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Math 161 — Chapter 6
Arithmetic of Functions
Information

6.1 Perspective

In the continuing effort to organize our knowledge of different types of func-
tions, we have examined several types of functions; in particular, linear,
piecewise linear, quadratic and higher degree polynomials, absolute value
and square root functions. We have also gotten new functions from old by
translations, reflections and stretching. Now we go on to create new func-
tions by combining old ones in various ways. We will also analyze functions
by breaking them down into combinations of simpler ones, and define the
inverse of a function.

6.2 Arithmetic Combinations of Functions

Definitions and Examples

Addition, subtraction, multiplication and division of functions are defined
straightforwardly.

Definition: Given two functions f and g with overlapping domains, we
define new functions f+g, f —g, fg, and f/g for all values x in the domain
of both f and g as follows:

L (f+9g)) = f(z) +g(x)

2. (f=9)) = f(z) —g(z)

3. (f9)(z) = f(z)g(x)

4. (f/g)(x) = f(x)/g(x) as long as g(x) # 0 (since we can’t divide by 0)

Our first examples use two “baby” functions defined as follows:

d={(1,2),(3,4),(5,6)}

and

e=1{(1,5),(3,—4),(5,0)}.
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Example 1: We can add the outputs of the two functions for the single
input value x = 1 and obtain

(d+e)(1) =d(1) +e(l) =T.

Example 2: We can add the two functions as a whole, ¢.e., add the outputs
for each input value, and get

d+e=1{(1,2+5),(3,4+ (=4)), (6 +0)} = {(1,7), (3,0), (5,6)}.

Example 3: The difference of the two functions d and e is :

d—e={(1,-3),(3,8),(5,6)}.

Example 4: The product of the two functions d and e is:

de = {(1,10), (3, —16), (5,0)}.

Example 5: We can find the quotient of the two functions:

afe={(1 %) 3.~}

Note that d/e is not defined for 2 = 5 since 2 is not defined.

Now consider the two functions

f(z) =2
and
gx) =z +2.

The following examples show a variety of arithmetic combinations of f and
g for the specific input value x = 5, and also show the domains of the
combinations.

Example 6: (f +¢)(5) = f(5) +9(5) = 25+ 7 =32 The domain of
(f + g) is all real numbers.
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Example 7: (f — g)(5) = f(5) —g(5) = 25— 7 =18  The domain of
(f — g) is all real numbers.

Example 8: (fg)(5) = f(5)g(5) =25 x 7 =175 The domain of (fg) is
all real numbers.

Example 9: (f/g)(5) = f(5)/9(5) =25/7=3
all real numbers ezcept x = —2.

0

The domain of (f/g) is

Example 10: A general expression for the sum of f and g valid for a general
input z is

(f+9)(x)=2*+z+2.
The graphs of f, g andf + g are shown below on the same coordinate system.
8 |

The definitions of the arithmetic operations on functions are so simple
they appear to be just new ways of describing how to add, subtract, multiply
or divide the value of two functions at a given point. It’s fine to think of them
that way for purposes of computation. However, it’s worth noting that there
is a new idea here. We are being asked to think of functions as having a life
of their own that enables them to combine, and not just at a particular value
of interest, but over the entire domain they have in common. It’s a different
perspective, something like thinking of a route to school (or anywhere) as a
thing in itself, rather than as the sum of the steps and turns taken.
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Domains of Arithmetic Combinations of Functions

Example 11: Consider the domains and ranges of the functions d and e
above as well as the functions obtained from them. Note that the domain
of all the new functions except d/e is the same as the domain of d and e:
{1,3,5}. The domain of d/e is {1,3}. We cannot use 5 as an input because
for 5 the rule would require division by 0.

As stated in the definition the arithmetic combinations of two functions
are defined on the set where both functions are defined i.e., on the intersection
of their domains. Many functions, including linear, quadratic, higher-degree
polynomial and absolute-value functions, are defined for all real numbers, so
their arithmetic combinations are too, except that in the case of division, we
must exclude values that make the denominator 0, as we did with d/e. In
general, if we are dividing by a function g(x), we must exclude the values of
x that make g(z) = 0.

Example 12: Let f(z) = 2o+ 1 and g(z) = \/z. The domain of f is all real
numbers, and the domain of g is x > 0. So the common domain (where both
are defined) is the set of x such that = > 0.

Example 13: Let f(z) = v — 1 and g(z) = /3 — 2. The domain of f
is the set of all  such that x > 1, and the domain of ¢ is the set of all x
such that z < 3. (Recall that the domains are the set of values for which the
expressions under the radical are greater than or equal to 0.) So the common
domain is the set of all z such that x > 1 and < 3. This is generally written
{z:1 <2z <3} orjust 1 <z < 3. We can also write the interval: [1, 3].
A graph can be helpful in determining the domain. It is useful to sketch
the domains of the two original functions on the same number line (or on
two number lines, one directly below the other), and look for the overlap, as
shown below.
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Example 14: For the same functions as in the previous example, the domain
of f/g would be the interval [1,3). The value 3 must be excluded from the

domain because it would make the denominator (f(3)/g(3)) equal to zero,
and we cannot divide by zero.

6.3 Composition of Functions

Another way of combining two functions is by composition. The composition
of a function f(z) with the function g(z) applies f to the outputs of g:

Definition: The composition of f(z) with g(z) is defined to be f o g(x) =

f(g(x)). The domain of f o g(z) is the set of all z in the domain of g such
that g(x) is in the domain of f.

Thus to find f o g(z), first find g(z), then f of the result. Note that for
composition, order matters, as with subtraction or division.
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Example 15: Let f = {(0,4), (1,8),(3,6), (4,7),(5,8)} and

g ={(1,-1),(2,0),(3,5)}. Then fog = {(2,4),(3,8)}. Let’s go through
this step by step: We start with g. ¢g(1) is —1, but —1 is not in the domain
of f, so we can’t use it. The next input for g is 2, and ¢(2) = 0. Also, f(0)
is defined to be 4, so f o g(2) = 4. The other input of g is 3: ¢(3) = 5 and
f(5) =8, 0 fog(3) =8. The domain of f o g is {2,3}.

Example 16: Let f(x) = 2z and g(z) = x + 3. Then f o g(5) = f(g(5)).
Since g(5) = 8, we have f(g(5)) = f(8) = 16. Diagrammatically we have:

59581516

Example 17: As above, let f(z) = 2z and g(z) = = + 3. This time, let’s
find the composition g o f(5). In this case, we first find f(5) = 10. Then we
find g(10) = 10 + 3 = 13. Note that go f(z) # f o g(z).

515104513

Example 18: Once again, let f(z) = 2z and g(z) = = + 3. Let us find the
general formula for f o g(z). Since g(z) = x + 3, we have that f o g(z) =
flg(@)) = f(z+3) =2(z +3) = 22 + 6.

r L (24 3) L 2(z + 3)

The new function obtained by taking the composition of two functions
may be given a name of its own; for example the composition g o f may be
denoted by the letter 4, and we may write h(z) = go f(x). If f(z) = 2z and
g(xz) = x + 3, then h(3) = go f(3) = ¢g(6) = 9. The general formula for A is
hz) =go f(z) = g(f(z)) = g(2z) = 2z + 3.

6.4 Decomposition of Functions

In certain situation in calculus it is useful to reverse the process of composi-
tion; i.e., to break a function down into a composition of simpler functions,
in order to apply rules given in terms of the simpler functions. This process
is called decomposition. To do it, observe what operations are performed on
the variable, and in what order. Then write the functions that describe each
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operation. (For example, if the first operation is squaring the variable, let
the first function be f(z) = z%.) Then write the composition of the simpler
functions in the correct order to produce the original function.

Example 19: Write the function h(z) = z? + 1 as a composition g o f of
two simpler functions g and f.

Solution: To evaluate h(x) at particular values of z we first square z, then
add one to the result. So the first function (written closer to the variable in
the composition) is f(z) = z?. For the second we write g(z) = x + 1. The
composition g o f(z) is h(z).

Sometimes there is choice of how to break down a function, and some-
times a function breaks down into a composition of more than two simpler
functions.

Example 20: Let h(z) = 5-. We may decompose h as go f where f(z) = <

and g(z) = iz, or as g o f where f(z) = 2z and g(z) = L.

Z

Example 21: Write p(z) = (v/Z + 4)° as a composition of simpler functions.
Solution: First analyze the function p(z). In applying p to = we first take
the square root of z, then add 4 to the result, and then cube that result. So
if we let

f@)=vz gla)=z+4 h@)=2"
then
pz) =hogo f(z)
Checking this,we first takef(z) = \/x, then g(y/z) = \/x + 4, then
h(Vz+4) = (Vz+4)°.

Note: not every complicated function can be expressed as a composition
of simpler functions. If the original function can be described in terms of
a sequence of steps done in a particular order, starting with the variable,
doing something to it, then something else to the result, something else to
that result, etc., then the original function can be regarded as a composition.
However, if you have to do two different things to the input, then combine
the results, then composition isn’t helpful.

Example 22: Let f(z) = /z + z®. This function doesn’t lend itself to
decomposition. Neither does g(x) = (z—3)/(z—5). In each case two different
operations are performed on the variable, then the results are combined.
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6.5 Inverse Functions

With some functions it’s possible to work backwards, in the sense that for
a particular output it’s possible to find what the input was. For example,
consider the function

flz) =22 — 3.

Suppose you know that the output is 7, and you want to know the input it
came from. You can get this by inspection: 5. You have just found that

F71(7) = 5.

Example 23: Imagine that you have a partner in class who tells you that
she has chosen a value of x as an input to the function f defined in the
paragraph above, and that the output of the function is 7. You are then
challenged to determine the value of the input x that makes f = 7.
Solution: In this case it is probably easy to deduce from inspection that if
x =5, then f(5) =2 x5—3 =7, as desired. Or, set 7= 2z — 3 and solve
for x.

If you need to figure out very many inputs to a function when given only
outputs, it behooves you to find a mathematical rule that allows you to do
this as easily as possible. Suppose you are given a one-to-one function f(x)
and want to find a formula for its inverse. Do the following:

e Replace f(z) by y (to simplify appearances).

e Replace each x by y and each y by x (for reasons that may become
apparent when you do the class exercises).

e Solve for the new y (if possible). (If not, you can’t get an inverse
algebraically, and will have to settle for graphical approximation.)

e Replace the new y by f~1(z).

Note: The exchange of x and y occurs because outputs of the original function
f will be inputs of f~!. For any point (z,y) on the graph of f, the point
(y,z) is on the graph of f~1. But we prefer to keep z as the standard symbol
for the input and y for the output, even for inverse functions. It may be a
little confusing at first. There is no way around this.

Example 24: Find the formula for the inverse of the function f(z) = 2z —3.
Solution:
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e Replace f(z) by y:

y=2xr—3
e Interchange x and y:
zT=2y—3
e Solve for the new y:
_x+3
2

e Replace the new y by f~'(z):

_r+3

e =1

Definition: Given a function f, the inverse of f, if it exists, is denoted by
/!, and is the function with the property that f~'o f(z) = z; i.e., applying
f to z, and then f! to the result, gives the original number z back again.
This can be represented by the following diagram:

Example 25: Let f = {(1,0),(2,7),(3,4)}. Then f~* = {(0,1), (7,2), (4,3)}.

Now suppose you and a class partner are working with the function

g(z) = 22

You secretly choose an input value of x, and announce that you got an
output of 4 from your input. Can your partner deduce your input? Be
careful! Your classmate can’t say for sure: it might be +2, or it might be
—2. You don’t have an inverse function because you have a choice of answers
and that violates the definition of function. If we want a situation in which
we do have an inverse function, we have to rule out choice. In this case, we
can do so by restricting the domain of the original function so as to allow
only numbers greater than or equal to zero. In order for function to have an
inverse, it must be a one-to-one function.

Definition: A one-to-one function is a function such that each element
of the range has exactly one element of the domain assigned to it.
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A one-to-one function has a unique inverse. A function which is not one-
to-one does not. But because it is often useful to have an inverse, a function
is sometimes modified by restricting the domain to a set on which it is one-
to-one. In the example above, restricting the domain of the function ¢ to
the set of non-negative real numbers, written {z|x > 0}, has the effect of
guaranteeing that each element of the range has only one domain element
assigned to it. Once this is done, g~ is well-defined.

Example 26: Give a rule for the inverse of g under the assumption that the
domain is {z|z > 0}. Give a rule for the inverse of g under the assumption
that the domain of g is {z|z < 0}.

Solution: To find the value of the input z you must take the square root of
the value of g(x). A positive number has two square roots, one positive and
one negative. If we choose the domain {z|x > 0}, then we use the positive
square root for the inverse; if {z|z < 0} we use the negative square root. (If
g(x) = 0, the inverse of g is zero.)

Example 27: Let f = {(0,1),(2,3),(5,1)}. The function f is not one-to-
one, since f(0) = f(5) = 1. If we restrict the domain of f to {0,2}, then
fVis defined: f~' = {(1,0),(3,2)}. If we restrict the domain to {2,5} then
1 ={(1,5),(3,2)}. It is important to state explicitly what the restricted
domain is; this is part of the definition of the function.

Example 28: The relation between the domain and range of a function and
its inverse may be seen most easily by looking at a function given by ordered
pairs: Let f = {(0,1),(2,3),(5,6)}. Then f~! = {(1,0),(3,2),(6,5)}. The
domain of f is {0,2,5} and this is the range of f~!, since inputs and outputs
are interchanged. Similarly, the range of f is {1, 3,6}, and this is the domain
of f=1.

For any f with an inverse f~!, the range of f is the domain of f~!,
and the domain of f is the range of f~!. For the functions with which we
usually work, we determine whether the function is one-to-one by graphical
or algebraic means, and determine how to restrict the domain by the same
methods.

There are a variety of situations in which it is useful to know what input
produced a particular output, and you will encounter situations in calculus
where it is necessary to do this.

For some of the exercises in this chapter you will need to use higher order
roots or fractional exponents. See the algebra pushups if you want to review.



