
8/1/2017 MandM

http://localhost:8888/notebooks/python/jupyter/juptyer_examples/MandM.ipynb 1/6

PHYS 310 HW Problem

Simulation of PHYS 211 M&M Experiment

6 Colors: Yellow, Blue, Orange, Red, Green, and Blue
Assume 60 M&Ms in every bag
Assume equal probabilities (well mixed, large "reservoir")
Assume 24 students (bags) per section

NOTE: In this notebook I use the module scipy.stats for all statistics functions, including generation of
random numbers. There are other modules with some overlapping functionality, e.g., the regular python
random module, and the scipy.random module, but I do not use them here. The scipy.stats module
includes tools for a large number of distributions, it includes a large and growing set of statistical functions,
and there is a unified class structure. (And namespace issues are minimized.) See
https://docs.scipy.org/doc/scipy/reference/stats.html (https://docs.scipy.org/doc/scipy/reference/stats.html).

In [1]:

Part 1

To get started, sample one bag of M&Ms, and count the numberof brown M&Ms.
Do this by generating 60 random integers from the set 0,1,2,3,4,5, and let's say that "brown" = 5.

In [2]:

Out[2]: array([1, 1, 1, 3, 2, 0, 4, 5, 4, 3, 1, 3, 5, 0, 5, 2, 5, 3, 2, 3, 3, 4, 2,
 3, 3, 4, 3, 3, 1, 2, 2, 1, 2, 5, 5, 3, 4, 1, 3, 4, 3, 0, 2, 0, 4, 1,
 0, 2, 0, 1, 1, 5, 4, 1, 0, 4, 1, 1, 0, 0])

import scipy as sp
from scipy import stats

import matplotlib as mpl # As of July 2017 Bucknell computers use v. 2.x
import matplotlib.pyplot as plt

Following is an Ipython magic command that puts figures in the notebook.
For figures in separate windows, comment out following line and uncomment
the next line
Must come before defaults are changed.
%matplotlib notebook
#%matplotlib

As of Aug. 2017 reverting to 1.x defaults.
In 2.x text.ustex requires dvipng, texlive-latex-extra, and texlive-fonts-recommended,
which don't seem to be universal
See https://stackoverflow.com/questions/38906356/error-running-matplotlib-in-latex-type1cm?
mpl.style.use('classic')

M.L. modifications of matplotlib defaults using syntax of v.2.0
More info at http://matplotlib.org/2.0.0/users/deflt_style_changes.html
Changes can also be put in matplotlibrc file, or effected using mpl.rcParams[]
plt.rc('figure', figsize = (6, 4.5)) # Reduces overall size of figures
plt.rc('axes', labelsize=16, titlesize=14)
plt.rc('figure', autolayout = True) # Adjusts supblot parameters for new size

bag = sp.stats.randint.rvs(0,6,size = 60) # or sp.random.randint(0,6,60)
bag

https://docs.scipy.org/doc/scipy/reference/stats.html

8/1/2017 MandM

http://localhost:8888/notebooks/python/jupyter/juptyer_examples/MandM.ipynb 2/6

Count the number of each color in the bag using sp.bincount(bag). The first element in the array is the
number of occurences of 0 in "bag," the second element is the number of occurences of 1, etc.

In [3]:

For our "brown" = 5 choice, the number of brown M&Ms is the last element in the array returned by
bincount, or sp.bincount(bag)[5].

In [4]:

Now sample many bags
Record number of brown M&Ms in each bag

In [5]:

In [6]:

In [7]:

Answer for Part 1, the results from a single lab section:

= 9.9 ± 0.6N
⎯ ⎯⎯⎯

section

Out[3]: array([9, 13, 9, 13, 9, 7])

Out[4]: 7

Out[6]: array([14, 13, 10, 16, 13, 11, 11, 7, 7, 10, 11, 13, 13, 6, 17, 5, 9,
 9, 12, 8, 6, 15, 13, 10])

Out[7]: (10.791666666666666, 3.1882488227168775, 0.65079856572379458)

sp.bincount(bag)

sp.bincount(bag)[5]

Long version of sampling many bags
nb = 24 # number of bags
data_section = sp.zeros(nb) # array in which to store data for a lab section
for i in range(nb):
 bag = sp.stats.randint.rvs(0,6,size=60)
 data_section[i] = sp.bincount(bag)[5]

Concise version of sampling many bags
nb = 24 # number of bags
data_section = sp.array([sp.bincount(sp.stats.randint.rvs(0,6,size=60))[5] for i in range
data_section

sp.mean(data_section), sp.std(data_section), sp.std(data_section)/sp.sqrt(len(data_section

8/1/2017 MandM

http://localhost:8888/notebooks/python/jupyter/juptyer_examples/MandM.ipynb 3/6

In [8]:

Part 2

Now we simulate data from 200 lab sections.

In [9]:

In [10]:

The standard deviation of the section averages (0.62) is consistent with that predicted by the standard
deviation of the mean determined from a single section (0.6).

Figure 1

     



Out[10]: (9.9508333333333336, 0.58757032676003029)

plt.figure(1)
nbins = 20
low = 0
high = 20
plt.hist(data_section,nbins,[low,high])
plt.xlim(0,20)
plt.title("Histogram of brown M&Ms per bag",fontsize=14)
plt.xlabel("Number of brown M&Ms")
plt.ylabel("Occurences")
plt.show()

nb = 24 # Number of bags in a section
ns = 200 # Number of sections in class
data_class = sp.zeros(ns) # array for results from each section
for j in range(ns):
 data_section = sp.zeros(nb) # array in which to store section data
 for i in range(nb):
 bag = sp.stats.randint.rvs(0,6,size=60)
 data_section[i] = sp.bincount(bag)[5]
 data_class[j] = sp.mean(data_section)

sp.mean(data_class), sp.std(data_class)

8/1/2017 MandM

http://localhost:8888/notebooks/python/jupyter/juptyer_examples/MandM.ipynb 4/6

For a more through comparision with the predictions of the central limit theorem (CLT) I will compare the
histogram of section averages with the the normal distribution predicted by the CLT. The average of the

normal distribution is predicted to be 10, and the standard deviation is predicted to be , where
is the number of bags in a section.

The parent distribution is a binomial distribution with n = 60, and p = 1/6.

/σparent N
⎯ ⎯⎯

√ N

In [11]:

This result is consistent with the observed experimental standard deviation from a single section.

When comparing the histogram with the normal distribution, we are really comparing the observed
occurences in a bin with an integration of the probability distribution over finite interval:

where is the binwidth. (For wide bins it would be better to use the cdf rather than this
approximation.)

× p(x) dx ≃ p()(−)Nsection ∫
x2

x1

Nsection x
⎯⎯⎯

x2 x1

(−)x2 x1

Out[11]: 2.8867513459481291

sigmaP = sp.stats.binom.std(60,1/6.)
sigmaP

8/1/2017 MandM

http://localhost:8888/notebooks/python/jupyter/juptyer_examples/MandM.ipynb 5/6

In [12]:

The histogram compares well with the preditions of the CLT. (For a more quantitative comparison, see
Chapter 8 of Hughes and Hase.) Even though the parent distribution is binomial, the CLT says that the
distribution of AVERAGES drawn from the parent will be gaussian.

Version information

version_information is from J.R. Johansson (jrjohansson at gmail.com)
See Introduction to scientific computing with Python:
http://nbviewer.jupyter.org/github/jrjohansson/scientific-python-lectures/blob/master/Lecture-0-Scientific-
Computing-with-Python.ipynb (http://nbviewer.jupyter.org/github/jrjohansson/scientific-python-
lectures/blob/master/Lecture-0-Scientific-Computing-with-Python.ipynb)
for more information and instructions for package installation.

If version_information has been installed system wide (as it has been on Bucknell linux computers with
shared file systems), continue with next cell as written. If not, comment out top line in next cell and
uncomment the second line.

Figure 2

     



plt.figure(2)
nbins = 25
low = 5
high = 15
binwidth = (high-low)/nbins
plt.hist(data_class,nbins,[low,high],alpha=0.5)
plt.xlim(low,high)
x = sp.linspace(0,20,400)
y = sp.stats.norm.pdf(x,10,sigmaP/sp.sqrt(nb))*ns*binwidth
plt.plot(x,y)
plt.title("Histogram of section averages",fontsize=14)
plt.xlabel("Number of brown M&Ms")
plt.ylabel("Occurences")
plt.show()

http://nbviewer.jupyter.org/github/jrjohansson/scientific-python-lectures/blob/master/Lecture-0-Scientific-Computing-with-Python.ipynb

8/1/2017 MandM

http://localhost:8888/notebooks/python/jupyter/juptyer_examples/MandM.ipynb 6/6

In [13]:

In [14]:

In []:

Loading extensions from ~/.ipython/extensions is deprecated. We recommend managing ex
tensions like any other Python packages, in site-packages.

Out[14]: Software Version

Python 3.6.1 64bit [GCC 4.4.7 20120313 (Red Hat 4.4.7-1)]

IPython 6.1.0

OS Linux 3.10.0 327.36.3.el7.x86_64 x86_64 with redhat 7.2 Maipo

scipy 0.19.1

matplotlib 2.0.2

Tue Aug 01 11:11:10 2017 EDT

%load_ext version_information

#%install_ext http://raw.github.com/jrjohansson/version_information/master/version_information.py

version_information scipy, matplotlib

