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Math 161 — Chapter 5

Square Root and Absolute Value Function; Trans-
lations and Reflections

Information

5.1 Introduction

In this chapter we introduce two standard functions that have properties not
seen in either linear or quadratic functions: the square root function and
the absolute value function. We then use them as examples for introducing
some operations that are performed on functions: shifts and reflections. The
new functions are connected to functions we have already worked with, and
the new operations enable us to establish some relationships among differ-
ent functions. So we are continuing what we have been doing: analyzing
functions by type and examining variations within each type.

5.2 Square root function

Square roots

Before we define the square root function, we recall the definition of square
root and give some examples.

Definition: A square root of a number N is a number a with the property
that a®> = N. We write a = v/N.

Example 1: Since 32 = 9, 3 = /9. Note that since (—3)2 =9, —3 is also a
square root of 9.

Example 2: There is no integer or fraction we can square to get 2. (This
can be proved.) However, we can get close approximations. For example,
1.4%2 = 1.96, which is less than 2, and 1.5 = 2. 25, which is greater than 2.
So if there were a number a such that a®> = 2, a would be between 1.4 and
1.5. If we want to do better, we can experiment to find that 1.412 = 1. 9881,
and 1.42? = 2.0164. So a is between 1.41 and 1.42. We could continue in
this manner, and find numbers whose squares get closer and closer to 2.
We could say that 2 doesn’t have a square root, and all we can get are ap-
proximations, or we can say that there are numbers that can’t be represented



2 Chapter 5 — Information

by fractions or integers, but have decimal approximations to any degree of
accuracy we want. The human race has chosen the latter route. To many it
seems mystical, but we say that there is a number v/2. However, this number
is irrational; that is, it is not a fraction or integer.

Example 3: /0 =0

Example 4: The number —1 does not have a real number square root,
since there is no number a such that a> = —1. New (even more mystical)
numbers are invented to take care of this, too, but for our present purposes,
we say that «/—1 is not a real number, so there is no solution to the equation
a? = -1.

It is a convention to assume that the symbol v/ N stands for the positive
square root of N. If you mean to indicate the negative root, write —v/N.

The Square Root Function

We define the square root function to be f(z) = \/x. Its graph is shown
below.

Square Root Function: f(x) = /x

Unlike linear and quadratic functions, the square root function does not
have all real numbers in its domain. We cannot allow negative numbers,
because they do not give real number answers. But all positive numbers and
zero do. The domain of f(x) = /x is therefore [0,00). The only numbers
we can get as answers are the positive numbers and zero, so the range of
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f(z) = /x is also [0, 00).
Notice that the graph is half of a sideways parabola. Replacing

by
Y=+

for convenience, and squaring both sides, we get
Y- =ux.

This is the equation of the basic parabola y = x?, with x and y interchanged.
A graph of this equation is shown below.

Graph of y? = x

Of course, 32 = x does not give y as a function of z, as we can see by the
graph. Note that the upper branch (half) of the graph is the graph of the
function f(z) = y/z. The lower branch is the graph of the function g(z) =
—+/z. Functions of the form f(zr) = /x + ¢, where ¢ is a constant, have
very similar graphs. So does any function of the form f(z) = avbx + ¢+ d,
where a, b, ¢, d are any constants. The domain of any of these other square
root functions depends on b and ¢: we must have bz + ¢ > 0, because the
quantity under the radical must be greater than or equal to zero. We will
refer to all such functions as square root functions; the square root function

is f(z) = v/a



4 Chapter 5 — Information

Example 5: Let f(z) = 2/z — 5. Since x — 5 must be greater or equal to
0, the domain of this function consists of all numbers greater than or equal
to 5. The range is [0,00). The graph is shown below.

Graph of f(z) = 3v/x — 2

6 . . ! !

Example 6: Let f(z) = /22 — 6. Since 2z — 6 must be greater than or
equal to 0, the domain of this function consists of all numbers greater than
or equal to 3. The range is [0,00). The graph is shown below on the same
scale as the graph in the previous example.

Graph of f(z) = /22 — 6
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Example 7: Let f(z) = /—2 + 1. The domain of this function consists of
all numbers x < 1 The range is 0,00). The graph is shown below on the
same scale as the graph in the previous examples.

Graph of f(z) = V-2 + 1

Example 8: Let f(z) = —5v/2x — 4. The domain of this function is (—oo, 2].
The graph is shown below.

Graph of f(z) = =52z — 4
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5.3 Absolute value function

Absolute value

The usual way of thinking of the absolute value of a number is as the “pos-
itive” of the number; practically speaking, we just drop the negative sign,
if there is one. This way of thinking doesn’t work well when we deal with
variables that may take either positive or negative values. We have to find a
mathematical way to describe what you do with a negative quantity to get its
“positive.” What mathematical operation can we perform on 3 to get -3, for
example? We just take the negative of it: -(-3)=3. We use this observation
to define absolute value:

x ifx>0
d={%, o3, 51

The absolute value of a number can be thought of as its distance from 0
on the number line, and the absolute value of the difference of two numbers
is the distance between them on the number line.

Example 9:
7T—3|=4=1[3-7|
The distance between 3 and 7, regarded as points on the number line, is 4.
Note the order of the numbers doesn’t matter.
Example 10:
7= (=3)|=10=[-3-7]

Thus 10 is the distance between the points -3 and 7 on the number line.

The Absolute value function

We define the absolute value function to be f(x) = |z|. This is a particularly
easy function to evaluate for any given number; you can do it in your head.
The absolute value function is piecewise defined, and its graph has a corner
(vertex) at the origin:
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Absolute Value Function: f(x) = |z|
12 T I

Any real number has an absolute value, so the domain of the absolute value
function is all real numbers. The range is all real numbers y > 0.

As with the square root function, there are variations on the absolute
values function. Any function of the form f(z) = albz + ¢| + d has similar
properties. We will refer to all such functions as absolute value functions.
Their graphs will have a similar shape, their domains will be all real numbers,
and their ranges will be all numbers greater than the y-value of the vertex,
if the graph opens upward, like the graph of f(z) = |z|. If a is negative,
the graph opens downward, and the range is all y less than or equal to the
y-value at the vertex. For an example, see the graph of the the function
g(z) = —|z + 3| + 4 below.
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Graph of the function g(z) = —|z + 3| + 4

In this example, we see from the graph that the range is (—o0,4). The
domain is, as ever for functions of this type, all real numbers.

5.4 Translations and reflections

We have mentioned variations on the basic square root and absolute value
functions: we started with f(xz) = y/z and g(z) = |z| a and observed that
functions of the type h(z) = azv/bx + c+ d and j(x) = az|bx + c| + d have
similar properties and similar graphs. We could have considered linear and
quadratic functions in the same light, starting with f(z) = z and g(z) = z?
and regarding functions of the forms h(z) = mz + b and j(z) = az? + bz + ¢
as variations on these. In fact, we could take any function and modify it in a
similar way. The resulting function would bear a family resemblance to the
original one. In this section we analyze some of these modifications and the
relationships of the new functions to the old.

Translations

We start with translations. Graphically, a translation (also called a shift
g(x) of a function f(z) is a function whose graph is exactly the same size
and shape as the graph of f(z) but moved horizontally and/or vertically.
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Vertical translations

If a point (a, b) is on the graph of a function f and g(z) = f(z) +d, then the
point (a,b + d) lies on the graph of g. Foe example, even without knowing
the formula for f(z), we know that if the point (7,2) lies on the graph of f,
then the point (7,6) lies on the graph of g(z) = f(z) + 4. If a function f is
given by a graph, we can graph g(z) = f(z) + ¢ just by adding the value ¢
to each y-coordinate.

Example 11: The graph below shows a function f consisting of the points
(1,3), (2,5), (3,6) and (4,—1), and the function g(z) = f(x) — 2 consists of
the points (1, 1), (2,3), (3,4) and (4, —3). Observe that when the graph of f
is given, we can graph ¢g(z) = f(x) + d just by adding d to the y-coordinate
of each point of f.

10

8
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A vertical translation of a function given by an algebraic formula can
be sketched similarly: get some points on the new graph by plotting the
translations of a few of the points on the original graph, and connecting the
points.

Horizontal translations

If the graph of a function f is shifted two units to the right to produce the
graph of a function g, and the point (5,4), for example lies on the graph
of f, then the point (7,4) lies on the graph of g. So, in this case, g(7) =
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f(5) = 4. In general, when ¢ is obtained from f by a shift of ¢
units horizontally, g(z + ¢) = f(z). It is customary to write this as
g(x) = f(x — ¢), which amounts to the same thing.

Example 12: Let f(z) = |x + 3|. The graph of f(x) is shown below, with
the graph of i(z) = |z|.
7

6

The graph of f(z) is that of i(x) = |z| shifted 3 units to the left. This is
parallel to what we have seen with quadratics: the graph of j(z) = (z + 3)?
has its vertex at (—3,0), and is the graph of k(x) = x? shifted three units to
the left.

General translations

If a function g is obtained from a function f by translating f d units vertically
and c units horizontally, theng(x) = f(z — ¢) + d.

Example 13: The function g(z) = (z — 3)*> + 1 is the translation of the
function f(z) = z? by 3 units to the right and 1 unit up.The domain of both
functions consists of all real numbers. The range of f is [0,infty) and the
range of ¢ is [1,infty). Note the vertex of f is (0,0) and the vertex of g is

(3,1).
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Example of a function translated horizontally and vertically
| | | |

Example 14: The function g(z) = v/z + 2 — 5 is the translation of f(z) =
vz by 2 units to the left (since (z +2) = (z — (—2)) and 5 units down. The
domain of f is [0,00) and so is the range. The domain of g is [-2,00) and
the range is [—5, 00).

Example of a function translated horizontally and vertically

The function g(x) = |z — 4| — 2 is the translation of f(z) = |z| by 4 units to
the right and 2 units down. The domain of both functions is (—o0, c0); the
range of f is [0,00) and that of g [—2, 00)
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Reflections

Your reflection in a mirror appears to be as far behind the mirror as you are
in front of it, and straight back from where you are. In the two-dimensional
plane, thereflection of a point P in a line [ is defined in a way that conforms
with this description. The reflection of P in [ is the point P’ that is as far
from [ as P is, on the opposite side. The line segment between P and P’ is
perpendicular to [ and is cut in half by [. The reflection of a graph is defined
in the same way: the reflection of the graph consists of the reflections of the
points of the original graph.

Reflections of Points in the x-axis

1.5 . ! ! !
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; : Reflection of D +
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The coordinates of the reflection of a point P are particularly easy to give if
the reflecting line is the z- or y-axis. The reflection of a point (z,y) in the
x-axis is the point (z, —y) and its reflection in the y-axis is the point (z, —y).
For example, the reflection of (2, 3) in the z-axis is(2, —3) and its reflection
in the y-axis is (-2, 3).

Examine the function g(z) = —4/z shown here on the same coordinate
system with h(x) = y/z. It is a reflection of h(z) in the z-axis.
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A reflection of any function f in the z-axis is constructed the same way: The
graph of —f(x) is the reflection in the z-axis of the graph of f(x).

Now look at the graph of the function g(z) = v/—x on the same coordinate
system with the graph of h(z) = /x.
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These two graphs are reflections in the y-axis. For any function f, the

graph of f(—z) is the reflection in the y-axis of the graph of f(z).
The square-root functions illustrated in the previous paragraphs have

limited domains. Functions that are defined for all z also can be reflected.
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For example, the reflection about the y-axis of the function f(z) = |z + 3| is
the function h(z) = | — z + 3|
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5.5 Symmetry

Consider the graph of the function f(r) = z*:
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Examination of this graph should make it clear that the reflection of f about
the y-axis lies exactly on top of the graph of f. In other words, the graph



Chapter 5 — Information 15

of f is its own reflection. We say that the function f is symmetric about the
y-azxis. (It should be clear that f is not symmetric about the z-axis.)

A figure in the plane is symmetric about a line in the plane if the line
acts as a mirror in which half the figure is the reflection of the other half.
This means that for every point P on the figure there is another point Q on
the figure, on the other side of the line and just as far from the line as P
is. The figure below shows the graph of another function that is symmetric
about the y-axis.
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Note that if the graph were folded over the y-axis the right and left sides of
it would match.

Any line can serve as an azis of symmetry (that is, the line about which a
figure is symmetric), but the lines of greatest interest are the z- and y-axes.
It is comparatively easy to tell from an equation whether or not the graph of
the equation has symmetry about either of these axes. If it does we can use
the fact to reduce our work: we graph half the curve, then an easily graph
its reflection.

Symmetry about the y-axis

If a graph is symmetric about the y-axis, then if a point (z, y) is on the graph,
so is (—z,y). These two points are at an equal distance from the y-axis, and
on opposite sides of it. Thus if the points are on the graph of a function f,
we have f(—z) = f(z).

Example 15: The graph of the function f(z) = z? is symmetric about
the y-axis. We can see this from the graph, and more importantly, since
the accuracy of graphs is limited, we can see it from the algebra: f(—z) =
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(—2)? =2* = f(2).

More generally, we may be interested in a relation between x and y given
by an equation that does not necessarily give y as a function of z.

Example 16: Consider the equation
22% + 92 = 2.
If we replace x by —x, we get the equation
2(—z)* +y* = 2.
Since (—z)? = z?, the equation 2(—z)? + y? = 2 becomes
2% + 9% = 2.

Thus replacing z by —z gives a new equation equivalent to the old one. This
is the algebraic test for symmetry about the y-axis.

Definition: The graph of an equation is symmetric with respect to the y-azis
if replacing x by —z in the equation gives an equivalent equation. (Recall that
two equations are equivalent if they have exactly the same solution set, and if
they are equivalent either can be transformed into the other by the standard
simplification techniques, such as replacing (—x)? by z?, multiplying both
sides of the equation by —1, etc.)

Example 17: To test the equation
32y + 223 —8=0

for symmetry with respect to the y-axis, replace x by —x every place it
appears. This gives

3(—x)’y +2(—2)'y* -8 =0
which can be simplified to
32’y + 22y —8 =0

which is the original equation. This tells us that the graph of the equation
is symmetric about the y-axis.

Example 18: To test the equation

522 — dxdy =3
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for symmetry with respect to the y-axis, replace x by —x every place it
appears. This gives
5(—2)® —4(—2*)y =3

which simplifies to
522 + 4ay = 3.

This is not equivalent to the original equation because of the difference in
one sign and not the others. Hence the graph is not symmetric about the
y-axis.

Symmetry about the z-axis

If a graph is symmetric about the z-axis then for each point (z,y) on one
branch there is a corresponding point (z, —y) on the other branch. Such a
graph is not the graph of a function (unless y is always 0), as we see since
the line through any point of the graph and its reflection in the z-axis is a
vertical line intersecting the graph twice.

Definition: The graph of an equation is symmetric with respect to the r-axis
if replacing y by —y in the equation gives an equivalent equation.

Example 19: To test the equation
32y +22*y2 —8=0

for symmetry with respect to the z-axis, replace y by —y every place it
appears. This gives

32°(~y) + 22%(~y)’ -8 = 0,
which can be simplified to
—3z%y — 2%y — 8 =0,

which is not equivalent to the original equation, because two of the signs
changed and one did not. This tells us that the graph of the equation is not
symmetric about the z-axis.

Example 20: To test the equation

’y® — 62’y = 0
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for symmetry with respect to the z-axis, replace y by —y every place it
appears. This gives
2*(~y)’ — 62°(~y) = 0,
which simplifies to
—z2y? + 623y = 0.

This equation is equivalent to the original equation: if we multiply both
sides of this equation by —1 we get the original equation. Hence the graph
is symmetric about the z-axis.

Symmetry about the Origin

Another type of symmetry uses a point as a mirror. This may seen a little
odd, but is also useful. A graph is symmetric about the origin if for every
point (x,y) on the graph, a line passing through this point and the origin
intersects another point of the graph on the other side of the origin, and the
same distance from the origin as the original point.

Definition: The graph of an equation is symmetric with respect to the origin
if replacing by —z and y by —y in the equation gives an equivalent equation.

Example 21: To test the equation
322y +22'2 —8=0

for symmetry about the origin, replace x by —z andy by —y every place they
appear. This gives

3(—2)*(~y) +2(—2)*(~y)* -8 =0,
which can be simplified to
—3z%y — 2%y — 8 =0,

which is not equivalent to the original equation, because two of the signs
changed and one did not. This tells us that the graph of the equation is not
symmetric about the origin.

Example 22: To test the equation

zy? — 623y =0
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for symmetry about the origin, replace by —z and y by —y every place they
appear. This gives

(—2)(=y)® = 6(—z)*(—y) =0,

which simplifies to
zy® + 623y = 0.
This equation is equivalent to the original equation: if we multiply both

sides of this equation by —1 we get the original equation. Hence the graph
is symmetric about the origin.



