z〉 illus-

trated in Figure 2 precesses clock-wise (as viewed from the

+z-axis) at a rate x0
1 ¼ c1B0, evolving into another double-

arrow state:

jwð0Þi ¼ jþx;þzi �! jwðtÞi ¼ h1¼p=2;/1 ¼�x0
1t ; þz

�

�

�

;

(10)

with the tip of the arrow corresponding to spin 1 tracing

out a circle in the x-y plane. In a frame rotating clock-

wise around the z-axis with angular frequency xref, the

tip of the arrow precesses at the offset frequency

X0
1 ¼ x0

1 � xref . For the state in the middle in Figure 2,

each of the arrows precesses at its own rate, giving (in

the rotating frame)

jwð0Þi ¼ jþy;þxi �! jwðtÞi ¼ h1¼p=2;j

/1 ¼p=2� X0
1t ; h2¼p=2;/2¼�X0

2ti; (11)

The same kind of evolution also occurs during strong rf

pulses, as is illustrated in Figure 3. In the hard pulse

approximation, a (p/2)x pulse applied to the state |+x; �y〉
rotates the arrow for spin 2 to the z-axis, while leaving the

arrow for spin 1 pointing in the +x direction, resulting in

the spin-pair state |+x; +z〉.
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4.2 | Evolution of double-arrow states of
coupled spin pairs in a magnetic field

For weakly coupled spins pairs the time evolution of a system

starting in a double-arrow state is in general more complex

than the simple precession discussed in the previous section,

but it simplifies if one of the spins is aligned (or anti-aligned)

with the external magnetic field. (This is true for classical

spins as well, because an aligned moment does not precess,

resulting in a constant field due to the moment.) When one of

the arrows is aligned with the field, the other arrow simply

precesses around the field, and the spin pair remains in a dou-

ble-arrow state as it evolves. The angular frequency of the pre-

cessing moment depends on the orientation of the stationary

moment with respect to the field. An example of this is illus-

trated in Figure 4. A more detailed discussion of this orienta-

tion dependence is contained in the Appendix.

5 | DOUBLE-ARROW STATES AND
PRODUCT OPERATORS

5.1 | Product operators as mixtures of pure
states

The double-arrow states I have introduced have a close rela-

tionship with what are known as product operators.6-8 The

product operator formalism provides a decomposition of the

density matrix of an ensemble of spins into terms that are

orthogonal (with respect to the trace), and that evolve in

easy-to-characterize ways. (I find the name “product opera-

tor,” and the labeling of the terms with the same symbols

used for angular momentum, to be somewhat misleading.

Each term in the product operator expansion is simply a den-

sity matrix for a specific ensemble mixture. The terms do not

correspond to dynamical operators that appear in the Hamil-

tonian. In this paper, “product operator” will always refer to a

specific density matrix, not a dynamcial operator.) The terms

in a product operator expansion are not density matrices of

pure states. As I will demonstrate, however, each of the terms

in the product operator expansion is related to the density

matrix of a 50:50 mixture of two classically evolving double-

arrow states. The correspondences between representative

product operators and mixtures of spin-pair double-arrow

states are illustrated in Figure 5, and will be discussed below.

As an example of how this association works, consider

the term in the expansion of the density matrix labeled I1z.

This term corresponds to the density matrix

I1z ¼
1

2

1 0 0 0

0 1 0 0

0 0 �1 0

0 0 0 �1

0

B

B

@

1

C

C

A

: (12)

A non-zero I1z term implies a net polarization of nucleus

1 along the z-axis, with no preferred orientation for nucleus

2. The phrase “no preferred orientation” is an inherently

classical expression; the spins labeled 2 must be in some

quantum state, and all pure quantum spin states exhibit a

polarization in some direction. The phrase “no preferred

direction” implies that the ensemble of spins is in a mixture

of states, and the mixture must be consistent with the isotro-

pic distribution of results for measurements of the

FIGURE 4 Time evolution (in the rotating frame) of a double-

arrow state of two weakly coupled spins in an external field. The

precession rate of moment 1 depends on the orientation of moment 2

[Color figure can be viewed at wileyonlinelibrary.com].

FIGURE 2 Examples of double-arrow representations of states of two correlated spins. The arrows give directions for which simultaneous

measurements of angular momentum components will both yield +ℏ/2 with probability 1 [Color figure can be viewed at wileyonlinelibrary.com].

FIGURE 3 The effect of a (p/2)x pulse on a double-arrow state

of two spins [Color figure can be viewed at wileyonlinelibrary.com].
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components of angular momentum of spin 2. A 50:50 mix-

ture of two appropriately chosen double-arrow states satisfies

these criteria.

As one example, consider a 50:50 mixture of the dou-

ble-arrow states

jþz;þyi �! 1
ffiffiffi

2
p

1

i

0

0

0

B

B

@

1

C

C

A

and jþz;�yi �! 1
ffiffiffi

2
p

1

�i

0

0

0

B

B

@

1

C

C

A

;

(13)

with associated density matrices

qþz;þy ¼
1

2

1 �i 0 0

i 1 0 0

0 0 0 0

0 0 0 0

0

B

B

B

@

1

C

C

C

A

and

qþz;�y ¼
1

2

1 i 0 0

�i 1 0 0

0 0 0 0

0 0 0 0

0

B

B

B

@

1

C

C

C

A

:

(14)

The density matrix for a 50:50 mixture of these two

pure states is

1

2
qþz;þy þ

1

2
qþz;�y ¼

1

2

1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0

0

B

B

@

1

C

C

A

: (15)

The expectation value for any component of angular

momentum of nucleus 2 is zero, ie, Tr(qI2j) = 0, for any

component j. This means that there is no preferred

orientation for nucleus 2 in the ensemble of spin states.

The expectation value of the z-component of angular

momentum of nucleus 1 is ℏ/2 9 Tr(qI1z) = ℏ/2, as

desired.

Comparing Equations (12) and (15) gives the relation-

ship between the product operator I1z and the density

matrix for a mixture of the two double-arrow pure states:

1

2
qþz;þy �

1

4
E

� �

þ 1

2
qþz;�y �

1

4
E

� �

¼ 1

2
I1z; (16)

where E is the identity matrix. The product operator is

simply twice the density matrix of a 50:50 mixture of dou-

ble-arrow states, with a term proportional to the identify

matrix subtracted to make the product operator mixture

traceless.

Similar considerations give the general results

1

2
qþj;þk �

1

4
E

� �

þ 1

2
qþj;�k �

1

4
E

� �

¼ 1

2
I1j (17a)

1

2
qþk;þj �

1

4
E

� �

þ 1

2
q�k;þj �

1

4
E

� �

¼ 1

2
I2j; (17b)

where j and k indicate directions in space. In words, a sin-

gle-spin product operator is associated with a mixture of

two double-arrow states, with one arrow from each of the

states pointing along the direction specified by the product

operator, and the other arrows opposite to each other along

any arbitrary direction.

FIGURE 5 Mixtures of double-arrow

states that correspond to representative

“product operators.” The solid blue lines

represent a single pure quantum state of a

spin-pair, and the dotted red lines

represents a different single pure state

[Color figure can be viewed at

wileyonlinelibrary.com].
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Note that the choice to use y-components for spin 2

in the 50:50 mixture of Equation (16) is at this point

arbitrary; components along any opposing directions

would work just as well, giving the same result for the

density matrix. Similar arbitrariness will arise in the rep-

resentation of other terms in the product operator expan-

sion too. In Section 7, where I discuss a multiple-pulse

experiment, I will make choices from the set the possible

representations that make the time evolution the simplest,

matching that expected for similarly aligned classical

moments.

As an example of a two-spin product operator, consider

the product operator labeled 2I1xI2y, corresponding to the

density matrix

2I1xI2y ¼
1

2

0 0 0 �i

0 0 i 0

0 �i 0 0

i 0 0 0

0

B

B

@

1

C

C

A

: (18)

A density matrix expansion with a non-zero 2I1xI2y
term implies that measurements of the x-component of

spin 1 and the y-component of spin 2 will be correlated,

ie, a measurement yielding a positive value of the x-com-

ponent of angular momentum of nucleus 1 is more likely

than not to be accompanied by a positive y-component of

the angular momentum of nucleus 2, and measurement of

a negative value of the x-component of angular momen-

tum of nucleus 1 is more likely than not to be accompa-

nied by a negative y-component of the angular momentum

of nucleus 2.

Consider the 50:50 mixture of the double-arrow states

in which the correlation of the x- and y-components of the

spins is manifest:

jþx;þyi �! 1
ffiffiffi

2
p

1

i

1

i

0

B

B

@

1

C

C

A

and j�x;�yi �! 1
ffiffiffi

2
p

1

�i

�1

1

0

B

B

@

1

C

C

A

;

(19)

with associated density matrices

qþx;þy ¼
1

4

1 �i 1 �i

i 1 i 1

1 �i 1 �i

i 1 i 1

0

B

B

B

@

1

C

C

C

A

and

q�x;�y ¼
1

4

1 i �1 �i

�i 1 i �1

�1 �i 1 i

i �1 �i 1

0

B

B

B

@

1

C

C

C

A

:

(20)

The density matrix for a 50:50 mixture of these two pure

states is

1

2
qþx;þy þ

1

2
q�x;�y ¼

1

4

1 0 0 �i

0 1 i 0

0 �i 1 0

i 0 0 1

0

B

B

@

1

C

C

A

: (21)

Comparing Equations (18) and (21) gives the relation-

ship between the product operator 2I1xI2y and the density

matrix for a mixture of two double-arrow pure states:

1

2
qþx;þy �

1

4
E

� �

þ 1

2
q�x;�y �

1

4
E

� �

¼ 1

2
ð2I1xI2yÞ: (22)

Once again, the product operator is simply twice the

density matrix of a mixture of symmetrically oriented dou-

ble-arrow states (with a term proportional to the identity

matrix subtracted).

More generally, for a two-spin product operator term

we have

1

2
qþj;þk �

1

4
E

� �

þ 1

2
q�j;�k �

1

4
E

� �

¼ 1

2
ð2I1jI2kÞ; (23)

where j and k label directions in space. In words, a two-spin

product operator is associated with a mixture of two double-

arrow states; in one of the double-arrow states the directions

are those specified in the labeling of the product operator,

and in the other the directions of the arrows are reversed.

Additional examples using the generalized rules associ-

ating product operators and double-arrow mixtures are

illustrated in Figure 5.

5.2 | Component decomposition of product
operator mixtures

The arrows in the double-arrow representation of pure

states should not be confused with arrows representing vec-

tors in semi-classical models; they are simply indicators of

a direction. One way in which they are clearly not vectors

is that they do not decompose into components as classical

vectors do. A naive decomposition into components of the

double-arrow state jþz; h¼p=2;/i (depicted on the right

in Figure 2) does not work, ie,

jþz; h¼p=2;/i 6¼ cos/ jþz;þxi þ sin/ jþz;þyi: (24)

In contrast, the density matrices of some mixtures of

symmetrically oriented double-arrow states can be broken

up in a component-like manner. (A detailed discussion is

contained in the Appendix.) The mixtures that “work” are

those that are associated with product operators. Two

examples are illustrated in Figure 6. If we combine the

density matrix for the state jþz; h¼p=2;/i with that of

the state j�z; h¼p=2;/i, as shown in the top row of the

figure (with subtraction of appropriate terms proportional

to the identity matrix to make them traceless), we find
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1

2
qþz;/ � E

4

� �

þ 1

2
q�z;/ � E

4

� �

¼ cos/
1

2
qþz;þx �

E
4

� �

þ 1

2
q�z;þx �

E
4

� �	 


þ sin/
1

2
qþz;þy �

E
4

� �

þ 1

2
q�z;þy �

E
4

� �	 


¼ cos/ I1x þ sin/ I1y:

(25)

Combining the density matrix for the state

jþz; h¼p=2; p=2� /i with that of the state

j�z; h¼p=2; p=2þ /i as shown in the bottom row of the

figure (with subtraction of appropriate terms proportional

to the identity matrix to make them traceless) we find

1

2
qþz;p=2�/ � E

4

� �

þ 1

2
q�z;p=2þ/ � E

4

� �

¼ cos/
1

2
qþz;þy �

E
4

� �

þ 1

2
q�z;þy �

E
4

� �	 


þ sin/
1

2
qþz;þx �

E
4

� �

þ 1

2
q�z;�x �

E
4

� �	 


¼ cos/ I2y þ sin/ 2I1zI2x:

(26)

The trigonometric factors in the preceding equations are

not reflected in the length of any arrows in the double-

arrow representation of pure states. Rather, the trigonomet-

ric factors are simply the weights for the terms in the den-

sity matrix when it is rewritten in terms of pure states with

arrows along the coordinate axes.

6 | TIME EVOLUTION OF PRODUCT
OPERATOR MIXTURES VIA
PICTORIAL REPRESENTATIONS

In the preceding section I related terms in the product operator

expansion with mixtures of two classically evolving double-

arrow states. To visualize the time evolution of the ensemble

population corresponding to a product operator term, it is only

necessary to consider two of the evolving double arrows.

6.1 | Evolution due to external fields

The time evolution of 50:50 mixtures of representative

double-arrow states in external magnetic fields are illus-

trated in Figure 7. The illustrations are drawn in the frame

rotating at angular frequency xref, and the offset frequen-

cies are given by X0
1 ¼ x0

1 � xref and X0
2 ¼ x0

2 � xref . The

initial states are on the left, and the states after one quarter

of a relevant precession period are illustrated on the right.

The associated product operators are also indicated. In the

illustrated evolutions, all evolution is due to the external

field, and spin-spin coupling is assumed to be negligible.

In all cases an arrow along the axis of the field is station-

ary, and an arrow in a plane perpendicular to the axis of

the field exhibits simple precession. Notice that the external

field causes single-spin product operators to evolve into

new single-spin operators (or combinations of single-spin

operators), and two-spin operators to evolve into two-spin

operators (or combinations of two-spin operators). Field

driven evolution of all terms in the product operator expan-

sion can be understood with similar pictures.

Not only do the pictures Figure 7 present a very classi-

cal picture of precessing spins, they also provide simple

tools for determining the full quantum density matrix of

the system. Expressions for each of the quantum states rep-

resented by the double arrows are given by Equation (9),

from which the density matrix is easy to calculate.

6.2 | J-coupling evolution

The time evolution of 50:50 mixtures of representative

double-arrow states due to J-coupling of the spins is

FIGURE 6 Geometric decomposition

of mixtures of symmetrically oriented

double-arrow states. Weighting factors for

the terms in the decomposition are given by

Equations (25) and (26) [Color figure can

be viewed at wileyonlinelibrary.com].
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illustrated in Figure 8. The initial states are on the left, and

the states after one quarter of a relevant precession period

are illustrated on the right. The associated product opera-

tors are also indicated. The illustrated evolutions are drawn

in the appropriate rotating frame so that they only include

the contribution from the spin-spin coupling. In the top

illustration, the J-coupling causes the spin 2 coupled to the

spin-up spin 1 (solid blue double-arrow) to decrease its

precession rate, and the spin 2 coupled to the spin-down

spin 1 (red dotted-line double-arrow) to increase its rate.

This is an example of a single-spin product operator evolv-

ing into a two-spin operator, I2x ? 2I1zI2y. The converse is

displayed in the middle illustration in which 2I1xI2z ? I2y.

The bottom illustration in Figure 8 shows the case in which

both arrows in each of the spin states lie in the x-y plane. In

the top two illustrations, the precession rate of a spin in the x-y

plane depends on the “up” or “down” orientation of the other

spin. In the bottom illustration the “other” spin is half way

between up and down, and the net result for the orientation

dependence of this state is that the density matrix of the mix-

ture of the two double-arrow states does not evolve in time.

This assertion is discussed in more detail in the Appendix.

7 | VISUALIZING SPIN EVOLUTION
IN A COSY PULSE SEQUENCE

7.1 | The COSY sequence

As a demonstration of how double-arrow states can be

used to understand the effects of pulse sequences on spin

FIGURE 7 Time evolution of mixtures

of double-arrow states of spin pairs in

external magnetic fields. Initial states are on

the left, and states after one quarter of a

precession period are on the right.

Illustrations are drawn in a rotating frame

[Color figure can be viewed at

wileyonlinelibrary.com].
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pairs, I discuss in this section the well-known correlation

spectroscopy, or COSY, experiment. In a COSY experi-

ment molecules with two weakly interacting spins, like

those discussed in Section 3, are subject to two p/2

pulses with a variable delay between the pulses, as illus-

trated in Figure 9. This experiment is analyzed using

product operators in many texts (see, for example2).

Because COSY experiments are so widely discussed else-

where I will not dwell on the implications of such

sequences in terms of experimental results of two-dimen-

sional spectra; I will limit myself to a brief discussion of

the time evolution of the system in terms of double-

arrow states.

7.2 | Thermal equilibrium ensemble of spin
pairs

NMR experiments begin with samples in thermal equilib-

rium. The approximate density matrix corresponding to an

ensemble of weakly interacting spin pairs in thermal

equilibrium is

qeq ’ 1

4

1þ B 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1� B

0

B

B

@

1

C

C

A

; (27)

where,

B � �hcB0

kBT
; (28)

and the assumption has been made that B � 1. This is a

diagonal density matrix, which suggests a mixture of states

given by the diagonal elements: spin pairs that are in the

state |+z; +z〉 with probability ð1þ BÞ=4, in the state

|�z; �z〉 with probability ð1� BÞ=4, and in the states

|+z; �z〉 and |�z; +z〉 with equal probability 1/4.

This interpretation of this density matrix, however, is not

unique—a mixture of energy eigenstates is not the only mix-

ture that will yield the equilibrium density matrix. It is espe-

cially fruitful to rewrite the equilibrium density matrix in

terms of a mixture of classically evolving double-arrow states.

FIGURE 8 Time evolution of mixtures

of double-arrow states of spin pairs due to

J-coupling of the spin pairs. The top figure

is drawn in a frame rotating at x0
2, and the

middle figure is in a frame rotating at x0
1

[Color figure can be viewed at

wileyonlinelibrary.com].
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The density matrix of Equation (27) can be written as a

mixture of the double-arrow states illustrated in Figure 10

(plus the mixture represented by the identity matrix); this

mixture is

qeq ¼ 1

4
1� Bð ÞE þ 1

4
Bqþz;þy þ

1

4
Bqþz;�y þ

1

4
B qþy;þz

þ 1

4
B q�y;þz;

(29)

where q+z,+x is the density matrix representation of the

pure state |+z; +x〉, etc. (The first term in Equation (29) is

proportional to the identity matrix, indicating a mixture of

equal populations in all four conventional basis states; such

a term contributes nothing to NMR observables.) It is

straightforward to demonstrate the equivalence of Equa-

tions (29) and (27) by writing out the density matrices of

the pure state terms directly, but for those familiar with the

product operator formalism it is perhaps easier to rewrite

the equilibrium density matrix as

qeq ¼ 1

4
E þ 1

4
I1z þ

1

4
I2z; (30)

and then use Equations (17a) and (17b) to rewrite qeq

in terms of the density matrices of pure double-arrow

states.

The specific mixture given in Equations (29) and (30)

is not the only way to rewrite the equilibrium density

matrix, and it is reasonable to ask why this would be a

good starting point. In the following section I analyze a

multiple-pulse NMR experiment, and demonstrate that this

initial state leads to a sequence of classically evolving dou-

ble-arrow states. As will be illustrated in the following sec-

tion in the analysis of an experiment with a sequence of rf

pulses, this choice leads to a sequence of the special-case

double arrow states with classical time evolution.

7.3 | Evolution of double-arrow states in a
COSY sequence

In this section I illustrate the time evolution of the mixture of

double-arrow states |+z; +y〉 and |+z, �y〉 in a COSY

sequence; these are the pure double-arrow states associated

with the product operator I1z. (The evolution of the mixture of

|+y; +z〉 and | �y, +z〉 associated with I2z is identical, save for

a swap of indices.) For ease of visualization I will work in a

frame rotating with a frequency x0
1, ie, in a frame in which

there is zero offset from the precession frequency of an iso-

lated nucleus 1. Generalization to an arbitrary offset requires

additional geometric analysis, but no additional physics.

The time evolution of the double-arrow states is illus-

trated in Figure 11. The letters correspond to various points

in the pulse sequence illustrated in Figure 9. The thermal

equilibrium mixture of |+z; +y〉 and |+z, �y〉 is illustrated

in Part A of the figure. The first (p/2)x pulse rotates all

arrows clockwise around the x-axis, resulting in both

arrows for nucleus 1 pointing in the +y direction, and the

arrows of nucleus 2 pointing in the +z and �z directions as

is illustrated in Part B. This result is another mixture of

two double-arrow states that both have simple classical-like

time evolution.

The thermal equilibrium density matrix could have been

written in terms of a mixture of |+z; +x〉 and |+z, �x〉, but
the result of the first rf pulse would have been a mixture of

double-arrow states with both vectors in the plane perpen-

dicular to the field. Such states do not exhibit simple clas-

sical evolution or quantum evolution (see the Appendix for

more detailed analysis of the quantum evolution). In this

sense, classical intuition can be used as a guide to the

selection of mixtures of quantum states that will be easy to

analyze. The results using the second version of the equi-

librium density matrix would not be wrong; they just

would not be as easy to analyze.

During the period of free evolution between the rf

pulses, the dotted-line red arrow of nucleus 1 precesses at

a lab frequency of magnitude x0
1 � pJ, because it repre-

sents a pure state of nucleus 1 with a spin-up nucleus 2,

and the solid blue arrow arrow of nucleus 1 precesses at a

lab frequency of magnitude x0
1 þ pJ, because it represents

a pure state of nucleus 1 with a spin-down nucleus 2. In

the frame rotating with frequency x0
1, these arrows move

apart, with individual frequencies �pJ. At time time t1 (C)FIGURE 9 COSY pulse sequence

FIGURE 10 Double-arrow states that

can be used in a mixture to represent

thermal equilibrium [Color figure can be

viewed at wileyonlinelibrary.com].
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they make angles �pJt1 with respect to the y-axis. The

arrows for nucleus 2 represent stationary states, so they do

not evolve during this period. The second (p/2)x pulse once

again rotates all arrows clockwise in cones around the x-

axis. This brings the arrows for nucleus 2 to the +y and �y

axes, and it rotates the arrows for nucleus 1 into the x-z

plane. The arrows for nucleus 1 now form angles of �pJt1
with respect to the �y-axis.

At point D after the second rf pulse, the system is in a mix-

ture of double-arrow states that do not evolve in a simple way.

(Note that interacting classical moments with the same orien-

tations do not exhibit simple precession either.) At this point it

is necessary to decompose the mixture into a new mixture of

states that do evolve in simple ways, as is discussed in Sec-

tion 5.2. In terms of pure states, we can decompose the mix-

ture of double-arrow states labeled D in Figure 11 into the

mixture labeled D
0
. In terms of product operators, the mixture

of the blue dotted-line double-arrow state and the red dotted-

line double-arrow state corresponds to the product operator

�I1z, and the mixture of the solid blue double-arrow state and

the solid red double-arrow state corresponds to the product

operator �2I1zI2y. The relative contributions of the dotted-line

states and the solid-line states in the decomposition are deter-

mined by the techniques of Section 5.2, and given by the

geometry in part D of the figure:

qD0 ¼ � cosðpJt1Þ I1z � sinðpJt1Þ 2I1xI2y: (31)

During the period of free evolution after D we can use

the results discussed in Section 6. The double-arrow states

corresponding to �I1z (drawn with dotted lines) rotate

clockwise at X0
2 þ pJ, and the double arrows corresponding

to �2I1xI2y do not precess.

If the offset of nucleus 1, X0
1, is not zero, the geometry

of the arrows in illustrations like those in Figure 11

becomes more complicated. The arrows of nucleus 1 are

not separated symmetrically at C and D, meaning that the

decomposition resulting in the mixture of states represented

in D
0
will have more states in it, corresponding to addi-

tional product operator terms. This complication introduces

no new physics.

8 | CONCLUSION

A complete understanding of the behavior of a microscopic

system, like a molecule with coupled spins, requires quan-

tum mechanics. This fact does not preclude, however, a

quantum system from evolving in some instances in a way

that parallels that of a system governed by the laws of clas-

sical mechanics. In some systems the classical-quantum

parallels are qualitative; in the time evolution of the quan-

tum double-arrow states of coupled spins (and mixtures of

these states) that I have discussed in this paper, the

parallels can be quantitative and complete. By complete, I

mean that given an initial quantum description of an

ensemble, the final quantum description of the ensemble

can be determined solely using a classical analog of the

system. The existence of a classical analog for ensembles

of weakly coupled spins can help guide the intuition of the

NMR expert sophisticated in the use of quantum mechan-

ics. For the novice at the other end of the spectrum of

expertise, the classical analog provides a straightforward

way to visualize the time evolution of correlated spins that

is free of the quantum machinery of product operators, uni-

tary transformations of operators, and commutation rela-

tions. (The pedagogical challenge becomes one of

justifying to the novice the initial state as a representation

of thermal equilibrium.) The classical evolution offers the

potential to introduce the novice to multiple-pulse NMR

spectroscopy by focusing on concepts, while leaving the

development of quantum mechanical tools to a later time.
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APPENDIX (A1)

QUANTUM MECHANICS OF PRECESSION

Precession of single spins

The quantum state |h, φ〉 of a single spin represented by an

“arrow” oriented in the direction given by the angles h and

φ was detailed in Equation (3). This state is a linear combi-

nation of eigenstates of the Hamiltonian for a magnetic

moment in a field in the z direction. The time evolution of

such eigenstates is simple: the time dependence of each

eigenstate is contained in a multiplicative phase factor,

e�iEjt=�h, where Ej is the energy of the eigenstate. Thus, for

a moment in a magnetic field, the initial state |w(0)〉 =

|h, φ〉 evolves into the state

jwðtÞi ¼ cos
h

2
eþix0t=2jþzi þ ei/ sin

h

2
e�ix0t=2j�zi

¼ eix0t=2 cos
h

2
jþzi þ sin

h

2
eið/�ix0tÞj�zi

� �

¼ eix
0t=2jh;/� x0ti

�! eix
0t=2

cos h
2

eið/�x0tÞ sin h
2

 !

:

(A1)

This time-dependent state corresponds to an arrow state

precessing at a rate x0 = cB0 at a constant inclination

angle h with respect to the direction of the field. The azi-

muthal angle decreases with time, corresponding to preces-

sion in a clockwise direction, as viewed from the +z

direction. (The overall phase factor eix
0t=2 is inconsequen-

tial, and disappears in the density matrix representation of

the state. This phase has nothing to do with the phase

angle of precession.)

Precession of spin pairs

Quantum evolution of general double-arrow
spin-pair states

The general form of a double-arrow state is given in Equa-

tion (9). As in the case of a single spin, this is a linear

combination of energy eigenstates, and again it is straight-

forward to determine the time evolution using multiplica-

tive phase factors for each energy eigenstate in the

combination. An initial double-arrow state |w(0)〉 =

|hA, φA; hB, φB〉 evolves into the state
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jwðtÞi ¼ cos
hA

2
cos

hB

2

� �

e�ið�x0
A
�x0

B
þpJÞt=2jþz;þzi

þ ei/B cos
hA

2
sin

hB

2

� �

e�ið�x0
A
þx0

B
�pJÞt=2jþz;�zi

þ ei/A sin
hA

2
cos

hB

2

� �

e�iðx0
A
�x0

B
�pJÞt=2j�z;þzi

þ eið/Aþ/BÞ sin
hA

2
sin

hB

2

� �

e�iðx0
A
þx0

B
þpJÞt=2j�z;�zi

¼ eiðx
0
A
þx0

B
�pJÞt=2 cos

hA

2
cos

hB

2

� �

jþz;þzi
	

þ cos
hA

2
sin

hB

2

� �

ei½ð/B�ðx0
B
�pJÞt	 jþz;�zi

þ sin
hA

2
cos

hB

2

� �

ei½/A�ðx0
A
�pJÞt	 j�z;þzi

þ sin
hA

2
sin

hB

2

� �

eið/A�x0
A
þ/B�x0

B
tÞ j�z;�zi




�! eiðx
0
B
þx0

B
�pJÞt=2

cos hA
2
cos hB

2

ei½/B�ðx0
B
�pJÞt	 cos hA

2
sin hB

2

ei½/A�ðx0
A
�pJÞt	 sin hA

2
cos hB

2

eið/A�x0
A
tþ/B�x0

B
tÞ sin hA

2
sin hB

2

0

B

B

B

B

B

@

1

C

C

C

C

C

A

:

(A2)

Special Case I: Quantum evolution of
uncoupled spin-pair states

When the spins are not coupled, ie, when J = 0, the initial

product state evolves to

jwðtÞiJ¼0¼ eiðx
0
A
þx0

B
Þt=2 cos

hA

2
cos

hB

2

� �

jþz;þzi
	

þ cos
hA

2
sin

hB

2

� �

eið/B�x0
B
tÞ jþz;�zi

þ sin
hA

2
cos

hB

2

� �

eið/A�x0
A
tÞ	 j�z;þzi

þ sin
hA

2
sin

hB

2

� �

eið/A�x0
A
tþ/B�x0

B
tÞ j�z;�zi




¼ eiðx
0
A
þx0

B
Þt=2 cos

hA

2
jþziAþeið/A�x0

A
tÞ sin

hB

2
j�ziA

� �

� cos
hB

2
jþziBþeið/B�x0

B
tÞ sin

hB

2
j�ziB

� �

;

(A3)

which is the direct product of two independently precess-

ing single-arrow states. This shows that the two arrows of

a double-arrow quantum state precess independently at

their classical frequencies in the absence of spin-spin

coupling.

Special Case II: Coupled spin pairs—One
arrow along direction of field

When the spins are coupled, the general result factors into

independent single-arrow states if one of the single-arrow

states lies along the z-axis, ie, hA = 0, or hA = p, or

hB = 0, or hB = p. When hA = 0, the general time-depen-

dent state becomes

jwðtÞihA¼0¼ eiðx
0
A
þx0

B
�pJÞt=2

cos
hB

2
jþz;þziþsin

hB

2
ei½ð/B�ðx0

B
�pJÞt	 jþz;�zi

� �

¼ eiðx
0
A
þx0

B
�pJÞt=2 jþziA

� cos
hBj
2
jþziBþei½/A�ðx0

B
�pJÞt	sin

hB

2
j�ziB

� �

:

(A4)

This is the direct product of a stationary single-arrow state

oriented in the +z direction, and a single-arrow state pre-

cessing with an angular frequency x0
B � pJ (and again

there is an inconsequential overall phase factor). For the

state with hA = p, similar analysis shows that spin B pre-

cesses with a frequency x0
B þ pJ. Analogous results hold

for hB = 0 and hB = p.

Special Case III: Coupled Spins—both arrows
perpendicular to direction of magnetic field

When coupled spins are in a state with both arrows ori-

ented perpendicular to the direction of the magnetic field,

ie, hA = hB = p/2, the general time-dependent state given

in Equation (A2) reduces to

jwðtÞihA¼hB¼p=2 ¼
1

2
eiðx

0
A
þx0

B
Þt=2

½jþz;þziþ ei½/B�ðx0
B
�pJÞt	 j;þz;�zi

þ ei½/A�ðx0
A
�pJÞt	 j�z;þzi

þeið/A�x0
A
tþ/B�x0

B
tÞ j � z;�zi	: (A5)

This state does not factor into two single-arrow states

exhibiting simple precession. For example, the spins may

start in the factored state |w(0)〉 = |+x; +y〉, but they do not

evolve into a state that can be factored, ie,

jwðtÞi 6¼ h1¼p=2;/1¼�x0
1t

�

�

�

1
� h2¼p=2;/2¼p=2�x0

2t
�

�

�

2
:

(A6)

However, a mixture of two symmetrically oriented

states gives a result that does exhibit simple precession.

For example, the terms in the density matrix for a mixture

of the pure states |+x; +y〉 and |�x; �y〉 do factor. If we

write time-dependent density matrix for the pure double-

arrow state that starts in |+x;+y〉 as q+x,+y(t), etc., we find

14 of 15 | LIGARE



1

2
qþx;þyðtÞþq�x;�yðtÞ
� �

¼1

4

1 0 0 �ieiðx
0
1
þx0

2
Þt

0 1 ieiðx
0
1
�x0

2
Þt 0

0 �ieið�x0
1
þx0

2
Þt 1 0

þie�iðx0
1
þx0

2
Þt 0 0 1

0

B

B

B

@

1

C

C

C

A

:

(A7)

Notice that the result does not contain J, the spin cou-

pling constant. Comparing this to the density matrix of a

mixture of independent spins (ie, without any coupling),

we find the same result, ie,

1

2
q
ð1Þ
þxðtÞ � q

ð2Þ
þyðtÞ þ qð1Þ�xðtÞ � qð2Þ�yðtÞ

h i

¼ 1

2
qþx;þyðtÞ þ q�x;�yðtÞ
� �

;

(A8)

where q
ð1Þ
þxðtÞ is the time-dependent density matrix for a single

spin initially oriented in the +x direction, and precessing with

angular frequency x0
1, etc. The equivalence given in Equa-

tion (A8) justifies using the classical free evolution of the

arrows in double-arrow states when both arrows are in the x-y

plane, as long as the states are in a 50:50 mixture of states with

oppositely oriented arrows. (This is equivalent to saying that the

product operator term 2I1xI2y does not evolve under J coupling.)
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