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Math 161 — Chapter 7
Rational Functions
Rational Functions

7.1 Introduction

We have already developed new functions from old using translations, stretch-
ing, arithmetic operations on functions, composition and inverses. We con-
tinue in this direction, building from polynomials. When we add, subtract
or multiply polynomial functions, we get other polynomial functions. But
when we divide one polynomial by another we get a new type of function
with characteristics that we have not yet seen.

We can compare the situation to that with numbers: we start with natural
numbers (1, 2, 3, , etc.) and perform arithmetic operations on them: +, —, X,
and +. If we add or multiply two natural numbers, the answer is also a
natural number. When we subtract a larger natural number from a smaller,
we get a new kind of number, a negative number. We expand the number
system to include the newcomers. The new system is the set of integers
(...,—3,—-2,-1,0,1,2,3,...). When we divide an integer by another, we
usually do not get an integer; we get a fraction. We expand the number
system to include these. The new system is the set of rational numbers.
However, we can’t expand the system to include all divisions: division by
zero doesn’t work. We don’t divide by zero.

We now consider the type of function we get when we divide one polyno-
mial by another.

7.2 Definition and examples of rational func-
tions

We define an expression which is the quotient of one polynomial by another
as a rational expression, and a function whose formula can be expressed as a
rational expression as a rational function. (As in the case of numbers, here
the term rational comes from the word ratio; we are taking the ratio of two
polynomials.)
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Definition: A rational function r(z) is one that can be written in the form

r(z) = p(z)
q(x)
where p(z) and ¢(z) are polynomials. We do not allow the constant function

y = 0 as a denominator for a rational function. So ¢(z) is not identically
zero (i.e., not always zero).

Y

However, we do allow in the denominator polynomials which have zeroes.
The domain of a rational function is assumed to be all real numbers except
those that make the denominator zero. An important question to consider
when dealing with a particular rational function is what numbers these are.

3
Example 1: r(z) = ; i n
x —

We must exclude from the domain values of z such that 22 — 1 = 0; that is,
we must exclude the value x = % The domain is all real numbers except %;
. 1
i.e., T|T # 5.

Example 2: r(z) =—
We must exclude 0 from the domain.

xg -+ 5(1’,‘2 — Tz + 2
Example 3: r(z) = Ax5 — 34 + 12— 9

The values that must be excluded from the domain are the zeros of 4z —
3z* + 22 — 9 This polynomial does not factor, and we must approximate its
roots using technology. Recall a fifth degree polynomial may have as many
as five roots, and must have at least one. This polynomial has only one root,
approximately 1.3292. Its domain is all real numbers except this one.

3
Example 4: r(z) = fi—i—l
T

Since the polynomial 22 + 1 has no roots, no values need to be excluded
from the domain, and the domain of this rational function is the set of all
real numbers, or (—o00, 00).

t—=9)(t+3)(t—2)
(t+8)(t? — 2t + 3)

Example 5: r(t) =
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Since x + 8 is a factor of the denominator, —8 is a root of it. We must
determine whether the quadratic factor of the denominator has any roots.
Taking the discriminant of (¢ + 8)(¢* — 2t + 3), we find that it does not. So
the domain of this rational function is the set of all real numbers except —8.

Example 6: g(x) =2+ 32 +7

A polynomial is a special case of a rational function, since taking the de-
nominator to be the constant function ¢(z) = 1, we can regard it as

22 +3x+7
glo) =
The domain consists of all real numbers.
1
Example 7: r(r) =8+ -

This is a rational function because it can be put in the form %: we use x

as a common denominator and write

r(z)

_833-1—1
oz

The domain consists of all real numbers except 0.

7.3 Roots and y-intercept of a rational func-
tion

The roots of a rational function in standard from are the roots of its numera-
tor, and finding them is thus a matter of finding the roots of that polynomial.
The y-intercept of a rational function is found as with any function, by sub-
stituting 0 for x. With a rational function, it may happen that doing so gives
a denominator of 0, in which case the function is undefined at zero and does
not have a y-intercept. Example 7 is an illustration of this.
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7.4 The Behavior of a Rational Function as
r — +oo

Recall what we saw with polynomials as x — £oco: the term of highest degree
got so much larger than the other terms that they could be regarded as small
change, and the size of the polynomial was well approximated by the term
of highest degree. This always happens eventually even if the lower-degree
terms have much larger coefficients than the term of highest degree, and
even if the lower-degree terms have coefficients of opposite sign to that of the
highest-degree term.

In the case of rational functions, to see what happens as x — +o0, it is
useful to compare the degree of the polynomial in the denominator to that
of the polynomial in the numerator. There are three cases:

1. The degree of the polynomial in the denominator is larger than the
degree of the polynomial in the numerator

Then as x — 400 the absolute value of the denominator eventually gets

much larger than the numerator in absolute value, so we are looking at

a fraction of the type —7%¢___ The value of such a fraction is close
muchlarger

to zero (like a million over a trillion). So

i r(@) =0

Example 8: Let
z—1

riw) = 2+ 2
The denominator has higher degree than the numerator, and for large
values of z the absolute value of the denominator is therefore larger
than that of the numerator, and the resulting fraction is small. For ex-
ample, 7(10) = 9/102 ~ 0.098, r(100) = 91/10002 ~ 0.009, (1000) =
998/1000002 ~ 0.000998.

2. The degree of the polynomial in the denominator is smaller than the
degree of the one in the numerator.

In this case, as * — 400 the denominator, while it continues to get
large, doesn’t get nearly as large as the numerator. So we are looking
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verylarge
large

at a fraction of the type
(like a trillion/million). So

. The value of such a fraction is large

lim r(z) =+o0
%00
To determine whether the limit of 7(z) as x — 00 is 0o or —oo for any
given r(x), determine the sign of the polynomial in the numerator and
that of the polynomial in the denominator as * — oo to see whether
they have the same or opposite signs. If the signs are the same, the
limit is oo; if not, —oco. Apply the same method when z — +o0.

Example 9: Let

2?2 —1

r(z) = 5o
In this case the numerator has higher degree than the denominator, and
limg_soor(x) = —00, limy_,_oor(x) = 00 A few sample values: r(10) =

99/(—8) = —12.375, r(100) = 9999/(—98) ~ —102, r(1000000) =
999999999999/(—999998) ~ —1000002; r(—10) = 99/(—12) = 8.25,
r(—100) = 9999/102 ~ 98, r(—1000000) = 999999999999,/1000002
999998.

3. If the degrees of the two polynomials are the same, then we again use
the fact that as x — £oo the highest-degree term in each polynomial
eventually gets so much larger than the lower-degree terms that we can
disregard the lower-degree terms. Let’s write out the polynomials in
general form:

p(x)  anZ" 4 ap1 2™+ ap_02" 4 L+ a02? 4+ 412 + ag
q(z) bpx™ + by 1™t 4 by_ox™ 2 + ... + box? + bz + by

r(z) =

Since as x — +oo we can get a good approximation to the size of each
polynomial from its first term alone, we have that

But in the fraction on the right we can cancel the z™’s, and see that
r(z) ~ §. Thus

i r(@) = 52
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Several more examples of the various cases:

. T1? -3z
Example 10: xlgglo o8 = 0

:1:7—6x4+2:1:3—x+4_

Example 11: wlggo R 00
_.8
Example 12: lim = —00

T—00 ,’E?’ -9

4r° — 10002 4+ 0.01z +3 4

Example 13: 1 =
xampre 250 723 + 5000022 — 90z + 14 7
543
Example 14: lim 5 +3 = T 3
T—00 o €

In this case the rational function was converted to standard form. We could
also find this limit by observing that the function is a translation 3 units
up of the function f(z) = 2, which has limit 0 as  — co. This method is
quicker.

7.5 Asymptotes

A horizontal asymptote of a function f(x) is a line (or in fancy cases a curve,
but we ignore this possibility) with the property that, as = or y approaches
+oo the graph of the function gets close to the line but doesn’t intersect it.
The graph of the function appears to run alongside the asymptote, getting
closer all the time but never touching it. We see an example of this with the

function r(z) = —. Since limm_m% = 0, the z-axis is an asymptote to the

T
graph of the function r(z) = I = 0; the further z is from zero, the closer the

graph of the curve gets to the x-axis.
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Graph of 7(z) = 1/z on interval [—8, §]

We will pay particular attention to horizontal and vertical asymptotes. The
graph above has the line y = 0 (i.e. the z-axis) as a horizontal asymptote
because it gets close to the z-axis as = gets large.

When we speak of the graph getting closer to a horizontal asymptote
we mean that as = gets larger the perpendicular distance from (z, f(z)) to
the asymptote gets smaller. This is the vertical distance between the point
and the z-axis, of course, which equals |f(z)| For example, the distance of
r(z) = 1/x from the z-axis for x = 100 is 1/100 — this is the height of the
function value above the z-axis. For larger values of x the distance to the
x-axis is even smaller; the graph is within 1/100 of the z-axis for all = greater
than 100.
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Graph of 7(x) = 1/z on interval [100, 110]
0.012 | | | |
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The distance of a graph from any asymptote is defined similarly. An asymp-
tote may be vertical; for example, as x gets close to 0, the graph of r(z) gets
ever closer to the y-axis. The y-axis is a vertical asymptote of r(z).

Note that asymptotes present a special graphing issue: no matter what
scale we use, before long the graph of the function appears to merge with the
asymptote. This is just a property of the particular graph; in the world of
abstract mathematics the graph never actually touches the asymptote. But it
gets so close in the picture that you can’t see the difference. When sketching
a graph, cut off the sketch before the apparent merging point. When using
a graphing calculator or computer you usually have to play around with the
window to get something suitable.

To find the vertical asymptotes of a rational function, find the zeroes
of its denominator. (These are the values of = that are excluded from the
domain.) Unless such a zero is also a zero of the polynomial in the numerator
(in which case more analysis is needed—this is discussed below) the vertical
line through the zero is a vertical asymptote.

To find the horizontal asymptotes of a rational function, we need to find
the limit of the function as r — 400, as described earlier. If the value of
the rational function approaches a finite number ¢ as £ — oo, the line y = ¢
is a horizontal asymptote to the graph of the function. If the value of the
function approaches oo as * — =00, then the function does not have a
horizontal asymptote.
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Example 15: Find the vertical and horizontal asymptotes, if any, to the

3xr — 2
raph of r(x) = .
graph of r(z) = ———
Solution: The value —4 is not in the domain of the function, and the function
has the vertical asymptote with equation x = —4. The limit of this function

as x — +oo is 3, and the line y = 3 is a horizontal asymptote. The graph of
the function is shown below with its horizontal and vertical asymptotes.

25 | I |
0FH- - ‘ ........... _|
150 ............ / ........... _

T Sy R —

vertical asymptote N :
A0 / ............................... _|

A rational function r(z) = p(z)/q(xz) does not always have a vertical
asymptote at a value of xy for which the denominator ¢(zo) = 0. There is
an asymptote if the denominator is zero at zy and the numerator isn’t. If
the polynomial ¢ of the denominator is zero at g, then, as you may recall
from work with polynomials, (z — xg) is a factor of ¢q. Suppose = — xq is
also a factor of the numerator p(x). If the factor occurs to the same power
in numerator and denominator, then this factor can be canceled out, the
resulting expression is well behaved at © = x4, and r(z) does not have an
asymptote there. It’s just missing a point there because x0 is not in the
domain. (It doesn’t come up often, but if the factor occurs to a higher power
in the denominator than in the numerator, then not all the factors cancel
out, and there is an asymptote.)
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Example 16: Let
f(2) = (x+1)(x 1).

(x —1)(x —2)
The domain of f(x) is all real numbers except 1 and 2. At every point in
its domain, f(z) = (z 4+ 1)/(x — 2). Using this formula at z = 1 we get
f(1) = —2. Since 1 is not in the domain, the graph of f has a point missing
where (1,—2) would be. Note that we don’t add the point back into the
domain — we stick with the original definition of f for this. Also note that
no graphing device is going to show that a point is missing-you have to
realize it for yourself.

7.6 One-sided limits

Recall the function r(z) = (3z — 2)/(x + 4) of Example 15. This function
has an asymptote at x = —4. On the left side (x < —4) r(z) gets very
large as = gets close to —4, and on the right (x > —4) it gets very large in
absolute value, but negative. In order to describe the situation we introduce
the following notation.

Definition: If f(z) gets large without bound as z gets close to xy with z to
the left of x5 , we write

lim f(z) = oo.
TTo
This is read “the limit of f(x) as z approaches zy from the left is positive
infinity.” The minus sign above and to the right of x4 indicates x approaches
xo from values slightly less than z,. Similarly, if f(z) gets large in absolute
value, but negative as x gets close to xy and x is to the left of xy , we write:
lim f(x) = —oc.
TTy
If x approaches zy from the right instead of the left, and f(z) gets large
without bound, we write
lim f(z) = oo,
z—xd

and if f(z) gets large in absolute value, but negative

lim f(z) = —o0.
z—ad



Chapter 7 — Information 11

Example 17: For the function r(z) = (3z — 2)/(z + 4),

lim r(z) = 400 and lim r(z) = —oc0
z—4~ z—4t

Definition: A value x at which a rational function r gets large without
bound in absolute value is called a pole. Thus a pole is a value of x at which
the function has a vertical asymptote.

7.7 Graphs of rational functions

The graphs below illustrate some of the variety that occurs in rational func-
tions.
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Graph of k(z) = 22;21
T
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