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We investigate the long time dynamics of a strong glass former, SiO2, below the glass transition temperature
by averaging single-particle trajectories over time windows which comprise roughly 100 particle oscillations.
The structure on this coarse-grained time scale is very well defined in terms of coordination numbers, allowing
us to identify ill-coordinated atoms, which are called defects in the following. The most numerous defects are
O-O neighbors, whose lifetimes are comparable to the equilibration time at low temperature. On the other hand,
SiO and OSi defects are very rare and short lived. The lifetime of defects is found to be strongly temperature
dependent, consistent with activated processes. Single-particle jumps give rise to local structural rearrangements.
We show that in SiO2 these structural rearrangements are coupled to the creation or annihilation of defects, giving
rise to very strong correlations of jumping atoms and defects.
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I. INTRODUCTION

Amorphous SiO2, or silica, has many fascinating features.
Silica is of importance in geology, chemistry, physics, and
industrial applications. To classify the huge variety of glass
formers in general [1–3], we distinguish fragile and strong
glass formers [3–5]. Silica is a typical strong glass former,
i.e., the shear viscosity exhibits Arrhenius behavior at low
temperature and pressure. With increasing temperature, SiO2

undergoes at Tc a strong to fragile transition [6] and, for large
pressure, critical behavior of a liquid-liquid transition has been
observed [7].

We investigate here SiO2 via molecular dynamics
simulations using the van Beest-Kramer-van Santen (BKS)
potential [8] for the particle interactions. Since previous
simulations had shown that the BKS potential is a very good
model for real silica ([6,9–11] and references therein), many
simulations with the BKS potential followed, giving us insight
into the phase diagram [12–15], energy landscape [16–20],
specific heat [21], vibrational spectrum [11,22–25], dynamic
heterogeneities [26–29], and aging [30–33].

For temperatures below Tc = 3330 K [6], BKS SiO2 is
a strong glass former. A striking similarity with fragile glass
formers has been found for single-particle jump dynamics [32].
This is surprising at first sight because the local structures
in fragile and strong glasses differ considerably. In fragile
glasses, the concept of a cage is well established and jumps
are interpreted as particles escaping from their cage. The
underlying structure in SiO2, on the other hand, is based on ran-
domly connected tetrahedra, forming a macroscopic random
network. Even though the macroscopic network is random,
coordination numbers are very well defined, so that defects
are easily identified. In this paper, we address the question of
to what extent jump events are correlated with the creation
of defects. In future work, we plan to investigate spatial and
temporal correlations between single jump events which are
presumably required for diffusive mass transport to occur.

*kvollmay@bucknell.edu

Our focus is on structural rearrangements well inside the
glassy phase. At low temperature, we expect a clear separation
of time scales, such that oscillations around preferred positions
are characterized by short time scales, whereas (rare) structural
changes occur on much longer time scales. To illuminate
the latter, we filter out short time oscillations by averaging
particle trajectories and analyze the time-averaged single-
particle trajectories {ri(t)} in terms of jumps of particles and
creation and annihilation of defects. We find a clear temper-
ature dependence of the time-averaged dynamics, which is
already apparent in single-particle trajectories; an example
is shown in Fig. 1. Whereas for the lowest temperatures
under consideration jump events are well separated in time
by long quiescent periods, this separation of time scales is
gradually lost when the glass transition is approached from
below.

Our approach is similar in spirit to the analysis of inherent
structures [16–19,34,35], where instantaneous configurations
are quenched to their local potential energy minimum. In
[16,18], energy minimized configurations have been analyzed
for BKS SiO2 in order to explain the observed crossover
from strong to fragile behavior. We expect the time-averaged
trajectories to be strongly correlated with the corresponding
inherent structures. However, in contrast to inherent structures,
our approach allows us to study the dynamics of local
structural rearrangements. Whereas time-averaged trajectories
have been studied previously to detect jump events [32,36–39],
we use here time-averaged trajectories also to enhance the
underlying local structure and therewith to detect defects.
This allows us to directly measure correlations of jumps and
defects.

After introducing the model in Sec. II, we show in
Sec. III that the radial distribution functions of the time-
averaged trajectories are considerably sharpened as compared
to the corresponding distributions for the unaveraged trajecto-
ries. This implies a stable, well-defined structure on time scales
that are large compared to a typical oscillation period. This
time-averaged structure is only weakly temperature dependent.
The sharp peak structure allows us to define defects with the
help of the coordination number. Number and lifetime of the
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FIG. 1. (Color online) Examples for time-averaged single-
particle (O-atom) trajectories for Ti = 5000 K at Tf = 2500 K (left
figure) and at Tf = 3250 K (right figure).

defects as a function of temperature are discussed in Sec. IV.
In Sec. V, we explore to what degree the jumps defined in [32]
are correlated with the defects. We summarize our results and
draw conclusions in Sec. VI.

II. MODEL AND SIMULATION DETAILS

To model amorphous SiO2, we used the BKS potential [8].
We carried out molecular dynamics (MD) simulations with
NSi = 112 silica atoms and NO = 224 oxygen atoms and at
constant volume V = (16.920468 Å)3, which corresponds to
a density of ρ = 2.323 g/cm3.

At 6000 K, we generated 20 independent configurations,
which then were fully equilibrated at initial temperature
Ti ∈ {5000 K, 3760 K} followed by an instantaneous quench to
lower temperatures Tf ∈ {2500 K, 2750 K, 3000 K, 3250 K},
i.e., to temperatures below Tc = 3330 K. Unique to our
simulations is that we applied the Nosé-Hoover temperature
bath at Tf only for the first 0.327 ns (NVT) and then continued
with constant energy (NVE) for 32.7 ns to disturb the dynamics
minimally. As shown in [31], we confirmed that Tf stayed
constant. The MD time step was 1.02 and 1.6 fs during the
(NVT) and (NVE) run, respectively. For further details of the
simulations, we refer the reader to [31].

We analyzed the combined (NVT) and (NVE) simulation
runs at Tf . Specifically, for this paper, we focus on major
structural events by analyzing time-averaged single-particle
trajectories ri(tl) at times tl = l�tav. The typical time scale
of an oscillation is around 3 × 10−14 s, roughly 20 times the
MD step. The time average is taken over �tav, which has
to be chosen large as compared to the oscillation time and
sufficiently small to resolve structural rearrangements such
as single-particle jumps and the creation and annihilation of
defects. For most of the data presented below, we have used
�tav = 3.2710−12 s, allowing for l = 1, . . . ,10 100 points of
the trajectory, but we have checked other values of �tav as well
(see below).

III. RADIAL DISTRIBUTION FUNCTION AND
COORDINATION NUMBER

We first discuss the structural properties of our system on
time scales that are long compared to a typical oscillation
period. To that end, we first compute the radial distribution
functions for the time-averaged trajectories and compare them
to the corresponding quantities for the unaveraged trajectories,
representing the structure on microscopic time scales. We
then go on to discuss the temperature dependence of the
time-averaged structure and the distribution of coordination
numbers.

A. Radial distribution function of time-averaged trajectories

To analyze the local structure implied by the time-averaged
trajectories, we compute

gαβ(r) =
〈

V

NαNβ

Nα∑
i=1

Nβ∑
j=1
j �=i

δ(|r| − |rij (tl)|
〉

, (1)

where α,β ∈ {Si,O} [for the case of α = β, the denominator
is Nα(Nα − 1)], and rij (tl) is defined via the time-averaged
trajectories rij (tl) = ri(tl) − rj (tl). To increase statistics in all
of the following (unless otherwise specified), the ensemble
average 〈·〉 is obtained via an average over 20 independent
simulation runs and an average over 1000 consecutive times,
tl , starting at a waiting time tw = 16.35 ns. For all of the
following figures, we used Ti = 5000 K. (We have checked
other waiting times as well as different Ti; see Sec. IV B). As
will be shown below, the typical relaxation times in our system
are larger than �tav, so that configurations at different tl are not
completely uncorrelated. Therefore, we determine error bars
via the 20 independent simulation runs.

In Figs. 2 and 3, we compare the pair correlation for
trajectories with and without time averaging. We conclude that
time averaging (�tav > 0 curves) sharpens the pair correlation
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FIG. 2. (Color online) Radial distribution function gαβ (r) as
defined in Eq. (1) using different time averages �tav for the time
average of ri(t). Here, for final temperatures, Tf = 2500 K quenched
from Ti = 5000 K.
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FIG. 3. (Color online) Radial distribution function as in Fig. 2,
but here for final temperature Tf = 3250 K.

drastically, both for low (Tf = 2500 K) and high (Tf = 3250 K)
temperatures. The enhancement is particularly strong for the
nearest-neighbor peak of gSiO, implying that the structural
unit of one tetrahedron with an Si atom at the center and
four O atoms at the corners is well defined. We obtain the
same gαβ(r) for �tav = 0.00 327 ns and �tav = 0.00 654 ns,
supporting the separation of time scales, so that time averaging
over �tav allows us to filter out the main structural features of
an underlying network that is highly ordered in the sense that
nearest-neighbor distances are well defined on time scales of
the order of 0.005 ns.

B. Temperature dependence of the time-averaged structure

Next we investigate how the time-averaged structure de-
pends on temperature. In Figs. 4 and 5, we compare the radial
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FIG. 4. (Color online) Radial distribution function gSiO(r) for
final temperatures Tf . The left inset is an enlargement of the first
peak and the right inset is an enlargement of farther peaks. The first
peak height is increasing with decreasing temperature.
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FIG. 5. (Color online) The radial distribution function, similar to
Fig. 4, but here for gOO(r). The insets are enlargements of the first
and second peaks.

distribution function, as defined in Eq. (1), for four different
temperatures. For gSiO(r) (see Fig. 4), we find an increase of
roughly 20% for the temperature range investigated. Compared
to the increase by a factor of ∼5 due to time averaging, this is
a rather mild effect. Similarly, for gOO(r) (see Fig. 5), the first
peak is enhanced by roughly 5%, again small compared to the
increase by a factor of ∼2 due to time averaging. For distances
beyond nearest neighbors, the radial distribution function
of the time-averaged configurations is basically temperature
independent. We conclude that the time-averaged structure is
only weakly temperature dependent.

C. Coordination numbers

For all investigated time-averaged gαβ(r), the first peak is
very sharp and the minimum between the first and second
peaks is very deep, indicating a well-defined first neighbor
shell. We therefore define, for each particle i of particle type
α at time tl , the coordination number z

αβ

i (tl) to be the number
of other particles j of type β which satisfy

|ri(tl) − rj (tl)| < rαβ
min, (2)

where rSiSi
min = 3.42 Å, rSiO

min = 2.40 Å, and rOO
min = 3.00 Å. The

resulting coordination number distributions Pαβ are plotted in
Figs. 6 and 7, and are ensemble averaged as explained after
Eq. (1).

Please note that the distributions P (z) are so sharply peaked
that we chose a logarithmic scale. At Tf = 2500 K (thick lines),
99.9% of the Si atoms are surrounded by four O atoms and
99.9% of the O atoms are surrounded by two Si atoms. Even at
Tf = 3250 K (thin dark lines), there are 98.8% Si atoms with
zSiO
i = 4 and 99.1% O atoms with zOSi

i = 2. The time-averaged
configurations form an almost perfect O corner sharing
network of SiO4 tetrahedra. PSiSi(z) probes this network on
the length scale of tetrahedra to tetrahedra connections. Also
on this length scale, we find that the coordination is almost
perfect in the time-averaged configurations: for Tf = 3250 K
(Tf = 2500 K), 95.5% (99.1%) of Si atoms are surrounded by
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FIG. 6. (Color online) Distribution of coordination number P (z)
for the number of Si neighbors of an O atom (POSi in left panel)
and for the number of O neighbors of an Si atom (PSiO in right
panel). Thick lines are for Tf = 2500 K and thin dark lines are for
Tf = 3250 K.

four Si atoms. The broadest distribution is POO(z) for which
90% of the O atoms are surrounded by zOO

i = 6 O atoms.

IV. DEFECTS

In the previous section, we showed that the time-averaged
configurations form an almost perfect network with respect
to the coordination number. Now we turn to our main point:
What is the role of defects in the network architecture for
the long time dynamics? How does the local structure of the
network change, when particles jump, giving rise to diffusion
and relaxation on long time scales. We first characterize defects
in terms of their number and lifetimes (Sec. IV) and then go
on to discuss their correlation with jump events (Sec. V).
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panel). Thick lines are for Tf = 2500 K and thin dark lines are for
Tf = 3250 K.
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αβ (Tf ) = C exp( −EA
kTf

) (lines), with EA = 1.5/2.0/1.7/0.36
eV for SiSi/SiO/OSi/OO defects, respectively.

A. Number of defects

We identify defects in the time-averaged structure with the
help of an indicator function, defined for particle i of type α:

χD
i (tl,β) =

{
1 if at time tl , z

αβ

i �= z
αβ

perfect

0 if at time tl , z
αβ

i = z
αβ

perfect,
(3)

where zSiSi
perfect = 4, zSi0

perfect = 4, zOSi
perfect = 2, and zOO

perfect = 6.
This means that an αβ defect occurs if a particle of type α

is surrounded by z
αβ

i �= z
αβ

perfect particles of type β. In Fig. 8,
we show the fraction of particles which are defects,

MD
αβ =

〈
1

Nα

Nα∑
i=1

χD
i (tl,β)

〉
. (4)

With increasing temperature, the fraction of defects increases
approximately following Arrhenius behavior (with the excep-
tion of MD

OO, which is equally well fitted by a power law).
These results are in accordance with the work of Horbach and
Kob [6] who, however, use non-time-averaged configurations
and therefore find more defects, which are short lived and
hence not visible in our time-averaged structure. These authors
extract activation energies for SiO defects and OSi defects,
resolved according to coordination number. If we blindly
average their data for z = 5 and z = 3 for SiO defects, we
find an average activation energy of 2.1 eV, which is in good
agreement with our value of 2.0 eV. Similarly, the average
activation energy for OSi defects is 1.8 eV, in good agreement
with our value of 1.7 eV.

Consistent with the above coordination number distribu-
tions, MD

SiO and MD
OSi are very small. Most defects are OO

defects. These findings give further support to the picture of
very stable tetrahedra with relaxation processes mainly due
to rearrangements of the SiO4 tetrahedra with respect to each
other. In fact, it has been argued [40] that rotations of stable
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FIG. 9. (Color online) Normalized time correlation C̃DD
SiO(t) as

defined in Eqs. (5) and (6) for final temperatures Tf = 2500 K (top
curve) to Tf = 3250 K (bottom curve).

SiO4 tetrahedra give rise to a decoupling of oxygen and silicon
dynamics at low temperatures.

B. Lifetime of defects via time correlation

So far, we have simply counted the number of defects. Next
we look in more detail by observing the defects as they change
with time. We ask the question of whether the defects are
long lived, involving the same few particles, or if instead the
defects are short lived, i.e., come and go over the simulation
run at different locations. To address this question, we define a
correlation function for defects of the same particle i occurring
at different times tl and (tl + t):

CDD(t,α,β) =
〈

1

Nα

Nα∑
i=1

χD
i (tl,β)χD

i (tl + t,β)

〉

−
〈

1

Nα

Nα∑
i=1

χD
i (tl,β)

〉 〈
1

Nα

Nα∑
i=1

χD
i (tl+t,β)

〉
.

(5)

For the comparison of different α, β, we normalize by the
initial value,

C̃DD
α,β(t) = CDD(t,α,β)

CDD(t = 0,α,β)
. (6)

Figures 9 and 10 reveal a strong temperature dependence:
with increasing temperature, all C̃DD

αβ decay faster. To quantify
this decay for various defect types αβ, we define the lifetime
τDD
αβ as the time when C̃DD

α,β(τDD
αβ ) = 0.1 (we find qualitatively

the same results for other values than 0.1). In Fig. 11, we show
τDD
αβ as a function of inverse temperature. For all defect types,

the lifetime τDD
αβ increases with decreasing Tf approximately

according to an Arrhenius law. The increase is strongest for
OO (a factor of 100) and weakest for SiO (a factor of 20).

In order to understand how the dynamics of defects is
related to structural relaxation, we compare in a first step the
defect lifetimes to the relaxational time scales as obtained
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FIG. 10. (Color online) Similar to Fig. 9, but here for C̃DD
OO .

from jump processes and diffusion. Single-particle (sudden)
jump events [32] are of mean duration of 〈�td〉 = 0.01 ns (see
upper arrow in Fig. 11). We conclude that all defects survive
the duration of a jump, consistent with a possible change of
the coordination by jump processes (with the only exception
of Si-O defects at the highest temperature).

The time spent between successive jumps follows a broad
distribution [32], ranging from time scales as short as 10−2 ns
to 10 ns. All defects, with the exception of OO defects at
the lowest temperature, are shorter lived than the average
period between successive jumps. This can also be clearly
observed from Figs. 14, 15, and 17, where we show defects,
as parametrized by χD

i (tl,β) and jump events, parametrized
similarly (see below), as a function of time. We conclude that
between jump events, defects are created and destroyed.
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FIG. 11. (Color online) τDD
αβ vs 104/Tf for all α,β ∈ {Si,O} (large

open symbols) as compared to Arrhenius fits (lines) τDD
αβ = C exp( EA

kTf
)

with EA = 3.76/2.92/3.37/4.39 eV for SiSi/SiO/OSi/OO, respec-
tively. For comparison, we show the time interval �tav over which
we average (lower arrow), the time duration of jumps 〈�td〉 (upper
arrow), and the equilibration time teq (stars).
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The longest time scale in our system is the equilibration
time teq, whose definition requires some care. In [31],
the authors define teq for a given temperature as the time
when the incoherent intermediate scattering function becomes
waiting time independent. Similarly, it was shown in [32] that
also the jump dynamics becomes waiting time independent for
t > teq with the same values of teq, which will henceforth be
used here and is shown by star symbols in Fig. 11. All defects
decay on shorter time scales; only the lifetime of OO defects at
the lowest temperature becomes comparable to teq. Similarly,
all defect lifetimes are substantially longer than the shortest
time scale under consideration, �tav, which is indicated by the
lower arrow in Fig. 11.

How are these findings related to previous work by Horbach
and Kob [6] and Saksaengwijit and Heuer [18], who determine
activation energies for diffusion and viscous relaxation? The
quoted values, EA = 4.6–4.8 eV for oxygen [6,18] and EA =
5.18 eV for silicon [6], are higher than the activation energies
determined for defect lifetimes. A priori, it is not clear how
defect dynamics is related to diffusion: neither which sort of
defect might be important for diffusive mass transport nor how
likely it is to simultaneously find a defect and a jump. In order
to clarify this point, we study correlations of these events in
the next section. The fact that defect activation energies are
smaller than the activation energy for diffusion suggests that
defects are created more easily and more frequently than atoms
jump and not every defect is accompanied by a jumping atom.
In particular, diffusive motion is likely to occur via a series of
correlated jump events.

We have checked that our results are robust with respect to
choice of Ti and waiting time tw. For Tf = 2500 and 2750 K,
the results are qualitatively the same for Ti = 3760 and 5000
K and 0 � tw � 26.2 ns; for larger temperatures Tf , the results
agree even quantitatively.

V. CORRELATION OF JUMPS AND DEFECTS

Before discussing the correlations of jump events and
defects, we briefly recall the methods [32] to identify and
analyze jump events.

A. Jumps

Whereas in the previous section we characterized the
relaxation dynamics with defects and their occurrence as
function of time χD

i (tl,β), we now follow the approach of [32].
For each time-averaged single-particle trajectory ri(tl), we
identify single-particle jump events using Eq. (2) of [32]. This
means that a jump event of particle i occurs if

|ri(tl) − ri(tl−4)| > 3σα (7)

holds, where σα is the average fluctuation size for particle
i of type α. Please note that all of the following results are
qualitatively the same if we use, instead of the factor 3, the
factor

√
2. Numbering the jump events of particle i by k, we

determine for each jump event the time t init
k when the particle

starts to jump and the time t f
k when the particle jump is finished.

We then define an indicator function for the jumpers, in close

0 5 10 15 20 25 30
t (ns)

0

1

χ iJ (
t)

-5

0

5

10

15

20

x i,y
i,z

i
(Å

) T
f
=2500 K

O-atom

FIG. 12. (Color online) Example of a time-averaged trajectory of
an O atom at Ti = 5000 K and χ J

i (t), which indicates jump events as
horizontal lines.

analogy to the defects, by

χ J
i (tl) =

{
1 if t init

k � tl � t f
k for jumps k

0 otherwise.
(8)

An example for the trajectory of an oxygen atom at 2500 K is
shown in Fig. 12, clearly revealing the jump events.

The average fraction of jumping particles,

MJ
α =

〈
1

Nα

Nα∑
i=1

χ J
i (tl)

〉
, (9)

is shown in Fig. 13. As expected, MJ
α(Tf) is increasing with

increasing Tf and can be fitted to Arrhenius behavior (lines)
with ESi

A = EO
A = 2.89 eV. Activation energies determined

3.0 3.2 3.4 3.6 3.8 4.0

10
4
/T

f
 (K

-1
)

10
-3

10
-2

10
-1

M
J α

Si
O

α=

FIG. 13. (Color online) The fraction of jumping particles M J
α

(symbols) vs 104/Tf and fits with M J
α(Tf ) = C exp( −EA

kTf
) (lines) with

EA = 2.89 eV.
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t) O-atom jumping

0

1

χ iD
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,O
) T

f
=2500 K OO-defect

FIG. 14. (Color online) For comparison, we show for an O atom
the defect functions χD

i (t) of OO defects (top figure) and OSi defects
(bottom figure) and the jump function χ J

i (t) (middle figure) at Tf =
2500 K.

from the diffusion coefficient [6] are considerably higher:
ESi

A = 5.18 eV and EO
A = 4.66 eV.

B. Correlation of jumps and defects

So far we have investigated the dynamics of the system from
two perspectives: defects and jumps. Having identified jump
events by χ J

i (tl) and defects by χD
i (tl,β), we can now quantify

the correlations between the two sorts of events. To illustrate
our approach, we show in Fig. 14 χ J

i (tl) and χD
i (tl,β) for an

O jumper whose trajectory is shown in Fig. 12. A similar plot
for an Si jumper is shown in Fig. 15. If the horizontal lines of
χD

i (t,β) and χ J
i (t) are aligned, this implies a strong correlation

of jumpers and defects.
Both jumping atoms and defects are rare events at low

temperatures. If atoms were jumping independently from

0 5 10 15 20 25 30
t (ns)

0

1

χ iD
(t

,S
i)

SiSi-defect

0

1

χ iJ (
t)

Si-atom jumping

0

1

χ iD
(t

,O
) T

f
=2500 K

SiO-defect

FIG. 15. (Color online) Similar to Fig. 14, also at Tf = 2500 K,
but for an Si atom we show the defect functions χD

i (t) of SiO defects
(top figure) and SiSi defects (bottom figure) and the jump function
χ J

i (t) (middle figure).

creating defects, then the joint probability that an atom is
simultaneously a jumper and a defect would be given by the
product of two very small probabilities, which can be estimated
as follows. The probability p for a particle to be a jumper can
be approximated by the fraction of jumpers p = MJ

α and,
similarly, the probability q for a particle to be a defect can be
approximated by q = MD

α,β . If the events were independent,
the joint probability for a particle to simultaneously be a defect
and a jumper would be pq. At Tf = 2500 K, the smallest value
of pq is 2 × 10−6 for OSi defects and the largest value of pq

is 10−4 for OO defects. In contrast, Figs. 14 and 15 indicate a
larger likelihood of χD

i and χ J
i being aligned and thus suggest

a strong correlation.
A quantitative measure for the correlations of jumpers and

defects is the following correlation function:

ADJ
α,β =

〈
1

Nα

∑Nα

i=1 χD
i (tl,β)χ J

i (tl)
〉 − 〈

1
Nα

∑Nα

i=1 χD
i (tl,β)

〉〈
1

Nα

∑Nα

i=1 χ J
i (tl)

〉
〈

1
Nα

∑Nα

i=1 χD
i (tl,β)

〉〈
1

Nα

∑Nα

i=1 χ J
i (tl)

〉 . (10)

The defect-jumper correlation is shown in Fig. 16 for both
types of jumpers (indicated by the first letters) and both types
of corresponding defects (indicated by the last letters). The
correlation of a defect involving a wrong coordination between
an Si atom and an O atom is very high at low temperatures
for both Si atoms and O atoms jumping (red and green line,
respectively). Only the correlation between an O atom which
is jumping and not correctly coordinated with other O atoms is
less well pronounced. We interpret these results as follows: A
breakup of the SiO4 tetrahedra, which destroys the appropriate
coordination between Si and O atoms, is required for a jump
to occur, whereas the relative motion of two tetrahedra with
respect to each other can create an OO defect but is not
necessarily accompanied by a jump.

At high temperatures, the correlation of jumpers and defects
is small, which can also be guessed from single trajectories; see
Fig. 17. It is also apparent from the single trajectory (Fig. 17)
that the O atom which jumps is very often simultaneously
an OSi defect, whereas OO defects are so frequent that hardly
any correlation can be detected. This is reflected in the average
correlation (see Fig. 16) of the O jumper, which is four times
higher for OSi defects than for OO defects at T = 3250 K.

VI. SUMMARY AND CONCLUSIONS

In this paper, we analyzed time-averaged single-particle
trajectories ri(tl) at temperatures well below the glass transi-
tion temperature. Loosely speaking, the time average allowed
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FIG. 16. (Color online) Correlation of defects and jumps ADJ
αβ as

defined in Eq. (10). The lines are a guide to the eye. The inset shows
the same data in a semilogarithmic plot.

us to watch a movie of the complicated particle dynamics
by filtering out the background noise of vibrations, revealing
the underlying major relaxational processes. Using ri(tl), we
determined the radial distribution function and coordination
number distribution. Both are very sharply peaked, reflecting a
highly structured network of O corner sharing SiO4 tetrahedra
in which almost all particles have the ideal coordination
number. This led us to focus on deviations from this well-
defined local neighborhood in order to find the excitations
which are responsible for the slow structural relaxation in the
random network.

We defined defects in the time-averaged structure by an
indicator function: χD

i (tl,β) = 1, if particle i of type α at time

0 5 10 15 20 25 30
t (ns)

0

1

χ iD
(t

,S
i) OSi-defect

0

1

χ iJ (
t)

O-atom jumping
0

1

χ iD
(t

,O
) T

f
=3250 K OO-defect

FIG. 17. (Color online) Similar to Fig. 14 for the same O atom,
but here, for Tf = 3250 K, we show the defect functions χD

i (t) of
OO defects (top figure) and OSi defects (bottom figure) and the jump
function χ J

i (t) (middle figure).

tl has coordination z
αβ

i (tl) �= z
αβ

perfect. We computed the average
number of defects and the time-delayed autocorrelation of
χD

i (tl,β), from which we extracted the average lifetimes of
defects. We observe a very strong variation of lifetimes for
different sorts of defects. SiO and OSi defect correlations
decay fast; in the movie analogy, they correspond to short
flashes which come and go. (Note, however, that we are
looking at time scales which are larger than jump times and
are huge compared to oscillation periods.) In contrast, OO
defects are very long lived; their lifetime becomes comparable
to the equilibration time for T = 2750 K. All lifetimes are
strongly temperature dependent. For example, the lifetime of
OO defects decreases by a factor of 100 in the temperature
range 2500 � T � 3250 K. Given the rather mild temperature
dependence of the average structure as described by the pair
correlation, we expect that defects are one of possibly other
excitations which determine the temperature dependence of
glassy properties at low temperatures. This issue needs to be
explored further in future work.

Local structural rearrangements are achieved by jumping
atoms, i.e., atoms which move considerably further than a
typical oscillation amplitude. The statistics of jumpers in SiO2

has been studied in previous work [31,32]. We expect that
single-particle jump events go hand in hand with the creation
and annihilation of defects and hence we have computed the
correlation of defect and jump events. At low temperatures,
defects involving Si-O bonds are highly correlated to single-
particle jumps (SiO defects for jumping Si atom and OSi
defects for jumping O atom). The correlation between an OO
defect and the corresponding jumping O atom is less well
pronounced. We conclude that defects which breakup a SiO4

tetrahedron are required for a jump. On the other hand, OO
defects due to the relative motion of two tetrahedra with respect
to each other are created much more frequently, so that many
OO defects are not accompanied by a jump event.

It would be interesting to investigate spatial correlations
of defect and jump events and relate our work to studies of
dynamic heterogeneities in which the most mobile particles
are selected (for reviews, we refer the reader to [2,41]). Spatial
correlations, however, require a larger simulation size, which
is planned for the future. Another interesting extension are
other network formers such as B2O3 and BeF2, for which we
expect defects to be well defined. We leave it for future work
to study their defect dynamics as presented here. Our analysis
of time-averaged trajectories shines light on the main features
of structural changes and is easily applicable to simulations
and experiments of other network-forming and non-network-
forming systems and other strong and fragile glass formers.
It remains to be seen whether the defect and jump dynamics
presented here is a universal phenomenon.
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