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Abstract
Quantum channel identification, a standard problem in quantum metrology,
is the task of estimating parameter(s) of a quantum channel. We investigate
dissonance (quantum discord in the absence of entanglement) as an aid to
quantum channel identification and find evidence for dissonance as a resource
for quantum information processing. We consider the specific case of dissonant
Bell-diagonal probes of the qubit depolarizing channel, using quantum Fisher
information as a measure of statistical information extracted by the probe. In
this setting dissonant quantum probes yield more statistical information about
the depolarizing probability than do corresponding probes without dissonance
and greater dissonance yields greater information. This effect only operates
consistently when we control for classical correlation between the probe and
its ancilla and the joint and marginal purities of the ancilla and probe.

PACS number: 03.67.−a

(Some figures may appear in colour only in the online journal)

1. Introduction

The precise nature of quantum entanglement and its essential role in quantum information
processing remain ongoing subjects of inquiry. Certainly, though, entanglement is a potent and
fungible quantum information processing resource [1, 2]. Entanglement can be transformed
[3], swapped [4], concentrated [5], catalyzed [6] and distributed over long distances [7], and
it plays a central role in such applications as teleportation [8], superdense coding [9] and
quantum metrology [10]. Entanglement’s remarkable properties stem essentially from the
order of correlation between system components that it expresses—an order of correlation
unexplainable within classical physics.
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Quantum dissonance is another form of quantum correlation, different from entanglement.
Dissonance, so named by Modi et al [11] to refer to quantum discord [12] in separable quantum
states, is comparatively less well understood, and it is important to discover when and to what
degree it, too, can be a resource for quantum information processing. Dissonance is known
to enable a statistical form of teleportation [13], it assists optimal state discrimination [14],
it seems to be the driving resource for the DQC1 computational model [15], and there is
evidence that it aids phase estimation [16]. Ideally, to show that dissonance is a quantum
resource with standing similar to entanglement, one would show for the quantum protocol
of interest that increasing dissonance consistently increases the protocol’s performance. Just
such demonstrations are available for entanglement for a variety of protocols [17]. Perhaps
the strongest evidence yet for dissonance as a quantum resource is [14], in which cases
are found where dissonance is identified to assist unambiguous state discrimination. Even
that study, though, does not address the stringent question of whether increasing dissonance
necessarily yields increased probability of discrimination. We show here for dissonant Bell-
diagonal probes of the qubit depolarizing channel, that increased dissonance does necessarily
yield greater probe information. This is the first instance in which quantum dissonance is
demonstrated to act in this sense as a quantum resource for a standard quantum protocol.

Quantum channel identification [18], also known as quantum process tomography
[1], is a standard quantum protocol for estimating channel parameters. Quantum channels
are the fundamental building blocks of quantum information processing. In any physical
implementation, though, the channel is usually not fully known and must be determined
experimentally by observing its effect on prepared quantum systems, or probes. We study the
qubit depolarizing channel because entanglement is known to aid the identification of this
channel [18, 19]. Additionally, the depolarizing channel is a standard model of quantum noise,
it has been the basis of investigation in a range of contexts [19–23], and it is analytically
tractable for our purpose. Specifically, we study qubit depolarizing channel probes correlated
with a varying degree of dissonance to a second ancilla qubit in a two-qubit Bell-diagonal
state and use quantum Fisher information to gauge the amount of statistical information
available from the probe about the channel depolarizing probability. The rich diversity of
the Bell-diagonal states allows us to flexibly vary the dissonance between probe and ancilla
while controlling other state features, including classical correlation and joint and marginal
purities. A key point of this work is that the effect of dissonance on probe performance is
only unambiguously revealed when these other factors are controlled for. Quantum Fisher
information is the standard measure of probe performance in channel identification, and we
prove that for estimating the quantum channel depolarizing probability, within classes of Bell-
diagonal probe-ancilla states with constant classical correlation and constant purities, any
increase or decrease in dissonance correspondingly increases or decreases the quantum Fisher
information.

In the remainder of this paper’s first section, we briefly review the channel identification
problem and quantum Fisher information’s role therein as well as quantum discord and
dissonance. In section 2 we introduce parametric families of Bell-diagonal states for use as
probe states, and we obtain simple expressions for probe state dissonance and quantum Fisher
information within these families. Using these results, we see, in some typical examples, the
need for controlling ancillary factors and the consequent gain in quantum Fisher information
with increasing dissonance. In section 3 we show generally for the qubit depolarizing channel
and Bell-diagonal probe states that the quantum Fisher information in the channel output is
an increasing function of the probe state dissonance. We make some final, general remarks in
section 4.
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Channel identification and quantum Fisher information. The task of quantum channel
identification is statistical by nature and is typically formulated as a parameter estimation
problem: the unknown channel �p is given to belong to a parametric family {�p, p ∈ P} of
channels indexed by the set P , and we identify the channel by estimating p within P . The
scheme for doing this is to prepare the channel input probe in a chosen quantum state σ , make
a quantum measurement of the channel output ρp = �p(σ ), and record the measurement’s
registered result X . This process is repeated to obtain n independent, identically distributed
measurement outcomes X1, . . . , Xn, and then p is estimated by an estimator p̂ = p̂(X1, . . . , Xn).

The quantum Fisher information J(p) = J[ρp] in the parametric output ρp = �p(σ ) of a
quantum channel bounds the ultimate precision of the estimation of the parameter p attainable
by quantum measurement of ρp. The quantum Cramér–Rao inequality states for n independent,
identically distributed registrations of any quantum measurement and any unbiased estimator
p̂ that [24–26]

V[ p̂] � 1

nJ(p)
(1)

where V[ p̂] is the variance of p̂. The quantum Fisher information J(p) in (1) is

J(p) = J[ρp] = tr[ρpL2
p]

where Lp is the quantum score operator (symmetric logarithmic derivative) associated with ρp

defined by
Lpρp + ρpLp

2
= ∂pρp (2)

where ∂p signifies differentiation. The Cramér–Rao lower bound (1) is asymptotically
(n → ∞) achievable so the larger J(p) is in (1), the more precisely p can be estimated. We
therefore interpret J(p) to be the statistical information about p available in a parametrically
defined quantum state ρp. For fixed p, J(p) is a quantitative measure of the relative merit of
different channel probe states.

The qubit depolarizing channel is a quantum channel [1] defined for any qubit input state
σ by

�p(σ ) = 1 − p

2
I + pσ (3)

where 1 − p is the probability of depolarization and 1
2 I is the completely mixed qubit state.

Suppose the probe qubit is prepared in a two-qubit state ω with a second, ancilla qubit, and
the probe qubit is passed through the channel while the ancilla qubit is held to the side. The
channel output in this case is (�p ⊗I )(ω) where I is the qubit identity channel. The quantum
Fisher information J[(�p ⊗ I )(ω)] associated with the depolarizing channel has no simple
expression in general, though simple expressions are known [19] for special input states ω.
In the next section we derive a new expression for J[(�p ⊗ I )(ω)] generally applicable to
two-qubit Bell-diagonal probe states.

Total correlation, discord and dissonance. The total correlation, quantum and classical, in
subsystems A and B of a bipartite system in quantum state ω is quantified by the quantum
mutual information, given by

I(ω) = S(ωA) + S(ωB) − S(ω) (4)

where ωA = trB[ω] and ωB = trA[ω] are the marginal states of the two subsystems and
S(ρ) = −tr[ρ ln ρ] is the von Neumann entropy of the quantum state ρ [1]. The classical
part of the total correlation (4) in subsystems A and B is related to the reduction in our
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uncertainty about the state of, say, A by measurement of B [12, 27]. Suppose we measure B
by a quantum measurement {Mk} of von Neumann type with one-dimensional projectors Mk

such that
∑

k Mk = I. This measurement casts the bipartite system, originally in state ω, into
the state

ωk = 1

pk
(I ⊗ Mk)ω(I ⊗ Mk)

with probability pk = Tr[(I ⊗ Mk)ω(I ⊗ Mk)]. Depending on the measurement outcome,
the reduction in uncertainty about the state of A is S(ωA) − S(ωk) with average reduction
S(ωA)−∑

k pkS(ωk). The supremum of this average reduction through measuring B is defined
to be the classical part

CA(ω) = sup
{Mk}

(
S(ωA) −

∑
k

pkS(ωk)

)
(5)

of the total correlation in ω. The optimization in (5) is more generally taken over quantum
measurements described by positive operator-valued measures, but for two-qubit states the
optimal measurement is known to be projective [28]. Definition (5), involving as it does
measurement of subsystem B of the bipartite system, is not symmetrical in A and B and, in
fact, CA(ω) �= CB(ω) generally [29]. This is not an issue for us because of the qubit exchange
symmetry of the Bell-diagonal states that we consider, and we henceforth just write C(ω) for
the classical correlation in a bipartite state ω. Alternative, symmetric definitions of classical
correlation exist [29, 30] that yield the same result as (5) for Bell-diagonal states.

The quantum discord D(ω) = I(ω) − C(ω) in a bipartite state ω is the quantum part of
the total correlation between the two qubits [12]. When ω is separable, any nonzero discord
is due strictly to quantum correlation other than entanglement. Following Modi et al [11], we
call positive discord in the absence of entanglement dissonance and say that a separable state
with positive discord is dissonant.

2. Bell-diagonal probe states

Recent investigations [31, 32] involving quantum discord have been based on the Bell-diagonal
states first studied in [33]. Because of their simple geometry [34], these states are a natural
choice for the present study. The Bell-diagonal states are the two-qubit states

� = 1

4

⎛
⎝I +

3∑
j=1

c jσ j ⊗ σ j

⎞
⎠ (6)

where I is the identity operator, σ1, σ2 and σ3 are the Pauli operators and the state parameters
c j are real numbers. These states (6) have the eigendecomposition

� = λ0	
− + λ1


− + λ2

+ + λ3	

+ , (7)

with eigenvalues

λ0 = 1 − c1 − c2 − c3

4

λ1 = 1 − c1 + c2 + c3

4

λ2 = 1 + c1 − c2 + c3

4

λ3 = 1 + c1 + c2 − c3

4
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and Bell eigenstates


± = |φ±〉〈φ±| , 	± = |ψ±〉〈ψ±| (8)

where

|φ±〉 = |00〉 ± |11〉√
2

, |ψ±〉 = |01〉 ± |10〉√
2

.

The conditions λ j � 0 on the eigenvalues of � constrain its triple (c1, c2, c3) of state
parameters to lie in the tetrahedron T with vertices (1, 1,−1), (1,−1, 1), (−1, 1, 1) and
(−1,−1,−1). When (c1, c2, c3) ∈ T we write also � ∈ T in a minor abuse of notation.

The Bell-diagonal states � ∈ T have a number of simple, well-known properties. For
all � ∈ T the marginal states of qubits A and B are completely mixed and, in fact, every
two-qubit state with completely mixed marginals is locally unitarily equivalent to some Bell-
diagonal state [35]. The state � ∈ T is readily found by the PPT criterion [36] to be separable
if and only if (c1, c2, c3) lies within the octahedron O ⊂ T defined by |c1| + |c2| + |c3| � 1
(see figure in [33] or [34]).

The joint purity of a qubit pair in a state � ∈ T varies with � even though the purities
of the individual qubits do not. The joint purity

tr � 2 = 1 + c2
1 + c2

2 + c2
3

4
= 1 + s2

4
(9)

depends specifically on just the ‘radius’ s =
√

c2
1 + c2

2 + c2
3 of the state. According to (9), all

states � ∈ O are mixed, with constant purity on any given centered sphere

S(s) = {
(c1, c2, c3) : c2

1 + c2
2 + c2

3 = s2
}
. (10)

The largest such sphere in O is S(1/
√

3); among such spheres these states � ∈ S(1/
√

3) are
the purest states, with purity tr � 2 = 1/3 (in the possible range [1/4, 1]).

The total correlation (4) in two qubits A and B in a Bell-diagonal state � ∈ T in the form
(7) is

I(� ) = 2 +
3∑

j=0

λ j log2 λ j (11)

because the qubits are individually completely mixed, for which case S(ωA) = S(ωB) = 1.
The classical part C(� ) of this total correlation is [35]

C(� ) = 1 − h

(
1 + c

2
,

1 − c

2

)
(12)

where c = max(|c1|, |c2|, |c3|) and

h(x1, x2) = x1 log2
1

x1
+ x2 log2

1

x2
. (13)

The classical correlation C(� ) is constant for fixed c = max(|c1|, |c2|, |c3|). Thus C(� ) is
constant on the surface C(c) of the cube centered at the origin, oriented with edges parallel to
the c1, c2, c3 axes, and with edge half-length c. Expressions (11) and (12) allow us to readily
calculate the discord D(� ) = I(� )−C(� ) for any � ∈ T . For any separable Bell-diagonal
state � ∈ O, this is the state dissonance.

Suppose we prepare a probe qubit in a Bell-diagonal state � ∈ T with an ancilla qubit
and pass the probe qubit through the depolarizing channel (3). The channel output is readily
shown from the special form (7) of � to be

(� ⊗ I )(� ) = p� + 1 − p

4
I (14)
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Figure 1. Joint purity, classical correlation and dissonance of the probe state and the quantum
Fisher information in the channel output as the probe state is varied through the negative Werner
states, γ ∈ [−1/3, 0].

with eigenvalues

w j(p) = pλ j + 1 − p

4
and associated derivatives w′

j(p) = λ j − 1/4. The channel output state (14) is a convex
combination of � and the two-qubit completely mixed state 1

4 I. These two states commute,
sharing a common eigenbasis composed of the Bell states (8). For an output state of this
convex form, the score operator Lp in (2) has a fixed eigenbasis (the Bell states) independent
of p, and the quantum Fisher information is [19, 26]

J(p) =
3∑

j=0

(w′
j(p))2

w j(p)
=

3∑
j=0

(λ j − 1/4)2

pλ j + (1 − p)/4
. (15)

Some further calculation (using
∑

j λ j = 1) yields the result that, for any Bell-diagonal probe
state � ∈ T , the quantum Fisher information about p in the depolarizing channel output is

J(p) = 1

p(1 − p)
− 1

p(1 − p)

3∑
j=0

λ j

1 − p + 4pλ j
. (16)

With expressions (11), (12) and (16) we can now proceed to relate probe dissonance to
quantum Fisher information for different � ∈ O. A natural one-parameter family of Bell-
diagonal states for this purpose is the ‘negative’ Werner states. The standard Werner states are
the two-qubit states

ρ = 1 − γ

4
I + γ	− (17)

with γ ∈ [0, 1]. Negative Werner states have the form (17), but with γ ∈ [−1/3, 0].
The negative Werner states are Bell-diagonal states, they have zero entanglement for all
γ ∈ [−1/3, 0], and among separable Bell-diagonal states they vary monotonically from
D(ρ) = 0 at γ = 0 to D(ρ) = 1/3 at γ = −1/3 (see figure 1), exhibiting the widest possible
range of dissonance3. The dissonance of the negative Werner states is shown in figure 1,

3 The most dissonant Bell-diagonal state corresponds to the unique point (c1, c2, c3) = (−1/3,−1/3, −1/3) ∈ O
(disregarding trivial symmetries) [34, 37]. This is the negative Werner state with γ = −1/3.
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c1

c2

c3

Figure 2. The sphere has radius s = .3. The cube has edge half-length c = .38. The solid circle
is the circle family L(.3, .38) of separable Bell-diagonal states, with constant purity and constant
classical correlation.

along with the quantum Fisher information (16) when these are used as probe states for the
depolarizing channel. We see stark increases in the quantum Fisher information as the probe
dissonance increases. The increase in dissonance across the negative Werner states, however,
is coupled with increases in both state purity and classical correlation, and we cannot conclude
that increased probe dissonance is the cause of the information increase. In fact, state purity
is known to affect the quantum information [18], and it may be part or all of the source of
the increase in information seen in figure 1. The concurrent variation of joint purity, classical
correlation, dissonance and quantum Fisher information seen in the negative Werner states is
typical of parametric families of separable Bell-diagonal states. Families of two-qubit states
wherein only the dissonance varies are needed. Recalling that the separable Bell-diagonal
states have constant purity on S(s) and constant classical correlation on C(c), we introduce
for this purpose the circle families L(c, s) = C(c) ∩ S(s) of separable Bell-diagonal states.

The circle family L(c, s) for given s > c > 0 is the one-parameter family of separable
Bell-diagonal states � ∈ O with state parameters given for θ ∈ [0, 2π ] by

c1 = r cos θ, c2 = r sin θ, c3 = c (18)

where r = √
s2 − c2 is the radius of the circle family L(c, s). The states � ∈ L(c, s)

occupy in (c1, c2, c3) parameter space the intersection of S(s) and C(c). This intersection
is a circle within O for suitably chosen c and s. (In fact, S(s) and C(c) intersect in six
circles, but the other five circles offer no additional physics, and we give all our attention
to (18).) The family L(c, s) is a circle within the octahedron O only if 0 < c < 1. For
small c > 0, we only need c < s �

√
2c for a circular intersection within O. For larger

c < 1 the octahedron O constrains s to s �
√

c2 + 1
2 (1 − c)2. Therefore, for 0 < c < 1

and c < s � min(
√

2c,
√

c2 + 1
2 (1 − c)2), S(s) and C(c) intersect in a circle within O, and

we call L(c, s) = S(s) ∩ C(c) ⊂ O a circle family of Bell-diagonal states; the circle family
L(.3, .38) is shown in figure 2. The region of admissible pairs (c, s) for circle families L(c, s)
is shown in figure 3.
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2 (1 − c)2)} of admissible half-

edge/radius pairs (c, s) for circle families L(c, s). Two typical pairs explored in the text are
identified.

1 2 3 4 5 6
θ

0.1

0.2

0.3

0.4

0.5

Joint Purity

1 2 3 4 5 6

0.02

0.04

0.06

0.08

0.10

0.12

Classical Correlation

0 1 2 3 4 5 6

0.03

0.04

0.05

Dissonance

c,s .3, .38

p .95

p .65

p .35

p .15
0 1 2 3 4 5 6

0.15

0.20

0.25

Quantum Fisher Info

0.04 0.05

0.15

0.20

0.25

QFI v. Dissonance

θ θ

θ

Figure 4. Joint purity, classical correlation and dissonance of the probe state and the quantum
Fisher information in the channel output as the probe state is varied around L(.3, .38).

The circle families of Bell-diagonal states are useful because, within any given circle
family L(c, s), the joint purity and classical correlation between the probe and its ancilla are
constant. Also, of course, L(c, s) ⊂ O so the entanglement and marginal purities are fixed—to
zero entanglement and completely mixed marginals. The only readily identifiable property that
varies as we move through the states of L(c, s) is the dissonance of the probe state. This allows
us to look at the effect of dissonance on probe information in the absence of other factors.
Results for two typical circle families L(.3, .38) and L(.56, .6) (see figure 3) are shown in
figures 4 and 5. We see unambiguously in these two examples that the probe dissonance is
acting as an aid for channel probing. We show in the next section that this effect is present in
any circle family of Bell-diagonal states.
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Figure 5. Joint purity, classical correlation and dissonance of the probe state and the quantum
Fisher information in the channel output as the probe state is varied around L(.56, .6).

3. L(c, s) probe states

We saw in the previous section in the cases of two particular circle families L(c, s) of
separable Bell-diagonal probe states that the quantum Fisher information in the probe state
at the channel output consistently increased with any increase in the probe’s input state
dissonance. Significantly, in these two cases both the joint purity and the classical correlation
of the probe and its ancilla were held constant. We now prove that when the dissonance is
varied within any circle family L(c, s), the quantum Fisher information always increases with
greater dissonance. Because all other pertinent features, including purity, classical correlation
and entanglement, are fixed in this setting, this indicates unambiguously that dissonance is
acting here as an aid to channel identification.

Suppose that to probe the depolarizing channel (3) we prepare probe and ancilla qubits
in a joint Bell-diagonal state � ∈ L(c, s) ⊂ O with state parameters c j defined as in (18) for
some admissible (c, s). For convenience let φ = θ + π/4. Then the eigenvalues of � are

λ0 = 1 − c − s
√

2 sin φ

4
, λ1 = 1 + c − s

√
2 cos φ

4
,

λ2 = 1 + c + s
√

2 cos φ

4
, λ3 = 1 − c + s

√
2 sin φ

4

where r = √
s2 − c2. Using the general result (16) obtained for the quantum Fisher information

J(p) for any probe state � ∈ T , we find that the change in J(p) as we advance φ to move the
probe state � around the circle L(c, s) is

∂J(p)

∂φ
= − 1

p

3∑
j=0

λ′
j(

1 − p + 4pλ j
)2

= − 1

p

λ′
0(

1 − pc + 4pλ′
2

)2
− 1

p

λ′
1(

1 + pc + 4pλ′
0

)2

− 1

p

λ′
2(

1 + pc + 4pλ′
3

)2 − 1

p

λ′
3(

1 − pc + 4pλ′
1

)2 (19)
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where the λ′
j are the derivatives

λ′
0 = −

√
2r

4
cos φ , λ′

1 =
√

2r

4
sin φ ,

λ′
2 = −

√
2r

4
sin φ , λ′

3 =
√

2r

4
cos φ .

Using the relations λ′
0 = −λ′

3 and λ′
2 = −λ′

1, we have from (19) that

∂J(p)

∂φ
= λ′

3

p

(
1(

1 − pc − 4pλ′
1

)2 − 1(
1 − pc + 4pλ′

1

)2

)

− λ′
1

p

(
1(

1 + pc − 4pλ′
3

)2 − 1(
1 + pc + 4pλ′

3

)2

)

= λ′
3

p

16p(1 − pc)λ′
1(

(1 − pc)2 − 16p2λ′
1

2)2 − λ′
1

p

16p(1 + pc)λ′
3(

(1 + pc)2 − 16p2λ′
3

2)2

= 16λ′
1λ

′
3

⎛
⎜⎝ 1 − pc(

(1 − pc)2 − 16p2λ′
1

2
)2 − 1 + pc(

(1 + pc)2 − 16p2λ′
3

2
)2

⎞
⎟⎠.

(20)

Writing (20) with a common denominator, we have finally

∂J(p)

∂φ
= r2A(p, c, s, φ) sin 2φ (21)

where

A(p, c, r, φ) = (1 − pc)Y 2 − (1 + pc)X2

X2Y 2
(22)

with

X = (1 − pc)2 − 2p2r2 sin2 φ ,

Y = (1 + pc)2 − 2p2r2 cos2 φ .

We are primarily interested in conditions for which A(p, c, r, φ) is numerically positive.
Considering φ = 0 and noting that r2 � c2, we readily find that Y � 1 + pc and X � 1 − pc
for p > 0. Then Y 2 � 1 + pc and X2 � 1 − pc, and it is straightforward to show that the
numerator of A(p, c, r, φ) in (22) is positive for p > 0 for any state in any admissible circle
family L(c, s).

Now consider the change in the quantum dissonance as we move the probe state � around
the circle L(c, s) by advancing φ. We have

∂D(� )

∂φ
= ∂I(� )

∂φ
− ∂C(� )

∂φ

= ∂I(� )

∂φ

=
3∑

j=0

λ′
j log2 λ j

10
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=
√

2s

4 ln 2

[
cos φ ln

λ3

λ0
− sin φ ln

λ2

λ1

]

= s√
2 ln 2

[
cos φ tanh−1 r

√
2 sin φ

1 − c
− sin φ tanh−1 r

√
2 cos φ

1 + c

]
.

(23)

The arguments of tanh−1 in (23) are less than 1 in magnitude for states belonging to any
admissible circle family. We therefore expand the tanh−1 functions in (23) in their MacLaurin
series

tanh−1 x =
∞∑

k=0

x2k+1

2k + 1
, |x| < 1

and find
∂D(� )

∂φ
= r2B(c, r, φ) sin 2φ (24)

where

B(c, r, φ) = 1

2 ln 2

⎡
⎣ 1

1 − c

∞∑
k=0

1

2k + 1

(
r
√

2 sin φ

1 − c

)2k

− 1

1 + c

∞∑
k=0

1

2k + 1

(
r
√

2 cos φ

1 + c

)2k
⎤
⎦

with r = √
s2 − c2. We have

B(c, r, φ) � B(c, r, 0)

= 1

2 ln 2

⎡
⎣ 1

1 − c
− 1

1 + c

∞∑
k=0

1

2k + 1

(
r
√

2

1 + c

)2k
⎤
⎦ . (25)

This new lower bound (25) is a decreasing function of r, and r � c so

B(c, r, φ) � B(c, c, 0)

= 1

2 ln 2

⎡
⎣ 1

1 − c
− 1

1 + c

∞∑
k=0

1

2k + 1

(
c
√

2

1 + c

)2k
⎤
⎦

= 1

2 ln 2

[
1

1 − c
− 1

c
√

2
tanh−1 c

√
2

1 + c

]
,

and in this last form B(c, c, 0) is readily seen to be positive for all admissible 0 < c < 1. We
now combine expressions (21) and (24) to obtain

∂J(p)

∂D(� )
= A(p, c, r, φ)

B(c, r, φ)
> 0 (26)

for the change in the quantum Fisher information relative to the change in dissonance as we
vary φ to move through the circle family L(c, s) of Bell-diagonal probe states. We see from
(26) that the quantum Fisher information is strictly increasing with the probe dissonance and
that this is true for any p > 0 and any circle family L(c, s). This is what we set out to prove
in this section.

Our main result (26) is evidence that, for probing the qubit depolarizing channel by a
separable Bell-diagonal probe state, dissonance is advantageous. This does not mean, though,
that a state belonging to O with positive dissonance necessarily yields more information than
any zero-dissonance state in O. In fact O contains states with zero dissonance that out-perform
states inO with positive dissonance. Consider the state τ ∈ O with (c1, c2, c3) = (1/

√
3, 0, 0).

11
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Figure 6. The shaded region in the left panel is the pairs (γ , p) of negative Werner state and
depolarizing channel parameter values where the zero-dissonance probe state τ (see text) yields
more information than does a dissonant probe state. The shaded region in the right panel is the
pairs (γ , p) of (standard) Werner state and depolarizing channel parameter values where the zero-
entanglement probe state |ψ〉 (see text) yields more information than does an entangled probe.

This state has dissonance D(τ ) = 0. Compare τ with a state ρ from among the negative Werner
states (17). These states have dissonance D(ρ) > 0 for γ ∈ (−1/3, 0). The probe states τ and
ρ yield, according to (16), the respective quantum Fisher informations

J(p; τ ) = 1

3 − p2
, J(p; ρ) = 3γ 2

(1 − pγ )(1 + 3pγ )
, γ ∈ (−1/3, 0) . (27)

As shown in figure 6 (left panel), we find for γ � (
√

10−1)/9 that J(p; τ ) > J(p; ρ) and for
γ < (

√
10 − 1)/9 that sometimes J(p; τ ) < J(p; ρ) and sometimes J(p; τ ) > J(p; ρ). Thus

here are many examples of probe states ρ with positive dissonance that yield less information
than the probe state τ with zero dissonance. This, however, neither contradicts (26) nor refutes
our conclusion therefrom that dissonance appears to be a quantum resource for probing the
depolarizing channel. This is because the comparative effects of τ and ρ are confounded by
the states’ differing purities and classical correlations. In fact, τ is both purer and has more
classical correlation (trρ2 < tr τ 2 = 1/3 and C(ρ) < C(τ ) = 1/

√
3) than any of the negative

Werner states ρ with γ ∈ (−1/3, 0). Thus, even though τ has zero dissonance, it often yields
more information than ρ simply because, in such cases, it has sufficiently greater purity and
classical correlation. To be meaningful, comparisons of the effects of dissonance must be made
among quantum states that are otherwise the same.

The same holds true in investigations of entanglement; comparisons of the effects of
entanglement must be made among states that are otherwise the same. Otherwise, unentangled
probe states are readily found that out-perform entangled states. Suppose, for example,
we consider probing the qubit depolarizing channel with states with varying degrees of
entanglement. Among pure states, any increase in entanglement is accompanied by an increase
in quantum Fisher information [19]. By restricting our attention to just pure states, we are
able to conclude that entanglement has, in this setting, the nature of a quantum resource. But
suppose we were to compare a pure unentangled probe state |ψ〉 and a standard Werner state

12



J. Phys. A: Math. Theor. 45 (2012) 385301 M R Frey and T J Yoder

ρ in (17) with γ ∈ (1/3, 1). For γ ∈ (1/3, 1) the state ρ is entangled. According to (16), the
quantum Fisher informations associated with |ψ〉 and ρ are

J(p; |ψ〉) = 1

1 − p2
, J(p; ρ) = 3γ 2

(1 − pγ )(1 + 3pγ )
, γ ∈ (1/3, 1) . (28)

As shown in figure 6 (right panel), we find for γ � 1/
√

3 that J(p; |ψ〉) > J(p; ρ) and for
γ > 1/

√
3 that sometimes J(p; |ψ〉) < J(p; ρ) and sometimes J(p; |ψ〉) > J(p; ρ). Many

entangled states ρ in this comparison fail to yield more information than the unentangled state
|ψ〉. They fail, not because entanglement is not a quantum resource, but because the comparison
is confounded by other types of correlation and differing purities—|ψ〉 is a pure state with no
correlations, classical or otherwise, while ρ is strictly mixed with both classical correlation
and quantum correlation beyond entanglement [35]. It is impossible (with present theory) to
isolate the role of entanglement in these comparisons. To definitively assess entanglement—or
any state property—as a quantum resource, comparisons of its effects must be made among
states that are otherwise the same. Studying dissonance in this manner as we have done in the
present work, we find that dissonance has the nature of a quantum resource for probing the
qubit depolarizing channel.

4. Final remarks

Dissonant quantum states are necessarily mixed states, typically highly mixed. In fact, the
purest separable Bell-diagonal state has purity only tr � 2 = 1

2 . Since pure states are optimal
for channel probing [18], unless one has a physical probing apparatus that only allows mixed
state probes, it is not clear that dissonance can, as a practical matter, be an attractive resource
for channel probing. In any case, our intent here is not to promote dissonance as a practical
resource. Rather, we have presented new evidence that—within the present setting of the
qubit depolarizing channel, Bell-diagonal probe states, etc—dissonance has the theoretical
properties of a quantum information processing resource. This encourages us to ask about its
properties as a resource for other tasks in quantum information processing, and it is likely
that the circle families of Bell-diagonal states introduced here can be useful again in those
investigations.
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