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In an accelerated exclusion process (AEP), each particle can “hop” to its adjacent site if empty as well as
“kick” the frontmost particle when joining a cluster of size � � �max. With various choices of the interaction
range, �max, we find that the steady state of AEP can be found in a homogeneous phase with augmented currents
(AC) or a segregated phase with holes moving at unit velocity (UV). Here we present a detailed study on the
emergence of the novel phases, from two perspectives: the AEP and a mass transport process (MTP). In the latter
picture, the system in the UV phase is composed of a condensate in coexistence with a fluid, while the transition
from AC to UV can be regarded as condensation. Using Monte Carlo simulations, exact results for special cases,
and analytic methods in a mean field approach (within the MTP), we focus on steady state currents and cluster
sizes. Excellent agreement between data and theory is found, providing an insightful picture for understanding
this model system.
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I. INTRODUCTION

Unraveling rich behaviors emerging from simple ingredi-
ents in systems driven far from equilibrium is a continuous
pursuit in theoretical physics. Nontrivial flux of physical
quantities, or current, captures the macroscopic feature of the
complex system and is often closely governed by the intrinsic
dynamics. There are numerous examples where the steady
state current depends sensitively on the constituents in the
system through both long-range and short-range interactions
such as queueing in traffic and pedestrians [1], transport of
biomolecules [2–5], and minerals [6].

One of the venerable models, the totally asymmetric
simple exclusion process (TASEP), not only provides many
interesting mathematically exact results of nonequilibrium
statistical mechanics [7–11], it also brings insights to poten-
tially important applications in, for example, protein synthesis
[12–15] and regulating vehicular traffic [16]. Closely related is
the zero-range process (ZRP) in which particles hop between
sites with rates determined by the origin site occupancy.
The mapping between ZRP and an ordinary TASEP proved
illuminating in our later discussions. ZRP also finds its
versatility in studying granular materials as well as phase
separation in one-dimensional systems [17].

We introduced a new variant of TASEP recently [18], the
“accelerated exclusion process” (AEP), motivated by the coop-
eration between RNA polymerase (RNAP) molecules during
transcription [3,4]. An RNAP that moves along DNA and
copies genetic information into messenger RNA is accelerated
by the presence of a trailing RNAP that prevents the first RNAP
from entering alternative kinetic pathways such as pausing and
backtracking. An earlier study incorporated the pausing and
backtracking aspects in an exclusion process [14]. Facilitated
motion is, however, a general feature that may also be present
in other systems such as tailgating in vehicular traffic. We
focus on AEP in this article to provide a simple (minimal)

model for such facilitated motion as well as to highlight the
surprising rich behaviors it brings about.

Violating detailed balance, AEP is nonequilibrium in nature
and involves a few surprising phenomena. Let us briefly
recapitulate the dynamic rules of TASEP before turning to
the novel features of AEP: In each update attempt of TASEP,
a particle in a discrete one-dimensional (1D) lattice of L

sites is chosen at random to hop into its neighboring site
(provided that is vacant) with rate γ (typically chosen as
unity). Both periodic and open boundary conditions (particles
enter and exit with rates α and β, respectively) have been
studied extensively [7–11]. The nonequilibrium steady states
of an ordinary TASEP are well understood. For example, the
current-density relationship is given by JTASEP = ρ(1 − ρ), in
the thermodynamic limit.

In the AEP with periodic boundary condition, N particles
are placed in a ring of L sites and follow the same rules
as in TASEP. In addition, when a particle hops to a cluster
of particles of size � � �max, it simultaneously “kicks” the
frontmost particle of that cluster one site forward. There is no
avalanche, as the “kicked” particle does not trigger another
kick. When �max = 0, AEP reduces to an ordinary TASEP. A
schematic of AEP is shown in Fig. 1(a).

In this article, we focus our attention on the nonequilibrium
steady states of this AEP and explore the interplay among the
overall density ρ ≡ N/L, �max, and current J (ρ; �max). Due
to “kicking,” a number of novel features arise in the AEP.
Given that the contribution to the current can be either 1 (a
hop) or 2 (a hop and a kick) [18], the system is naturally
expected to display an augmented current (AC). In this state,
the system is homogeneous, and we may anticipate that JAC

lies between JTASEP and 2 × JTASEP. It is intriguing that, at high
densities (ρ > 1/2), JAC can exceed 2 × JTASEP. Meanwhile,
for low densities, the kicking action results in “facilitated”
or “cooperative motion” [19–21], where the average velocity
of the particles, v, can be increased by adding particles
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FIG. 1. (Color online) (a) AEP with �max = 4. A particle can
hop (hollow arrows) to its unoccupied right neighboring site and kick
(gray arrow) a second particle when joining a cluster of size � � �max.
(b) Mapping AEP in (a) to MTP. The ball in stack 3, if chosen, lands
immediately in stack 5 (hop and kick), while the one in stack 1 lands
in stack 2 (hop).

to the system. Clearly absent in the ordinary TASEP, this
phenomenon can be characterized by ∂ρv > 0 or a positive
curvature in J : ∂2

ρJ > 0 [19–21]. Furthermore, for moderate
values of �max and at high densities, the system exhibits an
inhomogeneous state in which the particles “condense” into
a macroscopic, “solid” cluster, in coexistence with a “fluid”
of density ∼1/2. Surprisingly, the (average) current is just
1 − ρ = H/L, where H is the number of holes in the system.
Thus, the fluid can be regarded as a loosely bound set of holes,
moving together with unit velocity (UV). These two different
states of the system will be referred to as the AC and the UV
phases, respectively. As the overall density ρ is increased with
fixed �max, we observe a discontinuous jump in J (ρ; �max),
from a nontrivial JAC(ρ) to the simple JUV = 1 − ρ. Our goal
is to understand these remarkable phenomena.

Although AEP is originally cast in the language of an
exclusion process, both the intuitive picture and the analysis
for predicting the aforementioned features turn out to be
much easier when viewed in an equivalent representation,
the mass transport process (MTP). In the next section, we
present a detailed description of the AEP-MTP mapping,
which is a simple generalization of the TASEP-ZRP mapping.
In this setting, the exact master equation can be easily written.
Following a brief summary of simulation results in Sec. III,
we provide theoretical considerations for the properties of AC
and UV phases in Secs. IV and V, respectively. In Sec. VI,
we venture a phase diagram for this system. We conclude and
provide an outlook for further quests in Sec. VII.

II. ACCELERATED EXCLUSION AS A MASS
TRANSPORT PROCESS

Regarded as particles traversing a 1D ring, AEP allows
particle to move only when it is adjacent to a hole. The
configuration of the system, C, can be characterized by the
set of site occupancies, {ni},i = 1, . . . ,L, with n being 0 or 1.
Alternatively and more conveniently, AEP can be formulated
as a mass transport process (MTP) [22] in which we regard

the particles in front of each hole as “balls” stored in a
“stack.” Each hole in AEP becomes a stack in MTP, labeled by
α = 1 . . . H . The �α balls in stack α correspond to the cluster
of particles between the αth and (α + 1)−th hole. Each stack
may be occupied by any number of (indistinguishable) balls:
�α = 0,1, . . . ,N . An equivalent specification of C can thus be
the set {�α} instead.

The mapping from AEP in Fig. 1(a) to MTP is shown
in Fig. 1(b). The dynamic rules of AEP thus become: In each
update attempt, a random stack α is chosen. If it is empty (�α =
0), another attempt is made. Otherwise, one of the balls in the
chosen stack hops to the next stack and if �α+1 ∈ [1,�max], the
ball takes a second hop immediately, landing in stack (α + 2).
For instance, the “hop and kick” scenario in Fig. 1(a) becomes
a hop from stack 3 to 5 in Fig. 1(b). When �max = 0, it returns
to an ordinary TASEP.

Clearly, N = �α�α is conserved. These rules are summa-
rized in the master equation for P (C; t) in Eq. (1). One of the
advantages of MTP representation is that {�α} provides directly
the cluster size distribution in the AEP, a measure which we
can use to characterize the AC and UV phases quantitatively.

The only nontrivial aspect of this mapping is J , the overall
particle current. In each update attempt, a random site is chosen
for AEP, while in MTP is a stack. Thus, the time scale differs
by a factor of H/L. In particular, if we compute the average
number of particle movements in MTP, it must be multiplied
by H/L = 1 − ρ when compared to J in AEP.

We proceed to formulating the dynamic rules as a master
equation. To facilitate this task, we define the characteristic
functions

χ (�) ≡ 1 if � ∈ [1, �max] ; 0 otherwise,

χ (�) ≡ 1 − χ (�).

Note that �max is an implicit parameter in these functions. The
master equation governing the evolution of P (C; t), namely,
the probability to find the system in configuration C = {�a} in
t attempts after some initial configuration, for H > 2 is

P (C ′; t + 1) =
∑
C

1

H

H∑
α=1

P (C; t)

×
⎡
⎣ ∏

β �=α,α+1,α+2

δ(�′
β,�β)

⎤
⎦ δ(�′

α,�α − 1)

×{δ(�′
α+1,�α+1)δ(�′

α+2,�α+2 + 1)χ (�α+1)

+ δ(�′
α+1,�α+1 + 1)δ(�′

α+2,�α+2)χ(�α+1)}.
(1)

Here δ is the Kronecker delta. For H = 1, there is just one
stack in MTP, leaving AEP trivial. For H = 2, the problem is
easily solvable and hints at the significant role of �max. The
next case (H = 3) is the first nontrivial one, and the exact
solution in the L → ∞,�max → ∞ limit provides valuable
insight into the UV phase. We show the details of H = 2 and
3 in Appendices A and B.

The configuration space {�α} consists of the lattice points
in an (H − 1)-dimensional hyper-tetrahedron. The easiest
way to visualize this is its standard embedding in H

dimension, i.e., a (linear) space joining the following H
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points: (N,0, . . . ,0), . . . ,(0, . . . ,0,N ). For H = 3 and 4, the
configuration space is just an equilateral triangle and the
standard regular tetrahedron, respectively.

In general, this dynamics does not obey detailed balance,
so that finding an explicit stationary distribution, P ∗ (C), is
not simple [23,24]. To have some understanding of the system
behavior, we will exploit the approximation schemes presented
below, before which let us comment briefly on some general
properties of our system.

Two extreme cases are noteworthy. One is �max = 0, which
is simply the ordinary TASEP. Dropping the χ term, Eq. (1)
reduces to

PTASEP(C ′; t + 1) =
∑
C

1

H

H∑
α=1

PTASEP(C; t)δ(�′
α,�α − 1)

× δ(�′
α+1,�α+1 + 1)

∏
β �=α,α+1

δ(�′
β,�β).

(2)

Though this dynamics also violates detailed balance, it
does satisfy the “pairwise balance” condition [7], so that
P ∗

TASEP (C) ∝ 1. The opposite extreme is �max → ∞, or simply
�max > L or N . χ (�) reduces to δ (�) so that {. . . } in Eq. (1)
becomes

{δ(�′
α+1,�α+1)δ(�′

α+2,�α+2 + 1)δ(�α+1,0)

+ δ(�′
α+1,�α+1 + 1)δ(�′

α+2,�α+2)δ(�α+1,0)}, (3)

where δ ≡ 1 − δ. This important limit exemplifies the AC
phase and will be examined more closely below.

Returning to the general case, one can compute the average
of any quantityQ in the stationary state assuming P ∗ is known:

〈Q〉 ≡
∑

QP ∗,

where the sum is taken over {ni} or {�α}, whichever is more
convenient. In particular, the average particle current in steady
state is given by

J (ρ; �max) = 〈n1 (1 − n2) (1 + n3)〉

−
〈
n1 (1 − n2)

�max∏
m=0

n3+m

〉

= (1 − ρ)〈δ(�1,0)[1 + χ (�2)]〉. (4)

Note that we have invoked translational invariance of P ∗ in
writing these expressions. If the reader is concerned that this
invariance may be (spontaneously) broken, as in the UV phase,
then J = ∑

{n}〈. . . 〉/L = ∑
{�}〈. . . 〉/H may be used instead.

Also, the second line is the result of having one (two) hop(s)
for a particle-hole-hole(particle-hole-particle) triplet. In MTP,
whenever stack 1 is chosen, a ball will hop, with an additional
hop if the target stack has the requisite number of balls.

III. SIMULATION RESULTS

We exploit the random sequential updating scheme and
simulate AEP with a typical lattice of L = 1000. Initializing
the system with N particles on successive lattice sites, we
make N attempts to update in every Monte Carlo step (MCS)
so that each particle has on average one chance to hop. The
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FIG. 2. (Color online) Comparison among JAC from Monte Carlo
simulation, JTASEP, 2JTASEP, a naı̈ve mean field approximation, and an
improved mean field approximation through MTP (MTP-MF). The
result from MTP-MF in Eq. (11) (blue solid line) provides remarkable
agreement with the simulation.

contribution to the current from both hops and kicks are
instantly accounted for. The typical length of our simulations is
τ = 5 × 105 MCS. We start data collection after 2 × 105 MCS
to ensure that the system has reached steady state, and all
measurements are averaged over 3 × 105 MCS thereafter
unless otherwise specified.

First, let us examine the AC phase. We note that not only
is J always larger than JTASEP except at ρ = 0 and 1, it
even surpasses 2JTASEP when ρ > 1/2, as shown in Fig. 2.
The simulation (red circles) is for �max = 1000 and thus all
hops lead to kicks. The system is always in the AC phase
regardless of the density, which may lead one to believe that
JAC should be close to 2JTASEP = 2ρ (1 − ρ), since a typical
particle will hop two sites instead of just one. This rough
estimate is reasonably good for high densities, as Fig. 2 (black
dot-dash line) indicates. Using the most naı̈ve mean field
approximation, we can start from the exact expression Eq. (4)
and let �max → ∞. This leads us to ρ(1 − ρ2). Surprisingly,
this provides a much poorer overall picture (blue dotted line
in Figs. 2 and 3). Furthermore, there is some inflection at low
density where the curvature of JAC(ρ) is positive, indicating
an “accelerated region.” This is illustrated in Fig. 3.

-8
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 0  0.5  1

ρ

∂ ρ
2 J

MC sim.
naive MF
MTP MF

FIG. 3. (Color online) Curvature of J (ρ) from simulation (cir-
cles), a naı̈ve mean field approximation (blue dotted line), and
MTP-MF (blue solid line).
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FIG. 4. (Color online) Transition from AC to UV for �max = 20
(red circles), 100 (green squares), and 500 (yellow triangles).

Utilizing the MTP picture, we provide a mean field theory
(MTP-MF) in Sec. IV to describe the AC phase, which yields
exceptional agreement with simulation data, shown in solid
blue line in Figs. 2 and 3. This approach leads to a remarkably
good description of all phenomena presented here. Moreover,
it provides a viable explanation for why the estimate ρ(1 − ρ2)
fails. The details are presented in Sec. IV.

The emergence of the UV phase depends on the appropriate
choice of �max. In all of our simulations where L = 1000,
there exists a UV phase for 10 � �max � 950. We show a few
typical �max’s in Fig. 4. When the system enters UV, J becomes
independent of �max and is simply (1 − ρ), indicating the holes
are moving at average speed 1. It is therefore both more
effective and illuminating to switch to the reference frame
of moving holes: Starting from a full system with one giant
cluster of particles, i.e., H = 0, as more and more holes are
injected to the system, we find the system settles into a cluster
of particles in one part and a half-filled region in the other part
of the system. Exploiting both AEP and MTP frameworks, we
explicate the emergence of such “phase separation” in Sec. V.

IV. AUGMENTED CURRENT PHASE:
MEAN FIELD DESCRIPTION

In this section, we focus on the stationary state of the AC
branch, in which the system is homogeneous and the density
profile is just ρ. Now, if we let �max > L, then the system be in
AC for all ρ. In the MTP representation, the rule is especially
straightforward: Every hop into an occupied stack makes a
further hop. Thus, the probability that a stack is occupied,

f ≡ 〈δ(�1,0)〉,
will play a central role. Further, we find it useful to study the
more detailed distribution

P ∗(�) ≡ 〈δ(�,�1)〉,
i.e., the probability that a stack contains precisely � particles.
Of course, f = ∑

�>0 P ∗ (�) implies

1 − f = P ∗(0). (5)

A. Steady state occupations

Although it is not possible to derive an exact master
equation for P (�; t) ≡ ∑

δ (�,�1) P (C; t) from Eq. (1), we

will exploit a mean field approach to find P ∗ (�). To maintain
a steady state, a given stack must gain and lose a ball with
equal probability in any attempt. In other words, we can find
P ∗ by balancing the average rates of gain and loss.

Clearly, an occupied stack loses a ball with a unit rate.
Meanwhile, the stack can gain one ball (i.e., � − 1 → �) if
both stacks upstream are occupied. Injecting the mean field
approximation, we estimate this condition by f 2. If the chosen
stack is empty, there is an additional way it can gain, from its
immediate upstream neighbor if occupied. Thus, the balance
equations read:

(f 2 + f )P ∗(0) = P ∗(1)

f 2P ∗ (�) = P ∗ (� + 1) ; � > 0.

Strictly, we should account for the upper limit � � N . If we ne-
glect such finite size size effects, the normalization constraint
is �∞

�=0P
∗ (�) = 1, leading us to an explicit expression for the

stationary distribution:

P ∗ (� > 0) = (1 + f ) f 2�−1P ∗ (0) , (6)

P ∗ (0) = 1 − f. (7)

Note that Eq. (7) is entirely consistent with Eq. (5).
Next, let us relate f to the density ρ. Computing 〈�〉 is

straightforward: f/(1 − f 2). But this average occupation must
be N/H = ρ/(1 − ρ), leading to

f 2 + H

N
f = 1. (8)

Instead of a cumbersome algebraic expression for f (ρ), let us
define η by

sinh η ≡ H

2N
= 1 − ρ

2ρ
(9)

and recognize (1 − f 2)/f = f −1 − f , so that

f = e−η (10)

or explicitly, f = exp{− sinh−1 1−ρ

2ρ
} [26]. Not surprisingly, f

is a monotonically increasing function of ρ.
In the next subsection, we exploit these results to find the

current-density relationship and explore some consequences.

B. Currents and velocities

In MTP, an occupied stack (f > 0) contributes one (or
two) hop depending on whether the next stack is empty
(or occupied), the probability of which is associated with
(1 − f ) (or f ). Within our approximate scheme, the total
contribution is f [(1 − f ) + 2f ] = f (1 + f ). Together with
the H/L factor to scale from MTP to AEP, we conclude that
the mean field approximation for the particle current is

J MTP-MF
AC (ρ) = (1 − ρ)f (1 + f ). (11)

This simple approximation provides an excellent prediction,
with no fit parameters. The solid blues line in Figs. 2 and 3
show its remarkable agreement with our simulation data.

Recall ρ(1 − ρ2), the “naı̈ve mean field approximation” for
J (ρ), which is far from simulation data (see Fig. 2 except near
ρ = 0,1). What is the difference between the two approaches:
that one performs so much better? Comparing Eq. (11) with
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ρ(1 − ρ2), we see the difference to be simply f (1 + f ) instead
of ρ (1 + ρ). Since f is an estimate of the probability of
successive holes not being nearest neighbors, the failure of
ρ here implies that it underestimates much of the clustering
of the particles. The remedy provided by MTP can be cast as
a simple and intuitive picture, for which we coin the phrase
“abhorrence of empty stacks.” Since an empty stack can be
filled by hops from two (upstream) stacks, it is far less likely
to remain empty, compared to the situation in the ordinary
TASEP. It is easy to check that f − ρ is positive for ρ ∈ (0,1)
and peaks at ∼0.12 (around ρ ∼ 0.57). In other words, f is
more successful at accounting for the scarcity of empty stacks,
consecutive holes in AEP language (at moderate densities).

Now let us consider “velocity.” There are two notions of
velocity associated with J (ρ). One is the average particle ve-
locity, v = J/ρ. From Eq. (11), we obtain a simple expression:

vMTP-MF = J/ρ = (1 − f 2)(1 + f ). (12)

Since particles never hop backwards, this v is necessarily
positive, approaching 1 (or 0) in the limit ρ → 0 (or 1).

The other notion of velocity is ∂ρJ . Similar to the group
velocity for waves, ∂ρJ is sensitive to collective behavior
such as the motion of fluctuations or disturbances. Thus, it
is negative at high densities, corresponding to holes moving
“backwards” (the simplest case being the single-hole system).
An unusual and notable feature of AEP is “cooperative motion”
[19–21]. In an ordinary TASEP, adding a particle to the system
always reduces both v and ∂ρJ . In AEP, by contrast, there
is a regime in which particles “cooperate” and move faster
when more are present: Namely, both ∂ρv and ∂2

ρJ can be
positive. Both simulation data and ∂f vMTP-MF = (1 + f )(1 −
3f ) display such a regime. Similarly, this behavior is also
present in ∂2

ρJ , studied in Refs. [19–21] and easily discerned
as curvature shown in Fig. 3. Given the agreement in Fig. 2, it is
not surprising that the MTP-MF is also successful at predicting
the phenomenon of cooperative motion.

Additionally, let us comment on two other features associ-
ated with the current J MTP-MF

AC (ρ). It is clear from Eq. (8) that,
at ρ = 0.5, we have N = H and so f (1 + f ) = 1. Inserting
this result into Eq. (11), we conclude that J MTP-MF

AC (0.5) = 0.5.
This is larger than simulation data by about 1%, a difference
which may be attributed to either statistical errors in the data
or MTP-MF’s failure to capture certain correlations. Since
our system does not obey explicit particle-hole symmetry, it
is unclear if J = 0.5 is merely a curious coincidence or an
indication of some hidden symmetry. Of course, this is the
“maximal” value of 2JTASEP, but again, this coincidence may
also be accidental. Finally, we note that both the data and
J MTP-MF

AC exceed 2JTASEP for much of ρ > 1/2, both peaking
around ρ ∼= 0.54. Apart from the mathematical analysis, we
have not developed a good intuitive picture for explaining these
observations.

C. Cluster size distribution

Exploiting the MTP-MF further, we can compare the result
in Eq. (6) with measurements of the cluster size distribution
(CSD). In Fig. 5 we show simulation data for N = 600 and
900, both with �max = 1000. It is clear that the distributions
are consistent with exponentials. Further, if we construct ratios

10-6
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10-2

100

 0  50  100

pr
ob
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il

it
y

cluster size

N = 600
N = 900

FIG. 5. (Color online) Cluster size distributions in AC phase.
�max = L = 1000 with N = 600 (magenta diamond) and 900 (black
triangle), respectively. Theoretical predictions are not shown explic-
itly for clarity. The agreement between them and data are comparable
to those in Figs. 2 and 3.

of the successive values, we find the average over a range
(where the scatter of the data is small) to be 0.556 and
0.895, respectively. For comparison, using Eqs. (9) and (10)
to compute f 2, we find the values being 0.519 and 0.895,
respectively. Another point for comparison is P ∗ (0), for which
the simulation data provide 0.291 and 0.0582 versus 0.279
and 0.0540 from Eqs. (7), (9), and (10), respectively. Such
agreement leads us to conclude that the MTP-MF approach
indeed captures the essence of the AC phase.

V. UNIT VELOCITY PHASE: PERSPECTIVES
FROM BOTH AEP AND MTP

In this section, we focus on the UV branch, in which
the system is inhomogeneous and exhibits an approximately
half-filled region in coexistence with a fully occupied domain.
The presence of this phase depends crucially on having a
moderate �max. The most remarkable feature of this phase is
that the average particle current is exactly (1 − ρ) [18], shown
in Fig. 4. In other words, the average speed of the holes (or the
“disturbances”) is precisely 1, independentof particles being
added to, or removed from, the system (until a phase boundary
is reached). In both AEP and MTP representations, there exist
simple descriptions which provide an intuitive and appealing
picture for why such an unusual state can persist. The following
subsections are devoted to each of these perspectives. Before
presenting the details, note that such a state spontaneously
breaks the translational symmetry underpinning the dynamics.
Interestingly, this broken symmetry is manifested in slightly
different forms in the two representations. We will comment
on this difference in each of the subsections below.

A. A “hole train” in AEP

In the language of the original exclusion process, this phase
is best understood if we focus on how the holes move. When
we choose the particle at site k − 1 and find that it can hop to a
hole at site k, we can regard this process as choosing the hole
and exchanging it with the partner particle. Next, we should
ask if there is a (particle) cluster of length � occupying the sites
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from k + 1 on. When � ∈ [1,�max], we also move the hole at
k + � + 1 to k + �. In other words, when a hole moves, it will
pull the next hole (“downstream”), provided the gap between
them lies in [1,�max]. We should remind the reader that the
second hole does not pull a third one.

Since this phase is present only in the high-density regime,
it is natural to first consider systems with the lowest values
of H . These provide us the necessary picture to understand
the existence of a UV phase. A system with a single
hole evolves trivially: The hole “swims upstream” with unit
average velocity, since every attempt to move it is successful.
The H = 2 case is somewhat more interesting. Deferring the
details to Appendix A, we state the principal results here. It is
straightforward to enumerate, for any L and �max, all possible
stationary states, through which the important role played by
�max is revealed. Most significantly, for moderate �max/L, the
two holes form a tightly bound pair. To be precise, the gap
between them can be either 0 or 1, with equal probability. Let
us emphasize that this is an absorbing state. Starting with any
initial separation, the two holes will eventually drift together,
form the bound state, and never become unbound thereafter.
Since the “leading” hole always moves when it is chosen, the
pair moves with unit average velocity.

The first nontrivial case is H = 3. For a finite system
with arbitrary �max, an exact solution is not yet available.
Nevertheless, we can gain some insight into the UV behavior
through an exact result in the limit L → ∞ followed by
�max → ∞ (details in Appendix B). Here, the leading pair
remains tightly bound, as the third hole cannot affect the
leading hole. Denoting the gap between the second and the
third hole by m, we know that the third hole can trail behind
the second by m � 0, so that the complete description of the
system lies in the following probabilities. Let p0,1 (m) be the
probability that the gap between the first hole pair is 0 or 1,
with the third hole trailing by m sites. We illustrate examples
of p0 (5) and p1 (4) in Fig. 6. As shown in Appendix B, we
find (apart from m = 0,1)

p0,1 (m) ∝ ζm, (13)

where ζ = 2 − √
2 ∼= 0.586. In other words, the third hole is

“loosely” bound, with an exponential tail of a characteristic
length μ ≡ −1/ (ln ζ ) ∼= 1.87. The intuitive picture is clear:
The first pair advances with UV, with the third hole being
“pulled along,” at a typical distance μ behind the second. It is
natural to label such a triplet a “hole train” with the first pair
being the “engine” [18].

FIG. 6. (Color online) Sketch of a “hole train” with H = 3:
(a) Two leading holes are consecutive with the third trailing by m = 5.
The probability of this scenario is denoted as p0(5). (b) Two leading
holes have one particle in between, with the third trailing by m = 4,
denoted as p1(5).

Continuing this line of thought, we see that, in the limit
posed above, the first pair will always form an “engine” which
advances with UV, unaffected by how many holes trail behind
them. While we do not have exact solutions for the general
case, we can argue why the holes should be bound and the
image of a train is quite reasonable. In particular, consider
the last hole, the “caboose” in the parlance of freight trains,
and the penultimate hole, which we will refer to as “X.” If X is
chosen and moves, it will pull the caboose along (provided the
gap in between is nonzero). The gap remains the same. On the
other hand, if the caboose moves, the gap decreases. Only when
X is pulled along by the hole upstream from it does the gap
increase. Although these considerations appear to imply that
the gap between penultimate and final holes performs a typical
random walk, we point out that the entire train length does not
increase even when this gap increases. Thus, we argue that
this mechanism can “hold the train together.” Accepting this
scenario, we see that adding or removing holes to the system
merely changes the total length of the train. Meanwhile, since
the engine advances with UV, the whole train also moves as
such, leading to an H -independent velocity. In the following
section, we present a more tenable and quantitative argument
for the existence of this hole train, as well as an estimate of its
average density (∼0.5) in the language of MTP.

Before proceeding, let us comment on two other aspects
of the AEP perspective. First, although a typical snapshot
of our system clearly violates translational invariance, this
symmetry is restored quite quickly (O (L) MCS) since the
hole train moves at UV. To be precise, if we measure the
occupation at a specific site, it will settle at ρ within such
times. If, on the other hand, we tag a particular hole and
measure the occupation in one of its nearest neighbor sites,
then the results will expose the inhomogeneity inherent in the
system. Restoration of the symmetry (in finite systems) would
take much longer than O (L) MCS, a subject well beyond
the scope of this work. Second, in a finite periodiclattice, the
average distance between the caboose and the engine, �, is
finite. For systems with � � �max, the caboose does not affect
the (lead hole in the) engine. Thus, the integrity of the engine
remains intact and moves the entire train with UV. As holes are
added or removed, � becomes smaller or larger, respectively.
When enough holes are added, or if �max is raised, then � can
approach �max, the caboose can destroy the engine, and the train
can become unbound. In a nutshell, this is the mechanism for
the transition from UV to AC, as the overall density is lowered
(e.g., Fig. 4). We will return to this picture in Sec. VI.

B. Condensation in MTP

As for the AC phase, the MTP representation provides us
with a more quantitative picture. The solid particle cluster
plays the role of the condensate in nontrivial ZRP’s. With a
finite (and small enough) �max, it is possible for one stack
to contain more balls than �max. Such a stack can gain balls
in two possible ways, much like how an empty stack can
be filled above. Meanwhile all stacks can lose a ball in just
one way. Thus, the number in this stack will grow, until a
steady state is reached. It is natural to refer to this behavior as
“condensation” and this stack (or the balls in this stack) as the
“condensate.” To make contact with the previous subsection,
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note that there are � balls in the condensate stack. Needless
to say, each of the remaining H − 1 stacks is likely to hold
very few balls. In the language of ZRP, the state of the other
stacks is referred to as “a fluid.” Here, we recognize them
as the hole train. Further, this picture allows us to appreciate
better why the hole train remains bound. First, the train length
is monotonically related to the fluid density, becoming longer
or shorter when the condensate loses or gains balls. Second,
the only way to redress the imbalance (two gains vs one loss)
for the condensate is when the fluid density remains relatively
low, i.e., a set of stacks with few balls in each. This scenario
corresponds to a bound train.

Turning to a more quantitative description of the steady
state, we denote the occupation probability within the train by
ftrain. A good estimate for it comes from the balance of the
gain or loss contributions from the condensate, namely,

ftrain + f 2
train = 1. (14)

The predicted value, ftrain = (
√

5 − 1)/2, is not very illumi-
nating. Instead, by comparing with Eq. (8), we find a more
insightful relation:

Htrain = Ntrain, (15)

namely, ρtrain = 0.5, implying a train length is 2Htrain. This
result also indicates that the typical distance from one hole to
the next in the train is around 2, a picture entirely consistent
with the result μ ∼ 2 in the H = 3 case.

Meanwhile, since the train consists of H − 1 stacks, we
arrive at Htrain

∼= H . Further, we have Ntrain + � = N = L −
H so that the size of the condensate is given by

� ∼= L − 2H = L (2ρ − 1) . (16)

All these predictions are borne out relatively well in
simulations. For example, in Fig. 7, we show the CSDs for
N = 600 and 900 with �max = 100. Clearly, the condensate
sizes are seen to fluctuate around 200 and 800 respectively,
as predicted by Eq. (16). The properties of the fluid or hole
train, as revealed by the small clusters not shown in Fig. 7,
are essentially the same in both cases. For small clusters the
distribution indeed decays exponentially, with ratios of the
successive values being 0.406 and 0.412, respectively. These
are somewhat higher than f 2

train
∼= 0.382. Given that our theory

is based on a mean field approximation, we speculate that the
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FIG. 7. (Color online) Cluster size distributions in UV phase.
�max = 100, L = 1000. Circles are simulation data, and the solid line
is the result from MTP-MF. (a) N = 600. (b) N = 900.

difference are due to nontrivial correlations, the study of which
is beyond the scope of this work.

So far, the analysis is focused on the average behavior of
the fluid and the condensate. Since our approach considers the
single-stack occupation, we can apply it to the condensate
and exploit a self-consistent way to predict P ∗

con (�), the
probability for the condensate to have � balls in the steady
state. Note that, unlike �, � is a variable here. In such a
configuration, the fluid has only N − � balls, which allows
us to estimate f̃ (the occupation probability of a stack in the
fluid) as a function of �. Using Eqs. (9) and (10), we find
f̃ (�) = exp{− sinh−1 H−1

2(N−�) } while f̃ (�) is just ftrain. We

can now use f̃ to estimate the rate at which the fluid supplies a
ball to the condensate, namely, f̃ 2 + f̃ . Denoting this rate by

g (�) ≡ f̃ 2 + f̃ , (17)

we find an expression similar to Eq. (6),

g (�) P ∗
con (�) = P ∗

con (� + 1) , (18)

since the condensate loses at unit rate. It is straightforward to
check that g (�) is a monotonically decreasing function and
is unity at � = �. Thus, P ∗

con (� + 1) = P ∗
con (�) ≡ P̂ are

the peak values of the distribution and can be conveniently
used to start the recursive evaluation of two sequences:
P ∗

con (� + 1 + k) and P ∗
con (� − k) with k > 0. Furthermore,

even though g appears to depend on both control parameters
(H,N ), it actually is a function of a single (shifted and scaled)
variable

ξ ≡ � − �

H − 1
= � − N + H

H − 1
. (19)

For completeness, we provide the explicit expression:

g (�; H,N ) = 1 − ξ

1 − ξ
exp

{
− sinh−1 1

2(1 − ξ )

}
. (20)

Now, we can express ln P ∗
con as a sum over ln g :

ln P ∗
con (� + 1 + k) = ln P̂ −

∑
ln g (ξ ) , (21)

ln P ∗
con (� − k) = ln P̂ +

∑
ln g (ξ ) , (22)

where the sums run over ξ being integer multiples of
1/ (H − 1), up to ±k. Although we cannot evaluate this sum,
we can extract its properties for large H and k of O (1) (i.e.,
small ξ ). To leading order, the resultant ln P ∗

con is a function
of k2/H . In other words, the condensate size distribution (at
this level of approximation) is universal in the following sense:
Although its explicit dependence is P ∗

con (�; N,H ), it can be
cast in scaling form, P ∗

con ∝ � (x), where � is a universal
function of the scaled variable

x ≡ � − N + H√
H

. (23)

Such behavior is similar to Gaussian distributions, which are
universal apart from a displacement and a rescaling. A detailed
study of � is in progress and will be reported elsewhere. Here,
let us present the numerical results from Eqs. (21) and (22) for
the cases above. The agreement with the two data sets are again
remarkably good (Fig. 7). We note the slight discrepancies in
the � = 200 case and believe that they are the consequences
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of the fluid section being longer (H being 400 instead
of 100). Surely, for systems with larger fluid components,
the fluctuations therein will be more serious. Obviously a
careful study and analysis of such fluctuations and correlations
will be necessary if the goal is to go beyond mean field
theory.

To summarize, we see that a quantitatively coherent
picture of the hole train emerges when viewed in the MTP
representation. Here, the hole train corresponds to the fluid,
while the solid cluster in the rest of the lattice corresponds
to the condensate. Translational symmetry in the MTP is
spontaneously broken, as the condensate resides in one of the
H stacks. However, unlike in the AEP picture, this condensate
does not move with UV from stack to stack. Symmetry
restoration must proceed by evaporation and recondensation.
Such a process is expected to take considerably longer than
the O (L) MCS in the AEP representation, while its detailed
nature is being investigated [25]. The results here allow
us to take the thermodynamics limit: L,N,H,�max → ∞
with finite

ρ = N/L; λ = �max/L. (24)

Provided λ < 2ρ − 1, it is possible for a hole train to form,
occupying a finite fraction (2 − 2ρ) of the ring. The gap
between the engine and the caboose, corresponding to the
size of the condensate, fills the remaining fraction: 2ρ − 1.
This result clearly implies that the UV phase cannot exist for
ρ < 1/2.

VI. TRANSITIONS BETWEEN AC AND UV

In this section, let us consider the transition between the
two phases and map out a phase diagram in the ρ − �max

plane. First, note that the thermodynamic limit cannot be
studied rigorously, especially since the exact steady state
distribution, P ∗ (C), is not known. If this limit does not exist,
then the standard term “phase” should be used with some
caution. Second, the standard approach to phase transitions
involves taking this limit with the stationary state, i.e., the limit
t → ∞ is taken first, while simulations are based on running
finite systems (L < ∞) for finite times (τ < ∞). Therefore,
we can only make some estimates and offer some rough
arguments here. Obviously, more convincing conclusions can
be drawn from a thorough finite-size scaling analysis (see,
e.g., Ref. [27]), a task beyond the scope of this paper. Finally,
we should comment on the order parameter, i.e., how we
characterize the phases. By studying mainly the current J , we
have implicitly chosen (the operators in) Eq. (4) here. Yet, as
discussed in the previous two sections, the phases may be better
characterized by the presence or absence of a macroscopic
cluster. Thus, another possibility is to study the distribution of
the size of the largest cluster, which we denote by Q (s). Deep
in the AC phase, Q should be similar to P ∗ (�) for large �. From
Eqs. (6) and (10), we therefore expect Q (s) → e−2ηs . On the
other hand, deep in UV, this cluster is the caboose-engine gap
or the condensate, so that Q (s) is just P ∗

con (�). Indeed, most
of our theoretical arguments for the phase transition presented
below will be based on the properties of Q.

Since we are dealing with nonequilibrium steady state, there
is no widely accepted notion of a “free energy” even if we

managed to find an explicit P ∗ (C). Thus, we cannot follow
the standard route, defining a first order transition through
a jump in its derivative. Alternatively, we can define such
a point dynamically, given that our system is formulated as a
stochastic process. A reasonable choice is, for example, that set
of control parameters with which the system settles for equally
long periods in each of the phases while switching between
them occasionally (“tunneling”). If computer power or time
is unlimited, we can measure s (t) for arbitrarily long periods
and compile a histogram for Q (s). If our analytic power is
strong enough, we can access the exact steady state Q. For a
range of parameters, Q should be sharply bimodal, allowing
us to locate special points where the modes are equally
probable. However, as both approaches are quite limited at
present, we can offer only rough estimates and reasonable
arguments for a “phase diagram” here. Three regimes are
expected to be present: pure AC, pure UV, and “mixed”
(AC + UV). The best way to characterize these regimes is
through lifetimes. Specifically, deep in the pure regimes, the
system settles relatively quickly into one phase, regardless
of initial conditions. By contrast, in the mixed regime, once
it settles into AC or UV (typically through judicious choice
of initial conditions), that state can persist for extraordinarily
long times. In particular, it is possible for these lifetimes to
scale exponentially with the system size, L. In that case, such
a regime rightly deserves the label “bistable” [28].

We emphasize that there are three independent control
parameters in the simple AEP. They can be L, ρ, and λ, or N ,
H , and �max, for example. Also, a variety of “thermodynamic
limits” can be taken, depending on the order that different
quantities are sent to infinity. In addition, for simulations,
the initial condition and length of runs will be important to
consider. Enumerating all possibilities is exceedingly difficult,
if not impossible. Here, we will focus mainly on the parameters
used in our simulations (L = 1000 and a wide range of ρ and
�max) and provide some arguments from our analysis for other
situations.

It is clear that if we use a totally inhomogeneous system (all
particles clustered together) as an initial condition, then we are
likely to find the pure UV regime, as well as to explore the
boundary between the mixed and pure AC regimes. Indeed,
all the simulation data presented above are collected under
these conditions. As indicated in the previous section, in AEP,
UV is associated with a “hole train” of typical length 2H ,
which will be destroyed if the caboose wanders within �max

of the engine. Thus, UV is unstable if �max � L − 2H . This
provides an estimate for the critical density associated with the
boundary with the pure AC phase [18]:

�max = L (2ρcA − 1) (25)

To be explicit, a system with ρ < ρcA
∼= 1+λ

2 will settle into
AC only. This boundary is shown as the dashed (blue) line in
Fig. 8 (with L = 1000). Although the agreement with data (red
circles) is reasonably acceptable, this estimate can be improved
by incorporating some fluctuations. In MTP, the caboose-
engine gap appears as the condensate size, �, which fluctuates
around �. Thus, � can reach �max with a small probability,
P ∗

con(�max), even if � may not be near �max. Now, we may
argue that, in a run of τ MCS, rare events with probability 1/τ
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FIG. 8. (Color online) Phase diagram in ρ-�max plane. Symbols
are from simulations. Phase boundaries are results from Eqs. (25),
(26), and (28) (dash, solid, and dot-dash), respectively.

can occur. Exploiting this connection and approximating the
scaling form for P ∗

con(�) by a Gaussian, we see that the UV
can become unstable if � − �max ∼ O(

√
H ln τ ). Inserting

τ ∼ 106 used in our simulations, we find that Eq. (25) is
slightly modified. As an illustration, we plot

�max = L(2ρcA − 1) −
√

L(1 − ρcA) ln τ . (26)

Shown as the solid (blue) line in Fig. 8, it is arguably an
improvement. If this result is upheld in a more rigorous
analysis, we may conclude that if the thermodynamic limit
is taken first, there is a nontrivial region in the ρ-λ plane
associated with AC + UV bistability, while Eq. (25) marks its
border with the pure AC regime.

Next, we explore the stability of the AC phase. In simula-
tions, this phase will be more favored by distributing particles
uniformly on the lattice initially. In this manner, we expect to
find another boundary, beyond which the system never settles
in AC. Deferring a systematic investigation, we simply provide
a few examples in Fig. 8 (red diamonds). Theoretically, our
approach is similar to the one above: What is the probability
for the largest cluster to reach �max particles? Within our
approximate scheme, this is given by P ∗ (�max), and using
Eqs. (6), (9), and (10), we arrive at exp (−2η�max). Applying
the connection to runs of length τ , we obtain

2ηcU�max ∼ ln τ, (27)

where ηcU is related to the critical density associated with the
boundary UV regime in Eq. (9):

sinh ηcU = 1 − ρcU

2ρcU

. (28)

The resultant is also plotted in Fig. 8 (dot-dash blue line).
While the discrepancies between this estimate and data are
larger than those above, we may conclude that this approach
is a viable first step. In particular, we believe that a major
difference between these two cases lies in the following. For
a system in UV to tunnel to AC, the condensate stack needs
to wander all the way down to �max. We can formulate this
problem of finding the lifetime as a first passage time of a
single walker arriving at a particular destination. By contrast,
in the reverse process, tunneling from AC to UV requires
only one of the stacks to wander up to �max, corresponding to

finding the first time that any one of the H walkers arrives at
the destination. Clearly, the latter problem is more complex,
especially since the walkers are not entirely independent. To
improve on Eq. (27) will be a worthy next step.

To summarize, we presented a plausible phase diagram
associated with the discontinuous transitions observed in sim-
ulations, consisting of three regimes. In two of these regimes,
the system appears to evolve to a unique steady state: AC or
UV. In between, our simulations show that the system can
settle into either state, depending on, e.g., initial conditions.
We conjecture that our system supports the phenomenon of
bistability, namely, the time scales for switching between
these states grow exponentially with they system size. In
other words, we expect the behavior here to resemble that in
equilibrium systems with long-range interactions (see, e.g.,
Ref. [29] and more recently Refs. [30,31]). To prove or
disprove this conjecture will likely be accomplished through
careful observations of hysteresis along with a finite size
scaling analysis.

VII. SUMMARY AND OUTLOOK

In this article, we investigated an accelerated exclusion
process (AEP) on a ring where particles hop when the
neighboring site is empty, as well as kick another one forward
when joining a cluster of particles of size � � �max. Through
Monte Carlo simulations, we discovered that, with various
choices of density ρ and interaction range �max, the system
may be found in an augmented current phase or a unit-velocity
phase. The behavior this AEP exhihibits, both dynamic and
static, are much richer than the standard TASEP. Focusing
on the steady state, we expand the findings reported in
Ref. [18] and seek a comprehensive theoretical framework for
understanding these novel features. The apparent inadequacy
of a naı̈ve mean field approach prompted us to seek alternative
routes. Treating AEP as a mass transport process (MTP) of
balls contained in stacks and may jump either one stack (“hop”
only) or two (“hop and kick”), we provide a more intuitive
picture of both phases and the transition between them. In
this representation, a mean field approximation scheme is
formulated to compute several key quantities. With no fit
parameters, the predictions agree remarkably well with results
from simulations.

For the AC phase, we found an expression for the par-
ticle current, J MTP-MF

AC = (1 − ρ)f (1 + f ), with f being the
probability of an occupied stack (equivalently, the frequency
of isolated holes in AEP), given explicitly by Eqs. (9) and
(10). This result enabled us to quantitatively estimate both J

and the “acceleration” in the facilitated region. Additionally,
it provided an intuitive picture for the scarcity of hole pairs,
which leads to more “kicks” and augmented currents.

Once the system is in the UV phase, J is simply (1 − ρ)
regardless of �max, indicating the holes in the system are trav-
eling at unit velocity. This intriguing result can be appreciated
from the AEP and MTP representations with different insights.
In the language of AEP, the system in UV is composed of a
“hole train” of length 2H , led by an “engine” composed of a
tightly bound hole pair. The complement of the hole train is
a cluster of particles of size � = L − 2H . In the language of
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the MTP, the hole train and cluster is, respectively, the fluid
and the condensate. We also computed the leading term in
P ∗

con, which enabled us to understand the average sizes of the
condensate as well as its fluctuations. Preliminary studies of
scaling behavior and a universal distribution are encouraging
and further investigations are in progress.

Deferring charting a precise phase diagram the AC and UV
phases to our further quests, we reported the essentials in the
formation of condensates, thus infer the phase boundary using
ρ and �max as order parameters. Starting as a “solid” (all balls
in one stack) or a “liquid” (balls distributed through all stacks)
leads the system to favor UV or AC. Various factors, including
the initial conditions, affect where the system eventually settles
and how long it remains, hence we conjecture the two different
phase boundaries presented in Fig. 8 with support from our
simulations.

Although this study provided valuable insights into the
AEP, there are many avenues to improve on both simulations
and theory, in order to advance a better understanding of
its behavior. Examples mentioned above include explorations
of the dependence on L and τ , finite size scaling analysis,
and a careful study of clusters’ evolution and the size
distributions. On the theoretical front, we should account for
some correlations in the system, for example, by considering
the joint distribution P (�1,�2) in the MTP. A more refined
phase diagram than our Fig. 8 would be most desirable.
In particular, we may expect that the discontinuous jumps
give way to a continuous, second-order-like, phase transition.
Subsequently, all the standard issues associated with such
a transition can be explored, from critical exponents and
universality classes to scaling and renormalization group anal-
yses. Beyond static properties, we envisage many interesting
dynamic questions. In addition to investigations already in
progress [25], it would be instructive to study time series and
power spectra of various quantities, since they can expose
the details of correlations in time. For example, we may
study microscopic currents associated with entry and exit
times from the condensate. While the latter is expected to be
simply Poisson distributed, the former may be more complex,
as it is connected to the fluctuations of the entire fluid. In
particular, the correlations of entry and exit times should pro-
vide information on propagation of fluctuations (through the
fluid).

Beyond the system studied here, there are natural general-
izations, such as having two or more particles being activated
and �-dependent kicking probabilities. Another natural gen-
eralization is the AEP with open boundary conditions, with
a variety of injection or extraction possibilities. Mapping out
the equivalent of the open TASEP phase diagram fully will
be an arduous, but rewarding task. We may introduce inho-
mogeneous hopping rates modeling blockages or adsorption
and desorption along the entire chain. Further afield, we may
wish to consider systems with many species, or many lanes
(“quasi-1D”), as well as in higher dimensions. Yet another
important task for the future is to see to what extent the features
of AEP are present in more realistic models of systems in
nature that display assisted hopping. Finally, we hope that AEP
will be a new window for understanding not only exclusion
processes, but also nonequilibrium statistical mechanics in
general.
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APPENDIX A: EXACT SOLUTION FOR H = 2

For H = 2, the system is sufficiently trivial that we can
simply enumerate all possibilities, denoted as a pair of integers
in parentheses. In the MTP representation, we need to consider
only the number of balls in one stack, � ∈ [0,N ]. The other
stack contains N − �. Furthermore, there are at most three
intervals in [0,N ], in which the rules are different.

If �max � N , then every ball moves two steps (returning to
the original stack), so that every “interior” (i.e., � ∈ [1,N − 1])
configuration stays the same. Meanwhile, each of the two
“boundary” configurations decays as 2−t , since choosing the
filled stack will lead to a stationary one. Though it appears to
be stationary in the MTP representation, the AEP current is
always 2 no matter which particle-hole pair is exchanged. It
is natural, therefore, for us to give such a state the label AC.
Since every initial condition corresponds to such a state, the
system is always in AC.

If N > �max � N/2, then we can have a nonmaximal
“interior region” (N − �max < � < �max) of stationary config-
urations, as in the previous paragraph. If the initial condition
is in this region, the system is again AC. However, if the
system starts in one of the two “boundary regions,” then it
will evolve as follows. Such a configuration consists of one
stack with � > �max balls and the other with N − � � �max. If
the latter is occupied, then a ball leaving the first stack will
make two hops and return to the original stack. Thus, this stack
either gains a ball or remains the same, so that � tends to drift
upwards. In other words, the system performs a biased random
walk towards the boundary until it reaches the configuration:
(N,0). From there, it can only reach (N − 1,1). From this
point, the system jumps between these two configurations, i.e.,
a stationary state we recognize as the tightly bound pair (the
“engine”) discussed in Sec. V A. It is clear (and straightforward
to prove) that such a system should be labeled by UV. Thus,
a system with initial conditions in these “boundary regions”
simply evolves towards a UV stationary state.

Finally, if N/2 > �max, the configurations in the “interior
region” (�max < � < N − �max) consist of both stacks having
more than �max balls. Now, balls just move from one stack
to the other, so that the system performs an unbiased random
walk in �. When it reaches one of the “boundary regions,” it
converts to performing a biased random walk as above. Thus,
such a system will always end in a UV stationary state.

To summarize, the H = 2 case, though seemingly trivial,
provides the essentials of the AC and UV “phases.” The
simplest “phase diagram” emerges: A domain in N -�max plane
with pure AC, one with pure UV, as well as a third where
both AC and UV can be the end state (depending on initial
conditions).
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APPENDIX B: SOLUTION FOR H = 3 IN A SPECIAL LIMIT

Clearly there are more possibilities for the H = 3 case,
and they would be more complicated. Enumerating them
and providing exact solutions in each scenario remain to be
completed. Here, let us consider a special limit, L → ∞
followed by �max → ∞. The former limit implies that the
caboose cannot affect the engine, which remains a tightly
bound pair. The latter ensures that the engine can affect the
caboose, which can lag behind by an arbitrary number (m � 0)
of sites. In this scenario, we only need to consider p0 (m) and
p1 (m), the probability that the gap between the first pair is 0
and 1, respectively, with the caboose trailing by m (see Fig. 6).
In the stationary state, these satisfy:

2p0 (m) = p0 (m + 1) + p1 (m) (1 − δm0)

+ δm0p0 (0) + δm1p1 (0) ,

3p1 (m) = p0 (m) + p1 (m + 1)

+ p1 (m − 1) (1 − δm0) + δm0p1 (0) . (B1)

A simplification occurs when we sum the two sets (balancing
the currents between the p0 and the p1):∑

m�0

p0 (m) =
∑
m�0

p1 (m) = 1

2
, (B2)

the last “=” being the result of normalization. To obtain the
individual p, we consider the generating functions:

G• (z) =
∑
m�0

zmp• (m) (B3)

and verify that they satisfy(
1 − 2z z

1 1 − z

)(
G0

G1

)
=

(
(1 − z) [zp1 (0) + p0 (0)]

p0 (0) + (1 + z) p1 (0)

)
,

where the second line expresses the balance of total fluxes
between m and m + 1. Thus, we have, e.g.,

G0 = (1 − z)2[p0(0) + zp1(0)] − z[p0(0) + (1 + z)p1(0)]

2(z − ẑ)(z − 1/2ẑ)
,

(B4)

where ẑ = 1 − 1/
√

2. Since G0 cannot be singular at ẑ < 1,
the numerator must vanish there and leads to a relation between
p0 (0) and p1 (0):

(1 − ẑ)2[p0(0) + ẑp1(0)] − ẑ[p0(0) + (1 + ẑ)p1(0)] = 0.

(B5)

A second relation between them comes from Eq. (B2),

1/2 = G0 (1) = p0 (0) + 2p1 (0) , (B6)

and allows us to arrive at

p0 (0) = 11 − 6
√

2

14
≈ 0.1796, (B7)

p1 (0) = 3
√

2 − 2

14
≈ 0.1602. (B8)

Instead of writing explicit expressions for all the p, let us
exploit a shortcut to the asymptotic behavior, namely, subtract
(B5) from the numerator in (B4) and cancel the (z − ẑ) in the
denominator. The result is that G0 (z) must be of the form

G0(z) = A + Bz + Cz2

1 − 2ẑz
, (B9)

where A,B,C are constants that can be explicitly computed.
From here we find that, for all m � 2,

p0 (m) = ζm{A + B/ζ + C/ζ 2}, (B10)

where ζ ≡ 2ẑ = 2 − √
2. A similar expression can be derived

for p1(m). Thus we see that the third hole is bound with an
exponential tail, of characteristic length −1/ ln ζ ≈ 1.8697.

The exact average of m, the distance between the engine
and the caboose, can also be calculated via

〈m〉 = d [G0(z) + G1(z)]

dz

∣∣∣∣
z=1

= 8 + 9
√

2

14
≈ 1.4806, (B11)

a result slightly smaller than the characteristic length of the
exponential tail, −1/ ln ζ .

As a cross-check, we compute the average current explic-
itly, via

p0 (0) + 2p0 (1) + 2p0 (2) + · · · + 3p1 (0) + 5p1 (1)

+ 5p1 (2) + · · · ,

which is

2
∑
m=0

p0 (m) + 5
∑
m=0

p1 (m) − p0 (0) − 2p1 (0) = 3

by Eqs. (B2) and (B6). Since H = 3, this result shows the UV
property explicitly.

Needless to say, if we reverse the order of limits (�max → ∞
followed by L → ∞), then the system will be only in the AC
phase, even though the exact P ∗ is yet to be obtained explicitly.
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