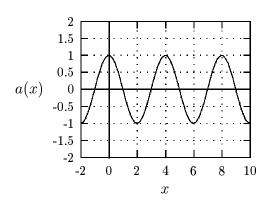
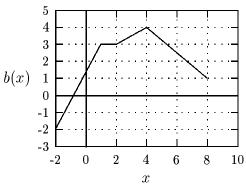
MATH 161 — Precalculus¹ Community College of Philadelphia

©2000 Community College of Philadelphia Joanne Darken Martin Ligare

¹Materials produced with the support of the National Science Foundation through a grant to the Middle Atlantic Consortium for Mathematics and its Applications throughout the Curriculum (MACMATC).

21

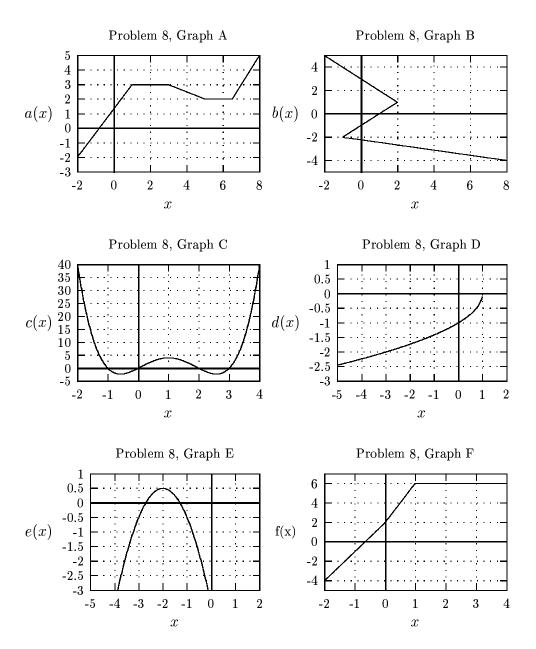

Math 161 — Chapter 6


Homework

For Problems 1 and 5 consider the five functions f, g, h, a, and b; three of which are given by the algebraic formulas,

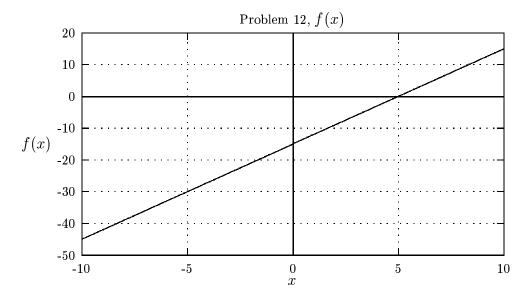
- $f(x) = x^3$
- g(x) = 2x + 3
- $h(x) = \sqrt{2x}$

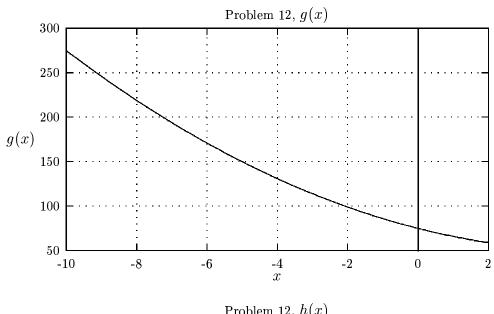
and two of which are illustrated in the graphs below.

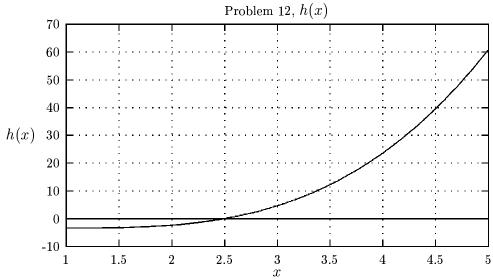


- 1. Using the functions defined above, evaluate the following expressions.
 - (a) (f+g)(2)
 - (b) (f-a)(0)
 - (c) $(h \cdot b)(1)$
 - (d) (a-b)(-1)
 - (e) (b+h-a)(8)
 - (f) $(g \div h)(2)$
 - (g) $(g \cdot b)(1.5)$
 - (h) $(g \cdot b \div f)(-1.5)$
 - (i) (a+f)(6)
 - $(\mathbf{j}) \ (a \div g)(0)$

- 2. Let $f(x) = x^2 3$, g(x) = 2x 4, $h(x) = \frac{x}{2}$. Find:
 - (a) (f+g)(3)
 - (b) (f-g)(1)
 - (c) (hg)(5)
 - (d) (f/h)(-2)
 - (e) (f+g)(t)
 - (f) (f g)(2m)
 - (g) (hf)(x+5)
 - (h) (f+g-h)(8)
 - (i) (f+2g)(-1)
 - (j) (3g 2f)(1)
 - (k) (fg)(t)
 - (1) (h/g)(t-2)
- 3. Let $f = \{(0,1), (1,8), (2,3), (3,0)\}, g = \{(1,6), (2,7), (3,8)\}, h = \{(0,9), (3,-1), (8,0)\}.$ Give each of the following functions as a set of ordered pairs, and give the domain and range of each.
 - (a) f + g
 - (b) f/g
 - (c) f h
 - (d) fg
- 4. Evaluate those of the following that are defined, and indicate which are not defined. Refer to the functions in 3.
 - (a) $g \circ f(0)$
 - (b) $h \circ f(1)$
 - (c) $h \circ f(2)$
 - (d) $g \circ f(0)$
 - (e) $f \circ f(0)$
 - (f) $g \circ f \circ h(8)$
- 5. Using the functions defined above Problem 1, construct the indicated compositions (where defined).


- (a) $g \circ f(8)$
- (b) $f \circ g(8)$
- (c) $g \circ f(x)$
- (d) $f \circ g(x)$
- (e) $a \circ b(3)$
- (f) $f \circ b(-1)$
- (g) $a \circ h(18)$
- (h) $h \circ g(2.5)$
- (i) $h \circ g(-2)$
- (j) $a \circ b(-1)$
- (k) $a \circ g(0)$
- 6. Using the functions defined in Exercise 2, construct the indicated compositions, where possible. If not possible, explain what the trouble is.
 - (a) $g \circ f(1)$
 - (b) $f \circ g(6)$
 - (c) $g \circ f(x)$
 - (d) $f \circ g(x)$
 - (e) $h \circ f(3)$
 - (f) $f \circ f(-1)$
 - (g) $f \circ h(3)$
 - (h) $h \circ g(13)$
 - (i) $g \circ h(8)$
 - (j) $h \circ h \circ h(-1)$
 - (k) $f \circ g(t)$
 - (1) $g \circ f(2x)$
 - (m) $f \circ g(-t)$
 - (n) $g \circ f(x-1)$
 - (o) $f \circ g(x+2)$
 - (p) $h \circ f \circ h(3)$


- (q) $f \circ f(-x)$
- (r) $f \circ h(3t)$
- (s) $h \circ g(\frac{1}{3})$
- (t) $g \circ h(0)$
- (u) $g \circ g \circ g(x)$
- (v) $f \circ g(t)$
- 7. Write each of the following as a composition of simpler functions. You may use more than 2 simpler functions if this is appropriate. When doing decomposition problems, it is important to define the simpler functions clearly, and to state the order in which they appear.
 - (a) $h(x) = (2x+5)^3$
 - (b) $R(x) = (x-1)^2 + 13$
 - (c) $F(x) = \sqrt{5x+7}$
 - (d) $G(x) = |(4x 9)^3 + 41|$
 - (e) $f(x) = |(4x 9)^3| + 41$
 - (f) $H(x) = (3x+7)^4 + (3x+7)^3 + (3x+7)^2$
 - (g) $L(x) = 10 \sqrt{7 + |4 x|}$
 - (h) $K(x) = \frac{8}{x^3 15}$
- 8. For each of the graphs below answer the following questions:
 - Is this the graph of a function? (If your answer to this question for a graph is no, no further questions for the graph need to be answered.)
 - Is the function one-to-one?
 - If the function is not one-to-one, give a restricted domain for which the function is one-to-one.



- 9. For each of the functions in 3 give the inverse function, if it exists.
- 10. Using the functions in 3, find each of the following that exists:
 - (a) $f^{-1}(1)$
 - (b) $f^{-1}(8)$
 - (c) $g^{-1}(1)$

- (d) $g^{-1}(6)$
- (e) $h^{-1}(0)$
- (f) $h^{-1}(1)$
- (g) $f^{-1}(8)$
- 11. For each of the following functions, determine whether the function is one-to-one. If so, find its inverse. If it is not one-to-one, give a restricted domain on which it is one-to-one, and find its inverse on that domain.
 - (a) a(x) = 4.5x 3
 - (b) $b(x) = \sqrt{-2x}$
 - (c) c(x) = |x| 3
 - (d) $d(x) = 3(x-2)^2 3$
 - (e) e(x) = x
 - (f) $f(x) = 8x^3 1$
 - $(g) g(x) = -x^2$
 - (h) $h(x) = 3 + \sqrt{x}$
 - (i) $i(x) = (3-x)^2$
- 12. The graphs below are illustrations of a pieces of a linear function f(x), a quadratic function g(x), and a cubic function h(x).

Estimate the following quantities from the graphs:

- (a) $f^{-1}(0)$
- (b) $f^{-1}(-30)$
- (c) $f^{-1}(7.5)$
- (d) $g^{-1}(100)$
- (e) $g^{-1}(250)$

(f)
$$g^{-1}(75)$$

(g)
$$h^{-1}(0)$$

(h)
$$h^{-1}(40)$$

(i)
$$h^{-1}(5)$$

13. Find the inverse of each of the following functions:

(a)
$$f(x) = 2x - 7$$

(b)
$$g(x) = 2(x-7)$$

(c)
$$h(x) = x^2 + 1$$
 (Assume $x > 0$)

(d)
$$F(x) = -(x-1)(x+1)$$
 (Assume $x < -1$)

(e)
$$G(x) = x^3 + 4$$

(f)
$$H(x) = 6x$$

(g)
$$Q(x) = |x-1|$$
 (Assume $x > 1$)

(h)
$$R(x) = 2(x-3)^2$$
 What assumption about x must you make?

(i)
$$S(x) = 4|x + \sqrt{2}|$$
 (Assume $x > -\sqrt{2}$)

(j)
$$T(x) = 13 - 6|x|$$
 What assumption about x must you make?

(k)
$$U(x) = 27 + 54x$$

(1)
$$V(x) = (4x)^2 - 5$$
 What assumption about x must you make?

(m)
$$W(x) = 3|x+1| + 4$$
 (Assume $x > -1$)