MATH 161 — Precalculus¹ Community College of Philadelphia

©2000 Community College of Philadelphia Joanne Darken Martin Ligare

¹Materials produced with the support of the National Science Foundation through a grant to the Middle Atlantic Consortium for Mathematics and its Applications throughout the Curriculum (MACMATC).

Math 161 — Chapter 3

Homework

- 1. Graph each of the functions below on graph paper. Show the table of values you use to get the coordinates of the specific points you plotted.
 - (a) $f(x) = .2x^2 + 3$
 - (b) $g(x) = -2x^2 + x$
 - (c) $h(x) = (x-1)^2 2$
 - (d) p(t) = (t-2)(t+1)
- 2. Write each of the following quadratic functions in the form $f(x) = ax^2 + bx + c$ and give the values of a, b, and c.
 - (a) $f(x) = (x-2)^2 3$
 - (b) $g(x) = .5(x+1)^2 + 12$
 - (c) $h(x) = (x+2.5)^2 + x^2 4x$
 - (d) $u(x) = 43 5(-3 + x)^2$
 - (e) w(x) = (x-4)(x+5)
 - (f) z(x) = -3(x-2)(x-6) + 18
- 3. For each of the following functions complete the square to put the function in the form $f(x) = a(x-h)^2 + k$, and give the values of the constants a, h, and k.
 - (a) $f(x) = x^2 + 4x + 3$
 - (b) $g(x) = x^2 8x + 1$
 - (c) $h(x) = x^2 6x 18$
 - (d) $q(x) = x^2 + 3x + 2.5$
 - (e) $s(x) = 3x^2 18x + 3$
 - (f) $t(x) = 4x^2 + 20x 8$
- 4. Find the roots (if there are any) of each of the following quadratic functions:
 - (a) f(x) = (x+3)(x+5)
 - (b) $g(x) = x^2 5x + 6$

(c)
$$h(x) = 3x^2 + 2x + 1$$

(d)
$$q(x) = 4(-1+x)(x-4)$$

(e)
$$s(x) = -(x - 3.4)x$$

(f)
$$t(x) = -(x-2)^2 + 3$$

(g)
$$t(x) = (x-2)^2 + 3$$

5. A quadratic function p(t) is illustrated in the following graph.

Calculate the average rate of change of the function p(t) with respect to t over the following intervals:

- (a) [4, 6]
- (b) [6, 8]
- (c) [2, 4]
- (d) [0, 2]
- (e) [2, 6]
- (f) [3.5, 4.5]
- (g) [9.15, 9.45]
- 6. Consider the quadratic function $f(x) = 3x^2 + 2x 6.2$. Calculate the average rate of change of the function f(x) with respect to x over the following intervals:

- (a) [-8, -6]
- (b) [-6, -4]
- (c) [-4, -2]
- (d) [-2,0]
- (e) [-1,1]
- (f) [0, 2]
- (g) [2, 4]
- (h) [4, 6]
- (i) [6, 8]

Examine your results for patterns and describe any that you see.

7. Examine the graphs of the quadratic functions f(x) and g(x) that are illustrated below.

- (a) Give the y-intercepts, if any, of the function f(x).
- (b) Give the vertex of the function f(x).
- (c) Give all roots of the function f(x).
- (d) Give the y-intercepts, if any, of the function g(x).
- (e) Give the vertex of the function g(x).

- (f) Give all roots of the function g(x).
- 8. Write the formula of a quadratic function satisfying the given conditions. Use your favorite letters for the names of the functions.
 - (a) The graph has x-intercepts 1 and 5, and y-intercept 3.
 - (b) The graph has roots 2 and -2, and y-intercept 2.
 - (c) The graph has the single x-intercept 2 and y-intercept -8.
 - (d) The graph has the single x-intercept -3 and y-intercept 10.
 - (e) The graph has roots -1 and 5 and goes through the point (1, -12).
- 9. Sketch the graph of a quadratic function which has roots -6 and 0, and a positive coefficient of x^2 .
- 10. Sketch the graph of a quadratic function which has a y-intercept -2 and vertex (3, 4).
- 11. Write a formula for the quadratic function you sketched in Problem 10
- 12. For each of the following descriptions of a parabola, decide whether there exists a quadratic function with such a parabola for its graph. If so, sketch its graph. If not, explain why not.
 - (a) vertex (5,4), y-intercept 5
 - (b) roots -2 and 4 and y-intercept 9.5
 - (c) roots -3 and 3, vertex (-4,6)
 - (d) roots -4 and 0, vertex (-3.5,-6)
 - (e) increasing for x < -1, decreasing for x > -1, vertex (-1,2)
- 13. Use interval notation to write:
 - (a) an open interval of length 3
 - (b) an open interval of length 0.5
 - (c) an open interval of length 0.03
 - (d) a closed interval of length 1.7
 - (e) a closed interval of length 5.2
 - (f) a closed interval of length 0.07

25

14. For each quadratic function, give the requested information.

- (a) Find the roots of $f(x) = 2\left(x + \frac{3}{2}\right)(x + 41)$.
- (b) Find the vertex of $g(x) = (x 2.5)^2 + \pi$.
- (c) The *y*-intercept of $h(x) = 2(x^2 + 3x 4.5)$.
- (d) Which way does the function h above open up or down?
- (e) Which way does the function g above open up or down?
- (f) Which way does the function f above open up or down?
- (g) Find the roots of the function h above.
- (h) Find the y-intercept of the function f above.
- (i) Find the roots of the function g above.
- 15. Give the range of the two illustrated quadratic functions, f and g. (Assume, as usual for quadratic functions, that the domain is all real numbers.)

