
PHYS 310 -- Homework #2, Due 
Tuesday February 2, 2015

1. Home - written problem
To get estimates see handwritten solution sheet. You can check

your estimates by plotting the function and comparing with the given figure .

A = 84

m = 212

s = 10

gau[x_] := A*Exp[-1.0*(x-m )^2/(2*s^2)]

Plot[gau[x], {x, 150, 250}]
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50.9486

2. Hughes and Hase, 3.2
see hand -written solution sheets

3. Hughes and Hase, 3.5
Mean weight 502 g, standard deviation 14 g. 
 What is probability that a bag contains less than 500 g?



s = 14

m = 502

You can either integrate directly:

IntegratePDFNormalDistribution[m , s], x, {x, -∞, 500.0}

0.443202

Or you can use CDF :

CDFNormalDistribution[m , s], 500 // N

0.443202

Next question:  In a sample of 1000 bags, how many will contain at least 530 g?  To get that, integrate 
from 530 up to infinity.

IntegratePDFNormalDistribution[m , s], x, {x, 530.0,∞}

0.0227501

1.0-CDFNormalDistribution[m , s], 530

0.0227501

This gave us probability, so for 1000 bags multiply result by 1000.

1000*1.0-CDFNormalDistribution[m , s], 530

22.7501

4. Hughes and Hase 3.7 
Poisson distribution.  Radioactive decay with 58 experiments for one second.  

counts = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13}

occ = {1, 0, 2, 3, 6, 9, 11, 8, 8, 6, 2, 1, 1}

{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13}

{1, 0, 2, 3, 6, 9, 11, 8, 8, 6, 2, 1, 1}

Total number of experimental runs (as a check) :

numruns = Total[occ]

58

Okay, that checks out.  
(i) Now, total number of counts .  Simplest is to do a dot product of occ and counts.

numcounts = Dot[occ, counts]

423

(ii) mean count would then be the total number of counts divided by the number of experiments done. 
(=μ in last Tuesday class)
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meancount = numcounts /numruns

423

58

meancount // N

7.2931

(iii) mean count rate?  since each run is for a duration of τ=1 second, the mean count rate is just 7.29 
counts/s.

Poisson distribution, defining function:

pdist[n_] := Exp[-1.0*meancount ]*meancount ^nFactorial[n]

Let' s plot this to see if it looks reasonable.

Plotpdist[n], {n, 0, 13}
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It isn' t a continuous function, so let' s do it as a discrete list using "Table" function

ListPlotTablen, pdist[n], {n, 1, 13}
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You could have done this using PoissonDistribution.
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ListPlotTablePDFPoissonDistribution[meancount *1.0], i, i, 0, 13
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And now plot the actual data for comparison (but note that it isn' t normalized yet)

Transpose[{counts, occ}]

{{1, 1}, {2, 0}, {3, 2}, {4, 3}, {5, 6}, {6, 9}, {7, 11}, {8, 8}, {9, 8}, {10, 6}, {11, 2}, {12, 1}, {13, 1}}

ListPlot[Transpose[{counts, occ}]]
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plotdatadist= ListPlot[Transpose[{counts, occ}]]
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plotpoisson=

ListPlotTablenumruns *PDFPoissonDistribution[meancount *1.0], i, i, 0, 13,

PlotStyle → Black(*note numruns for comparison below*)
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Showplotdatadist, plotpoisson
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Okay, now that I have had fun plotting these (and making sure that they look reasonable), let' s do the 
calculations that have been requested by the problem.

(i )Expected probability of occurrences of five counts or fewer :

fraclessthanfive= 

n=0

5
pdist[n]

0.264849

CDFPoissonDistribution[meancount ], 5 // N (*same as above*)

0.264849

and therefore the answer for the expected number of occurences of five counts or fewer is here:

fraclessthanfive*numruns

15.3612

So, we' d expect around 15 of the runs to have 5 or fewer counts.  Compare that to what we had :
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Total[occ[[1 ;; 5]]]

12

Ballpark agreement. 

(ii) Expected number of occurrences of 20 counts or more?

fracmorethan20 = 

n=20

∞

pdist[n]

0.0000767424

1-CDFPoissonDistribution[meancount ], 19 // N

0.0000767424

expectedmorethan20 = fracmorethan20 *numruns

0.00445106

In other words, we really wouldn' t expect any of the runs to give us more than 20 counts.  Makes sense 
:  if the mean is 7 and the standard deviation is Sqrt[7], then a count of 20 is 

(20-7)/Sqrt[7] // N

4.91354

almost 5 standard deviations away from the mean, which is really unlikely.

5. Hughes and Hase, 3.8 
Radioactive decay -- another Poisson distribution.  270 counts recorded during a 1 - minute period. 
Calculate :
    
    (i) the mean count rate.  If we use a minute for the time base, this seems trivial:  the mean rate is just 
270 counts/minutes.
    
    (ii) Error in the mean rate:  if we assume a Poisson distributions, then the error should just be Sqrt[N]

errorofmean = Sqrt[270] // N

16.4317

(iii) Fractional error

fracerror = errorofmean 270 // N

0.0608581

If repeat experiment, but for 15 minutes, (iv) expected count

countfor15 = 270*15

4050

(v) Probability of obtaining exactly 4050 counts? Basically, the question is:  What is the probability that
we’ll actually get precisely the mean?  Of course, this is the peak of the distribution, but it is still going to 
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be a really small number.  
Plug into Poisson

m = 4050

Exp[-1*m ]*m ^m Factorial[m ] // N

4050

0.00626864416476

PDFPoissonDistributioncountfor15, countfor15 // N(*same as above *)

0.00626864416476

6. Hughes and Hase, 3.9 
Poisson distribution with mean of 35.

graphpoisson= ListPlotTablePDFPoissonDistribution[35], n, {n, 0, 50}
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Now, plot this Poisson distribution on the same graph as a Gaussian with a mean of 35 and a standard 
deviation of Sqrt[35].  

graphgauss = PlotPDFNormalDistribution[35, Sqrt[35]], x, {x, 0, 50}
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Showgraphpoisson, graphgauss
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The distributions look pretty similar, except for a slight skewing of the data.  The Gaussians are symmetri-
cal around the mean whereas the Poisson distributions are not.
  
  For fun, play around with this by changing the mean and standard deviation.  The differences are more 
and more pronounced the smaller the mean.
  
  

7. Simulation of PHYS 211 M & M Lab
Assumptions :
  All bags are statistically equivalent
  All bags have 60 M&M's
  There are 6 colors of M&M’s (brown, black, red, yellow, green, blue)
  All sections have the same size (24 students)

nInBag = 60;

nBags = 24;

nSection= 200;

pbrown = 1.0/6.0;

meanParent = nInBag*pbrown;

sdParent = SqrtnInBag*pbrown*1-pbrown

2.88675
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Calculation of Parent Standard Deviation

ListPlot

TablePDFBinomialDistributionnInBag, pbrown, i, i, 0, nInBag, PlotRange→ All
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StandardDeviationBinomialDistribution[nInBag, 1/6]
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% // N

2.88675

Or

Sum PDFBinomialDistribution[nInBag, 1/6], ii-meanParent ^2, i, 0, nInBag

8.33333

Sqrt[%]

2.88675

"Experiment"
"Make" a bag of M&Ms by generating a set of random numbers between 1 and 6 (inclusive).
Let brown correspond to 1.

RandomInteger [{1, 6}, nInBag]

{2, 3, 4, 4, 4, 1, 1, 5, 4, 6, 5, 4, 4, 3, 4, 5, 6, 2, 1, 2, 1, 5, 4, 1, 3, 1, 5, 4, 2, 2,

6, 2, 6, 4, 6, 2, 2, 1, 6, 2, 6, 6, 6, 6, 3, 2, 4, 3, 6, 4, 2, 2, 4, 6, 1, 2, 4, 4, 3, 5}

Count the brown M&Ms in random bag.  Note delayed evaluation. 

brownInBag := CountRandomInteger [{1, 6}, nInBag], 1

Find the number of brown M&Ms in all the bags in a section. Note delayed evaluation. 

section:= TablebrownInBag, {nBags}
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(* OR can do this without the intermediate definitionof "brownInBag *)

(* section = TableCountRandomInteger [{1,6},nInBag],1,{nBags}; *)

TableCountRandomInteger [{1, 6}, nInBag], 1, {nBags}

{8, 7, 11, 11, 6, 10, 6, 11, 14, 4, 7, 11, 15, 8, 11, 10, 9, 7, 13, 12, 9, 8, 11, 13}

Meansection // N

StandardDeviationsection // N

10.4167

2.97544

Make a class of many sections.  Record means from each section.

class = TableMeansection, nSection // N;

(* OR can do this without the intermediate definitionof "section" *)

(* class =

TableMeanTableCountRandomInteger [{1,6},nInBag],1,{nBags},nSection//

N *)

m = Meanclass

s = StandardDeviationclass

9.9575

0.615498

Compare with predictions of Central Limit Theorem:

sdParentSqrt[nBags]

0.589256

histwidth= 0.25; histgraph= Histogram class, histwidth
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gaussgraph = PlotnSection*histwidth*

PDFNormalDistributionmeanParent , sdParentSqrt[nBags], x, {x, 5, 15};

Showgaussgraph, histgraph
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The histogram compares well with a gaussian with the same mean and standard deviation. That' s what 
the Central Limit Theorem does for you -- even though we're dealing with binomial statistics, when we 
look at a large distribution of the averages, we find guassian behavior. 
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