Microscopic Picture of Aging in SiO$_2$

Katharina Vollmayr-Lee,1,* Robin Bjorkquist,2 and Landon M. Chambers3

1Department of Physics and Astronomy, Bucknell University, Lewisburg, Pennsylvania 17837, USA
2Department of Physics, Cornell University, Ithaca, New York 14853, USA
3Department of Physics, Texas A&M University, College Station, Texas 77843, USA

(Received 18 September 2012; published 3 January 2013)

We investigate the aging dynamics of amorphous SiO$_2$ via molecular dynamics simulations of a quench from a high temperature T_i to a lower temperature T_f below the glass transition, crystallization is avoided and a glass is formed. The resulting out of equilibrium (aging) dynamics has been hotly debated for the last decades and remains unclear $^{[1,2]}$. Most previous studies on the aging dynamics investigated quantities that are averages over all particles in the system, such as mean squared displacement, incoherent intermediate scattering function, dynamic susceptibility, and energy $^{[3,4]}$. On the other hand much less is known about single particle dynamics during aging. For colloids, Cianci et $al.$ investigated the structure $^{[5]}$ and Yunker et $al.$ $^{[6]}$ focused on irreversible rearrangements as a function of waiting time t_w. Warren and Rottler used computer simulations to investigate single particle hopping events for a binary Lennard-Jones mixture without shear as well as for polymers with and without shear $^{[7,8]}$. To gain a more complete picture of the microscopic processes during aging, we study single particle hopping (jump) events for the very different glass former SiO$_2$. Whereas the systems of Warren and Rottler are fragile glass formers, SiO$_2$ belongs to the class of strong glass formers $^{[1]}$.

We determine the number of jumping particles per unit time, the jump length, and the time spent in a cage for a wide range of waiting times t_w and for several choices of T_i and T_f. To study the aging dynamics of amorphous silica we carried out molecular dynamics (MD) simulations using the van Beest-Kramer-van Santen (BKS) potential $^{[9]}$ for the particle interactions. Starting from 20 independent fully equilibrated configurations at high temperatures $T_i \in \{5000$ K, 3760 K$\}$, the system is quenched instantaneously to lower temperatures $T_f \in \{2500$ K, 2750 K, 3000 K, 3250 K$\}$. To keep the temperature at T_f constant and to disturb the dynamics minimally, the Nosé-Hoover thermostat was applied only for the first 0.33 ns (NVT), and the simulation was continued in the NVE ensemble for 33 ns during which T_f stayed constant. For more information on details of the simulation see Ref. $^{[4]}$.

We focus on the microscopic dynamics at the lower temperature T_f by analyzing the single particle trajectories $r_n(t)$. During the production runs at T_f we stored average positions $\bar{r}_n(t_l)$ and fluctuations $\sigma_n(t_l) = \sqrt{\langle r^2_n(t_l) \rangle - \langle \bar{r}_n(t_l) \rangle^2}$ for each particle n at times $t_l = l \times (0.00327$ ns). Here $\langle \ldots \rangle$ is a time average over 0.00327 ns, which corresponds to 3200 MD steps and 2000 MD steps for the NVT and NVE simulation runs, respectively. We then use the resulting $\bar{r}_n(t_l)$ to identify jump events. For example, Fig. 1 shows the z component of $\bar{r}_n(t_l)$ for $n = 315$; rectangular boxes indicate identified jumps. We define a particle n to undergo a jump if its change in average position

$$\Delta \bar{r}_n = |\bar{r}_n(t_l) - \bar{r}_n(t_{l-\Delta})|$$

satisfies

$$\Delta \bar{r}_n > 3\sigma_\alpha,$$ \hspace{1cm} (2)

where σ_α is the average fluctuation size for particle type $\alpha \in \{\text{Si, O}\}$. Because σ_α is intended to be a measure of average fluctuations during each particle’s rattling within its cage of neighbors, we first determine the estimate $\sigma_{\text{est,} \alpha}^2$ by averaging $\langle \sigma_n(t_l) \rangle^2$ over all times t_l of a given simulation run at T_f and over all particles of the same type α. We then determine σ_α by redoing the average over $\langle \sigma_n(t_l) \rangle^2$, but by averaging only over times for which $\langle \sigma_n(t_l) \rangle^2 < 3\sigma_{\text{est,} \alpha}^2$, which roughly excludes jumps from the average. Note that the definition of Eq. (2) is similar, but not identical, to our analysis in Refs. $^{[10,11]}$. To verify that our results are independent of the details of the jump definition, we replaced Eq. (2) with $\Delta \bar{r}_n > \sqrt{2}\sigma_\alpha$ and

DOI: 10.1103/PhysRevLett.110.017801

PACS numbers: 61.20.Lc, 61.20.Ja, 64.70.ph, 61.43.Fs

*Corresponding author.

Department of Physics and Astronomy, Bucknell University, Lewisburg, Pennsylvania 17837, USA

Department of Physics, Cornell University, Ithaca, New York 14853, USA

Department of Physics, Texas A&M University, College Station, Texas 77843, USA

(Received 18 September 2012; published 3 January 2013)
Indeed found qualitatively the same results as are presented here, for which we used Eq. (2) [12].

We study for all simulation runs all jump events occurring during the production run at T_f. For each jump event k we determine the particle n_k jumping from average position $(f_{n_k})^i$ at time t_k^i to average position $(f_{n_k})^f$ at time t_k^f (see circles in Fig. 1).

Our focus is on the dynamics of the system as it is aging over time. We investigate it via the jump events and their dependence on the waiting time t_w, i.e., the time elapsed since the temperature quench to T_f. We divide the simulation run into waiting time windows, as indicated in Fig. 1. For each jump event k with jump time t_k^i we determine the waiting time window which includes t_k^i (the interval Δt_w in Fig. 1) and assign to this waiting time window the waiting time t_w of the left border of the selected time window (see Fig. 1).

We therefore obtain jump statistics for each waiting time window starting at time t_w and of duration Δt_w (see Fig. 1). In Fig. 2 we show the number of distinct particles jumping per observation time Δt_w as function of waiting time t_w [13]. We find for all investigated T_f and both T_i a clear t_w dependence. With increasing waiting time $N_p/\Delta t_w$ decreases following roughly a power law until equilibrium is reached and $N_p/\Delta t_w(t_w)$ becomes independent of t_w and T_i. The power law exponents are approximately the same for O and Si atoms in the range $[-0.6/\text{ns}, -0.3/\text{ns}]$. As one might expect, the larger the T_f, the more particles jump and the earlier the equilibrium time t_{eq}, i.e., the time when $N_p/\Delta t_w$ levels off. For comparison we include in Fig. 2 the equilibrium times t_{eq} determined via the intermediate incoherent scattering function $C_q(t_w, t_w + t)$ ($t_{eq} = t_{23}$ in Ref. [4]).

Next we test whether the t_w dependence also manifests itself in a microscopic length scale. As sketched in Fig. 1, we define the jump length of event k of particle n_k jumping at time t_k^i from $(f_{n_k})^i$ to $(f_{n_k})^f$ to be

$$\Delta R_k^i = |(f_{n_k})^f - (f_{n_k})^i|.$$

Similar to above, we investigate the t_w dependence of $\langle \Delta R \rangle$ by including in the average only events for which t_k^i belong to the same waiting time window. The resulting Fig. 3 shows that $\langle \Delta R \rangle$ for oxygen atoms (solid thick lines with symbols) is independent of t_w (with the only exception being the first time window), and for silicon atoms (dashed thin lines) $\langle \Delta R \rangle$ is only slightly t_w dependent. This is in stark contrast to $N_p/\Delta t_w$ of Fig. 2, which shows strong t_w dependence. The t_w independence of $\langle \Delta R \rangle$ holds true even for the distribution $P(\Delta R)$, both for O and for Si atoms, as shown in Fig. 4 for the case of $T_i = 5000\, K$, $T_f = 2500\, K$. We find similar results for all other investigated T_i and T_f. Consistent with Fig. 3, we find only t_w dependence for $t_w \leq 0.02\, \text{ns}$ (which corresponds in an experiment to the undetectable instant of an infinitely fast quench). For $t_w > 0.02\, \text{ns}$ an additional peak occurs at $\Delta R = 0$ that is...
mostly due to reversible jumps (as defined in Ref. [10]).

Furthermore we find exponential tails \(P(\Delta R) \sim \exp(-\Delta R/R_{\text{decay}}) \) with \(R_{\text{decay}} = 0.8 \) and 0.3 Å for O and Si atoms, respectively (similar to the results for a binary Lennard-Jones mixture [7]).

With the conclusion from Figs. 3 and 4 that the length scale \(\Delta R \) is \(t_w \) independent, we investigate next the time scales associated with the single particle jumps. We define the duration of a jump event \(k \) to be

\[
\Delta t_k^d = t_{k+1}^f - t_k^f \tag{4}
\]

that means the time spent in the cage before the same particle jumps again (see Fig. 1). The resulting \(\langle \Delta t_k^d \rangle \) and \(\langle \Delta t_k^b \rangle \) are shown in Fig. 5. The time between jumps \(\langle \Delta t_k^b \rangle \) is several magnitudes larger than \(\langle \Delta t_k^d \rangle \). For comparison with \(\langle \Delta t_k^b \rangle \) we include arrows on the right to indicate \(t_k^f \) at \(t_w = 23.98 \) ns of Ref. [4], which is defined to be the time for which \(C_q(t_w, t_w + t_k^f) = 0.625 \). Because \(\langle \Delta t_k^b \rangle > t_k^f \), we conclude that \(\langle \Delta t_k^b \rangle \) is characterizing \(\alpha \) relaxation. As above, we determined the \(t_w \) dependence by averaging \(\Delta t_k^b \) and \(\Delta t_k^b \) for all jump events \(k \) for which \(t_k^f \) belongs to the same waiting time window. By choosing this definition of \(\langle \Delta t_k^b \rangle \) we prevent artifacts due to the different time window sizes, because only \(t_k^f \) (instead of \(\Delta t_k^b \)) is required to be in the time window of consideration. For large \(t_w \), however, the finite simulation run time \(t_{\text{tot}} = 33.33 \) ns causes \(\langle \Delta t_k^b \rangle \) to decrease for waiting times \(t_w \geq (t_{\text{tot}} - \Delta t_k^b) \). Ignoring this \(t_{\text{tot}} \)-specific decrease, we therefore obtain the surprising result that \(\langle \Delta t_k^b \rangle \) is independent of \(t_w \). This independence of \(t_w \) holds not only for the average \(\langle \Delta t_k^b \rangle \), but even for the whole distribution \(P(\Delta t_k^b) \), as shown in Fig. 6. Also in Fig. 6 we notice that \(P(\Delta t_k^b) \sim \Delta t_k^b \) at \(T_f = 2500 \) K, whereas \(P(\Delta t_k^b) \sim \exp(-\Delta t_k^b/t_{\text{decay}}) \) at \(T_f = 3250 \) K. In Fig. 7 we show how \(P(\Delta t_k^b) \) plotted versus \(\Delta t_k^b \) changes with the final temperature, for a fixed \(t_w = 8.75 \) ns. We observe that at intermediate temperatures, i.e., \(T_f = 2750 \) K and \(T_f = 3000 \) K, there is a

\[
\Delta t_k^b = t_{k+1}^f - t_k^f \tag{5}
\]
crossover from power law to exponential decay. For comparison we include in Fig. 7 the same arrows as in Fig. 2, which indicate the equilibrium times t_w. The crossover time occurs approximately at the same time when $\frac{N_p}{\Delta t}(t_w)$ and $C_q(t_w, t_w + \tau)$ reach equilibrium. A similar crossover has been observed for kinetically constrained models (see Fig. 10 of Ref. [14]) and for a binary Lennard-Jones mixture (see Fig. 2 of Ref. [15]).

In summary, we obtain the following microscopic picture of aging: both the distribution of jump length and the distribution of times spent in the cage $P(\Delta t_b)$ are independent of waiting time t_w (similar to the results of Warren and Rottler [7,8]). Instead the only t_w dependent microscopic quantity is the number of jumping particles per time, which decreases with increasing t_w (similar to the results of Yunker et al. [6]). This is consistent with the first hop time results reported in Refs. [7,8]. We plan to investigate in the near future spatial correlations of these jumps [11,16]. In agreement with kinetically constrained models $P(\Delta t_b)$ shows a crossover from power law to exponential decay [14]. Our results for the strong glass former SiO$_2$ are surprisingly similar to the fragile glass former results [7,8].

R. B. and L. M. C. were supported by NSF REU Grants No. PHY-0552790 and No. REU-0997424. We thank A. Zippelius and H. E. Castillo for comments on an earlier version of this manuscript. K. V. L. was supported by the Deutsche Forschungsgemeinschaft via SFB 602. K. V. L. thanks A. Zippelius and the Institute of Theoretical Physics, University of Göttingen, for financial support and hospitality.

*kvollmay@bucknell.edu

[12] Please note that for σ_a, we averaged over all times t_l and thus assumed the size of the rattling within the cage, σ_a, to be t_w independent. To confirm this assumption we also determined $\sigma^2_{\text{tot},a}(t_w)$ and $\sigma_a(t_w)$ by averaging only over t_l within the corresponding t_w window. We find that $\sigma_a(t_w)$ is indeed t_w independent for $t_w > 0.04$ ns, namely for Si atoms $\sigma_a = 0.36/0.38/0.41/0.44 \text{ Å}$ and for O atoms $\sigma_a = 0.46/0.49/0.51/0.55$ Å at $T_f = 2500/2750/3000/3250$ K, respectively. For $t_w < 0.04$ ns σ_a is slightly increased by $\Delta \sigma_a \approx 0.05$ Å.

[13] To avoid that all particles jump, we choose a small enough window. For the case of $\Delta t_w > 0.506$ ns we therefore divide the waiting time window into subwindows of size $\Delta t = 0.506$ ns and average over $\frac{N}{\Delta t}$.

