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Math 161 — Chapter 4
Polynomials
Information

4.1 Introduction

We now study a class of functions, polynomials, that includes linear and
quadratic functions, as well as functions in which the variable is raised to
higher powers. Higher-degree polynomials are worth our attention because
they are needed in calculus as tools for approximating other functions. Also,
they provide excellent examples of certain important function properties.
Rates of change of polynomials have some interesting properties which we
will also consider.

4.2 Power functions

A power function is a function of the form f(z) = az™. The exponent may
be any whole number: 0, 1, 2, 3, ... (The term power function is used in some
books to describe any function of this form using any real number exponent,
but we do not do that.) The coefficient may be any real number. The degree
of a power function f(z) = az™ with a # 0 is n.

Example 1: The linear function f(x) = z is a power function of degree 1.

Example 2: The quadratic function f(z) = z? is a power function of degree
2.

Example 3: Each of the following is a power function: fi(z) = 23, fo(x) =
—4z*, f3(z) = 22*, fu(x) = 87122, f5(x) = 32" = 3. In the last case observe
that we have a constant function. We are even less likely to think of this as
a power function than we are to think of the linear and quadratic examples
that way; each is a special case which has its own name.

For n even (i.e., 2, 4, 6, 8, etc.) the graph of f(z) = z" resembles a
parabola in shape, though as the degree gets higher the graph gets flatter
near the origin and steeper elsewhere. Simple power functions are illustrated
below. The graph of f(x) = az™ will be similar, but the exact shape will
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depend on the value of a. If a is positive, the graph will open upward; it will
open downward if a is negative.

Basic Power Functions - ", n even

For n odd (i.e., 2, 4, 6, 8, etc.) the graph of f(x) = z™ resembles the
graph shown below. As with the even-degree polynomials, the higher the
degree the flatter the graph is near the origin and the steeper elsewhere.

Basic Power Functions - ", n odd
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In addition to the simplest power functions with a = 1 (examples of which
have been illustrated above) the functions f(z) = —z" (here a = —1) are of
particular interest. Two typical graphs are shown below.

Polvger function with ¢ = —1: —z* Power function with @ = —1: —z3
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4.3 Polynomials

Definition and examples of polynomials

Definition: A polynomial function is a function that can be put in the form
P(z) = ap2™ + ap 12" '+ apox™ %+ ...+ agx® + a17 + aq

where n is a whole number (0, 1, 2, etc.) and ap, an—1, Gp_o9, ...a2, a1, ag are
real numbers.

The value of n is the degree of the polynomial, assuming a, # 0. The
degree is important; for example, polynomials of different degrees have sig-
nificant differences in their graphs.

The ayn, an_1, Gn_2, ...a2, a1, ag are the coefficients of the function, and
the coefficient of the term of highest degree is the leading coefficient.

We have already seen some polynomial functions: Besides linear and
quadratic functions, every power function is a polynomial. In fact, a polyno-
mial could be defined as a sum of power functions.

Example 4: A linear function f(z) = ma+bis a special case of a polynomial.
In this case n =1, a,, = a; = m, and ag = b. The degree of a linear function
is 1. Note that in this case we do not see as many terms as in the definition of
polynomial function, which is written to show the pattern for higher degree
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polynomials. If we write the linear function in the general polynomial form
we have f(z) = ayx + ag. This is rarely done, and linear functions are so
special that we rarely even think of them as polynomials.

Example 5: A quadratic function f(z) = ax? + bz + c is another special
case of a polynomial. In this case n = 2, a, = a2 = a, a,_1 = a; = b, and
ag = c. If we wrote the quadratic using the general notation we would have
f(iE) = 61,21'2 + a1x + ag.

Example 6: f(z) = 2>+ 7z — 2.
Here n =2, a3 =1, a; = 7, and ay = —2. The function f is a second degree
polynomial (a quadratic function) with leading coefficient 1.

Example 7: P(z) = 3z — 8.
Here n =1, a; = 3, and ag = —8. The function P is a first degree polynomial
(a linear function) with leading coefficient 3.

Example 8: g(z) = 5z* + 222 + 2 — 4.
Here n =4, a4 =5, a3 =0, ap = 2, a; = 1, and a9 = —4. The function g is
a fourth degree polynomial with leading coefficient 5.

Example 9: Q(z) = 2°% — 7.
Here n = 52, aso = 1, a51 = a5 = ...as = a1 = 0, and ayp = —w. The
function @ is a 52" degree polynomial with leading coefficient 1.

Example 10: h(t) =6t + (t+2)2 =6t +t* +4t+4 =12+ 10t + 4
Here, after expanding and collecting terms, we see that h is a second degree
polynomial (n = 2) with a; = 1, a; = 10, and aq = 4.

Cubics

A cubic is a polynomial of degree 3. We now look at cubics in some detail as
an introduction to analysis of higher-degree polynomials. The general form
of a cubic is

P(z) = azz® + apx® + a1 + aq

The graphs of cubic functions have somewhat more variety than the graphs
of quadratics, but still fall into certain distinctive types. Several are shown
below.
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Roots of polynomials

A root of a polynomial P(z) is a number r such that P(r) = 0. Graphically,
a root is an z-intercept; i.e., the x-value of a point at which the graph of
the polynomial intersects the z-axis. A root is also called a zero of the
polynomial.
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In studying quadratic functions we learned everything there is to know
about their roots: if they exist they can be found by factoring or by use of
the quadratic formula, and they may not exist. If not, the discriminant tells
us that. For higher-degree polynomials, the good news is that if they factor,
roots can still be found by factorization (using the Principle of Zero Products
as before). The bad news is that if they don’t factor, there’s nothing like the
quadratic formula to give the roots. For polynomials of degree three or four,
there are formulas, but nobody uses them because they’re too complicated.
For polynomials of degree higher than four, there are no formulas, and it’s
not that they haven’t been figured out yet, it’s that they have been proved
not to exist. For higher-degree polynomials, finding roots is usually a matter
of approximating them, using a calculator or computer. There are other
approximation methods, developed before the invention of calculators and
computers, but we will not go into them. (You may see one in calculus.)
The only non-technical method we will use is estimation from graphs.

An important algebraic point about roots is that every root of a poly-
nomial P corresponds to a factor of P, if we allow factorization with non-
integer coefficients. For example, let P(x) = 22 — 3. The roots are ++/3, and
P(x) = (z +/3)(x —+/3). Since a polynomial of degree n cannot have more
than n linear factors, it cannot have more than n roots.

Example 11: Let P(z) = 4(x — 1)(z — 2)(z — 3). The roots of P are 1, 2
and 3, since P(1) = P(2) = P(3) = 0.

Example 12: Let P(z) = 22 + 1. This quadratic has no roots. This can
be seen from its graph, which doesn’t touch the z-axis, from the quadratic
formula (the discriminant is negative) or by observing that since 22 > 0 for
all z, P(x) is always greater than or equal to 1. Or observe that the vertex
of the parabola is (0,1) and the parabola opens upward.

Example 13: Let P(z) = 23 — 422 + x + 6. It is possible to factor P(z),
but it may not be obvious how. If not, use a calculator or computer to solve,
or make a graph and estimate, then substitute into the formula to check.
The roots are 2, 3, and -1. (When estimating from a graph, always check
any integer answers you seem to get by substituting them into the function
formula, in case the true answer is not exactly equal to the integer.)

Example 14: Let P(z) = z° — 32> +  + 4. This does not factor. You
can use the technology at your disposal to solve it approximately. It has one
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root, approximately -0.89.

Extrema of Polynomials

The mazimum of a function is the largest value it takes, and the minimum is
the smallest. As observed above, a function need not have a maximum or a
minimum, or it may have one but not the other. For example, if the graph of
a quadratic function opens upward, it has a minimum but not a maximum.
If its graph opens downward it has a maximum but not a minimum. In the
illustration below the parabola on the left opens upward, and the function it
represents has a minimum of -1 at x = —3. But it has no maximum, because
the values of the function get larger and larger without bound the further
we look to the left or right. The right hand parabola opens downward, and
has a maximum of 4 at x = 3. It has no minimum, because the values of the
function get lower and lower without bound the further we look to the left
or right.

Quadratic Function with Minimum Quadratic Function with Maximum
4 B | | 5 [ R R R
. . . . . T .
3 — .
0 :
2 7 f
1 | S A .
0 : : : : :
) 1014 R R R R Ly
I T N SO 4 - - - - |
P R R 15 A R
-5 -4 -3 -2 -1 0 1 -1 0 1 2 3 4 5
X T

Any quadratic function has a minimum or maximum y-value, which it
takes at its vertex. If you look at the three graphs of cubic polynomials shown
in the section above on cubics, you see that none of them has a minimum or
maximum y-value, at least in the window shown. In fact, no cubic has either
a maximum or a minimum y-value. But the first two cubics graphed do each
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have a local maximum and a local minimum; that is, a y-value that is higher
than any in a little patch of the graph near it, and a y-value that is lower
than any in a little patch of the graph near it. In the first graph the local
maximum is approximately 2 and occurs when z is approximately -1.8; the
local minimum is approximately -1 and occurs when x is approximately 0.4.
In the second graph the local maximum is approximately -0.6 and occurs for
x approximately 1.7. Such a local maximum or minimum is called a local
extremum (plural local extrema.)

We say that a function has a local mazrimum at z, if there is an open
interval around z, such that the value of f(x¢) is larger than f(z) for any
other z in the interval. So (zo, f(zo) is a hill top). We say the function has
a local minimum if there is an open interval around z, such that the value
of f(xo) is smaller than f(z) for any other z in the interval. (So (zo, f(zo))
is a valley bottom).

The large and small pictures

A good graph of a polynomial should show its roots and local extrema, as
well as give a good idea of its overall shape.

Most of the polynomials you encounter in this course have coefficients
that are integers and reasonably small. Once you know what type of graph to
expect for a polynomial of a particular degree, getting a good graph is mostly
a matter of experimenting with windows till you see something plausible.

However, you should be aware that when less friendly coefficients are used
it is possible to create a polynomial P with roots or local extrema that don’t
show up in what seems to be a good graph of P, because they are beyond
the boundaries of the window used or, in the case of extrema, because the
bends created are too small to see. Calculus provides methods for tracking
these down. For present purposes, you should be aware that sometimes you
may need to use more than one graph to show all the important features.

The large picture of a polynomial P of degree n has several important
features:

e The domain consists of all real numbers.

e The graph is continuous; that is, there are no breaks in it — you can
draw it without lifting pencil from paper.
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e When viewed from far enough away, the graph of any polynomial has
the shape of the power function represented by its leading term, a,z".
All the bends are too small to see, and any and all roots are squeezed
in near the origin, too close together to distinguish.

e As x gets very large in absolute value, the value of P(x) does also. It
is positive or negative depending on whether the sign of the leading
coefficient is positive or negative.

e The number of roots is no greater than n and the number of extrema
is no greater than n — 1.

Note: Referring to the graphs of power functions, we see that the second
and third points above have an implication for roots of odd-degree polynomi-
als: since the graph of an odd-degree power function goes continuously from
down low on the left to up high on the right or vice versa, it must cross the
z-axis. So an odd-degree polynomial must have at least one root. (This need
not be true for an even-degree polynomial, as we saw even with quadratics.)

4.4 Limits and limit notation

For sketching graphs and for other purposes it is important to consider the
behavior of a polynomial function as x gets very large in absolute value,
whether it’s positive or negative, so that we have a sense of what happens
beyond what we actually see. Some of the exercises provide an opportunity
to see what is going on and why.

We now introduce some notation that is used in calculus to replace de-
scriptions of graphs such as “down low on the left” and “up high on the
right.” The new terminology can be generalized and can also be defined pre-
cisely, although we give only intuitive definitions here The symbol co that
you see below stands for infinity, which can be interpreted as ”far, far away.”

1. To say that when x takes large positive values, P(z) does also, we write

lim P(z) = +ooc.
T——+00
This is read “As z gets large without bound, P(x) gets large without
bound.” The graph of any function for which this is true eventually
keeps rising as it goes to the right past any y-value you choose.
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Example 15: Let P(x) = 523 — 72? + x — 4. A graph of this appears
below. The leading coefficient of the function is positive, and as x
gets large the value of P(x) gets large—in fact, a lot larger than z.
(In all discussion and examples, the term “large” is relative. In this
example, we get a fairly good graph on the interval [—10,10], the y-
values being in the thousands. But if the example had been P(x) =
0.5z — 700022 + z — 4 we would have to go from about —20000 to 20000
on the z-axis and into the billions on the y-axis to see a good picture.)

Function that becomes large as £ — 00

2. To say that when z takes large positive values, P(x) is negative and
large in absolute value, we write
lim P(z)= —ooc.
T—+00
This is read “As x gets large without bound, P(x) becomes large with-
out bound in absolute value and negative.” The graph of any function

for which this is true eventually keeps falling as it goes to the right,
below any y-value you choose.
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Example 16: Let P(z) = —5z® — 7x*+1z—4. A graph of this function
appears below. The leading coefficient of the function is negative and as
x gets large the value of P(x) gets large in absolute value and negative.
For any y value you choose, however far down, there is an = such that

P(z) =y.
Function that becomes large in absolute value and negative as £ — 00
20 | | | | | |
10 Do L S T S L L |

3. To say that when z is negative and far from zero P(z) is large, we write

lim P(z) = +oo0.
T——00
This is read “As z gets large in absolute value and negative, P(z) gets
large without bound.” The graph of any function for which this is true
eventually keeps rising as it goes to the left.

An example is the polynomial P(z) = —523—7x?+z—4 of the preceding
example. For values of = that are far to the left of the origin P(z) is
large. Corresponding points of the graph are therefore way to the left
and way up.

4. To say that when z is negative and far from zero, P(x) is also, we write
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lim P(z) = —ooc.
T—>—00
This is read “For values of x that are negative and far from zero, P(z)
is far from zero and negative.” The graph of any function for which
this is true eventually keeps falling as it goes to the left.

The polynomial P(z) = 52®—7x?4+1z—4 used above shows this behavior.

4.5 Increasing and Decreasing Functions

A function f is said to be increasing on an interval I if its graph rises as
it goes to the right. In other words, if x; and z, are in the interval I, and
1 < T then f(.%‘l) < f(.CL'Q)

A function f is said to be decreasing on an interval I if its graph falls as
it goes to the right. In other words, if x; and z, are in the interval I and
T < To then f(z1) > f(xa).

In the diagram below, the function shown is decreasing on the interval
[—3,—1], increasing on the interval [—1,2] and decreasing on the interval
(2, 4].
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4.6 Average Rate of Change for Polynomials

Many important questions concern rate of change: determining how fast an
object is moving, how quickly a population is increasing, at what rate the
blood level of a medicine is decreasing. If something changes at a steady rate,
the question is usually easy to answer. But often the changes of interest are
not steady. Sometimes the rate of change changes. Calculus provides tools
for finding rates of change even if they are constantly changing, as long as
they do so in a reasonably orderly manner. Rates of change of polynomials
behave in a very orderly manner, and we will now investigate them, as a way
of preparing you to deal with the concepts and methods you will study in
calculus.

Recall that the rate of change of a function is defined over an interval. In
the case of a linear function, the rate of change is the same over any interval;
it is the slope of the line. But in the case of polynomials (and all non-linear
functions) it’s different on most intervals. If you find the rate of change of
a function on an interval, then split the interval in two and find the rate of
change on each of the two new intervals, you get two new answers. But the
more you keep on doing this, the less the new answers differ from the old
ones. This is the basic observation underlying concepts and techniques made
precise in calculus. Here we do some work with average rates of change of
polynomials and observe a pattern that exists.

What we do first (and something along these lines appears in exercises in
previous chapters) is take a particular function and set of intervals, and make
a table of the average rate of change of the function over these intervals.

Example 17: Let f(x) = 2® —4z. Using the average rate of change formula
f(b) = f(a)
b—a

and the intervals [—4, —3], [-3, —2], [-2, —1], [-1,0], [0, 1], [1, 2], [2, 3], [3, 4],
we obtain the following table:
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Interval || [—-4,-3] | [-3,—-2] | [-2,—1] | [-1,0] | [0,1] | [1,2] | [2,3] | [3,4]
Mid-Point -3.5 -2.5 -1.5 -0.5 0.5 1.5 2.5 3.9
of Interval

aroc 33 15 3 -3 -3 3 15 33

If we want a graph of the data above, a reasonable way to represent the

situation would be to plot the aroc of each interval against the midpoint of the
interval. We will regard an aroc function as a function that uses midpoints of
intervals as inputs and the aroc’s on the corresponding intervals as outputs.
(We could define such a function as sending intervals to aroc’s, but this would
take us into new territory, since then the inputs would not be numbers.)

Average Rate of Change: Interval Size of 1
50 T T T T

40

30

aroc 20

10

10 L L
-4 -3 -2 -1 0 1 2 3 4
Mid-Point of Interval

A pattern appears!

The aroc function graphed above is not the only possible aroc function
for f. Specifically we could have used intervals of a different size, i.e.,
not length 1. In plotting any aroc function we must be careful to specify
the length of the intervals. We will see that as the size of the intervals
gets small, the qualitative features of a graph do not change, even though
the exact values of the function change slightly. Below is a graph of an
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aroc function of f for intervals of length 0.5. The intervals plotted include
[—4,—3.5],[—3.5, —3.0], [-3.0, —2.5], . . .

Average Rate of Change: Interval Size of %
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Below is a graph of an aroc function of f for intervals of length 0.25. The
intervals plotted include [—4, —3.75], [-3.75, —3.5], [—3.5, —3.25], . . ..
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Although the points obtained for shorter intervals do not lie on the same
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parabola with the points from the longer intervals, it is the case that as
shorter and shorter intervals are used, the resulting graph gets closer and

closer to a particular parabola.
If you do the exercises on aroc you will see there is a particular type of
aroc function associated with all polynomials of any given degree.



