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Correlated uncertainties -- Two approaches

Introduction

Consider the oft-encountered problem of calibrating an instrument. To be specific, let's consider the simple
case in which you are calibrating a spectrometer, using a set of spectral lines with known wavelengths .
You measure the pixel number  on the CCD array of the spectrometer for each of the lines, and each of
these measurements has an associated uncertainty  (uncertainties in the known wavelenths is assumed to
be negligible). Let's also assume that a preliminary analysis suggests that data is well-modeled by a linear
relationship between  and  (it's straightforward to generalize to more complicated relationships).

In an experiment in which this calibration data is to be used, the value of the pixel number measured for a
spectral line of unkown wavelength. Let's call the measured value of the pixel number for this unknown line 

, and the associated uncertainty .

The question is: How do we determine the best value, including the uncertainty, for the unknown
wavelength ?

Naive (and incorrect approach):

Since there is good evidence for a linear relationship between  and , why not simply fit  as a function of 
, and use the linear relationship: ?

Whle this approach can give a "quick and dirty" estimate for , it is fundamentally flawed. All of the
standard fitting routines we have used are based on the assumption that the uncertainties are all in the
dependent variable. They can't be expected to handle uncertainties in the independent variable corrrectly,
and they can't give any information about the uncertainty in the slope, the intercept or .

Discussion of better approach, and correlated uncertainties

To get good information about the relationship between  and  we must fit the function

to find values of  and , and then invert this function to find

In determining the uncertainty  in the measurement of the unknown wavelength there is an additional
complication: the values of  and  determined by the fitting function are correlated. To understand
correlation, consider the following cartoon.
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The fact that there is an uncertainty in the slope and the intercept of the best-fit line is captured in the
graphic by the fact that there is a range of "reasonable" lines from which determine the "best" by minimizing
the  statistic. In looking at the illustrated extreme cases of "reasonable" lines, we see that the teal line has
a low slope, but a relatively high intercept, while the purple line has a high slope, but a relatively low
intercept. It is extremely unlikely that the data is fit by a line with a slope as large as that of the purple line,
and an intercept as large as the teal line; such a line would lie above all of the data points. It is in this sense
that the uncertainties in the slope and intercept are said to be correlated.

One other feature to deduce from the cartoon is that a measurement of a pixel value  for the unkown
spectral line near 1100 will give a relatively small range of "reasonable" values for , while a 
measurement of 1300 will give a much larger uncertainty in .

In this notebook we will explore two approaches to the quantitative determination of the uncertainty in values
of the wavelength  using a model data set.

In the first approach we will use Monte Carlo methods to simulate data sets that are statistically
equivalent to the calibration data. We won't use any propagation-of-errors rules, or combination-of-
uncertainty rules; we'll just simulate lots of "experiments" and look at the spread in the outcomes.
In the second approach we show how to generalize things when simple rules for uncorrelated
uncertainties break down. For example, when uncertainties are correlated,

Simple cases of how to handle correlated uncertainties are discussed in Section 7.3 of Hughes and
Hase. In this notebook we will use a computer to calculate autmatically quantities like those given in
Table 7.2 using information returned by the LinearModelFit() function.

NOTE: In the notebook below I make the transition from wavelength and pixel to the more general  and :
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In [1]:

Functions from linear_fit_example.ipynb

In [2]:

b

import scipy as sp
from scipy.linalg import inv, lstsq
 
import matplotlib as mpl       # As of July 2017 Bucknell computers use v. 2.x 
import matplotlib.pyplot as plt
 
# Following is an Ipython magic command that puts figures in the  notebook.
# For figures in separate windows, comment out following line and uncomment
# the next line
# Must come before defaults are changed.
%matplotlib notebook
#%matplotlib
 
# As of Aug. 2017 reverting to 1.x defaults.
# In 2.x text.ustex requires dvipng, texlive-latex-extra, and texlive-fonts-recommended, 
# which don't seem to be universal
# See https://stackoverflow.com/questions/38906356/error-running-matplotlib-in-latex-type1cm?
mpl.style.use('classic')
        
# M.L. modifications of matplotlib defaults using syntax of v.2.0 
# More info at http://matplotlib.org/2.0.0/users/deflt_style_changes.html
# Changes can also be put in matplotlibrc file, or effected using mpl.rcParams[]
plt.rc('figure', figsize = (6, 4.5))            # Reduces overall size of figures
plt.rc('axes', labelsize=16, titlesize=14)
plt.rc('figure', autolayout = True)             # Adjusts supblot parameters for new size

# Basis functions for linear model:  func = a0*X0 + a1*X1 + a2*X2 + ...
# In this notebook, there are only two basis functions: 1 and x
def basis(x):
    '''Basis functions for linear model
    
    Functional form:  func = a0*X0 + a1*X1 + a2*X2 + ...
    In this notebook there are only two basis functions: 1 and x
    '''
    X1 = x
    X0 = 0.*X1 + 1. # Need array of len(x)
    return sp.array([X0,X1])
 
def func(x,a):
    return sp.dot(basis(x).T,a)
 
# Comments in this function based on the notation of Numerical Recipes
def LinearModelFit(x,y,u):
    '''
    x = list of x values [x0, x1, x2, ...]
    y = dependent variable
    u = uncertainties on y
    '''
    X = basis(x).T    # Basis functions evaluated at all x (the X_j(x_i)) of N.R.)
    W = sp.diag(1/u)  # Matrix with uncertainties on diagonal
    Xw = sp.dot(W,X)  # A_ij of Eq. (14.3.4)
    Yw = sp.dot(y,W)  # b_i of Eq. (14.3.5)
    fit = sp.linalg.lstsq(Xw,Yw)  # lstq returns: best values, chi2, ....
    covariance = sp.linalg.inv(sp.dot(Xw.T,Xw))
    uncertainty = sp.sqrt(sp.diag(covariance))
    return(fit[0],uncertainty,fit[1], covariance)
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Linear fit to data for  and m b

Data to be fit:

In [3]:

In [4]:

Perform fit

Figure 1

     



# Or: data = sp.loadtxt("file.dat")  
# Format:  [[x1,y1,u1], [x2,y2,u2], ... ]   where u1 is uncertainty in y1
data = sp.array([[1, 2.947032612427293, 0.5],
 [2, 6.168779380682309, 0.5],
 [3, 7.1618838821688, 0.5],
 [4, 9.590549514954866, 0.5],
 [5, 11.20657,0.5]])
x = data.T[0]  # separate x values into single array
y = data.T[1]  # separate y alues into single array
u = data.T[2]  # separate uncertainties into single array
 
ystar = 3.9    # measurement of "unknown" (pixel) 
uystar = 0.5   # uncertainty in "unknown"

xfine = sp.linspace(0,6,201)  # "quasi-continuous" set of x's for plotting function
plt.figure(1)
plt.title("data",fontsize=14)
plt.xlabel('$x$')
plt.ylabel('$y$')
plt.axhline(0,color='magenta')
plt.xlim(0,6) 
plt.errorbar(x,y,yerr=u,fmt='o');
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In [5]:

In [6]:

Residuals:

parameter 0 = 1.43270960522 +/- 0.524404424085 
parameter 1 = 1.99408449094 +/- 0.158113883008 
chi2 = 3.70062142996 
reduced chi2 = chi2/(5-2) = 1.23354047665 
covariance matrix = [[ 0.275 -0.075] 
 [-0.075  0.025]] 

Figure 2

     



a, unc, chi2, cov = LinearModelFit(x,y,u)
 
for i in range(len(a)):
    print("parameter",i,"=", a[i],"+/-",sp.sqrt(cov[i,i]))
print("chi2 =",chi2)
print("reduced chi2 = chi2/(5-2) =",chi2/3)
print("covariance matrix =",cov)

xfine = sp.linspace(0,6,201)  # "quasi-continuous" set of x's for plotting of function
plt.figure(2)
plt.title("data with best fit line",fontsize=14)
plt.xlabel('$x$')
plt.ylabel('$y$')
plt.axhline(0,color='magenta')
plt.xlim(0,6)  # Pad x-range on plot
plt.errorbar(x,y,yerr=u,fmt='o');
plt.plot(xfine,func(xfine,a));
#plt.show(block=False)
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In [7]:

Results from linear fitting

slope and intercept:

In [8]:

Value for "unknown": = ( − b)x∗ 1
m
y∗

In [9]:

The fitting function does not give a value for the uncertainty in .x∗

Uncertainties I: Monte Carlo approach

Figure 3

     



slope =  1.99408449094 +/- 0.158113883008 
intercept = 1.43270960522 +/- 0.524404424085 

unknown 'wavelength' = 1.23730484139 +/- ? 

plt.figure(3)
plt.axhline(0,color='magenta')
plt.title('normalized residuals',fontsize=14)
plt.xlabel('$x$')
plt.ylabel('$y$')
plt.grid(True)
plt.scatter(x,(func(x,a)-y)/u);

b,m = a
print("slope = ",m,"+/-",unc[1])
print("intercept =",b,"+/-",unc[0])

b, m = a   # For use later
xstar = (ystar - b)/m 
print("unknown 'wavelength' =",xstar,"+/- ?")
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"Offered the choice between the mastery of a five-foot shelf of analytical statistics books and middling ability
at performing statistical Monte Carlo simulations, we would surely choose to have the latter skill." 
 
Numerical Recipes, W. Press, B. Flannery, S. Teukolsky, and W. Vetterling 

In this section we will first redo the determination of the uncertainties in  and  using a Monte Carlo
technique. We will then exted this technique to determine the uncertainty in the "unknown" 
(corresponding to the wavelength of the unknown spectral line).

m b

x∗

We can generate a simulated data set that is statistically equivalent to the original data set
(assuming the model is correct)

In [10]:

Do this many times, fit each of the simulated data sets, and collect the values of  and .b m

In [11]:

Correlation of  and  evident in "tilt" of graph belowb m

Out[10]: (array([  2.94703261,   6.16877938,   7.16188388,   9.59054951,  11.20657   ]), 
 array([  4.2353778 ,   4.30483224,   7.30024165,   9.41436679,  11.29838646]))

ySim = sp.random.normal(m*x + b,u)
y,ySim

nSim = 1000             # Number of simulated data sets
mSim = sp.array([])     # Array for values of slope from simulated sets
bSim = sp.array([])     # Array for values of intercept from simulated sets
 
for i in range(nSim):
    ySim = sp.random.normal(m*x+b,u)     # Generate simulated data set
    a = LinearModelFit(x,ySim,u)[0]  # Fit simulated data set
    bSim = sp.append(bSim,a[0])      # Record intercept
    mSim = sp.append(mSim,a[1])      # Record slope
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In [12]:

For fun, we can add  contours to Monte Carlo dataχ 2
R

In [13]:

Figure 4

     



plt.figure(4)
plt.title("Monte Carlo results for slope and intercept",fontsize=14)
plt.xlabel("$b$")
plt.ylabel("$m$")
plt.xlim(0,3)
plt.ylim(1.5,2.5)
plt.axhline(sp.mean(mSim))
plt.axhline(sp.mean(mSim) + sp.std(mSim),linestyle='--')
plt.axhline(sp.mean(mSim) - sp.std(mSim),linestyle='--')
plt.axvline(sp.mean(bSim))
plt.axvline(sp.mean(bSim) + sp.std(bSim),linestyle='--')
plt.axvline(sp.mean(bSim) - sp.std(bSim),linestyle='--')
plt.scatter(bSim,mSim,marker='.',s=0.5);

# Set grid in intercept-slope space for evaluation of chi-square
delta = 0.02
mcB = sp.arange(0, 3.5+delta, delta)
mcM = sp.arange(1.5, 3.+delta, delta)
B, M = sp.meshgrid(mcB, mcM)
 
# Evaluate chi-square at every grid point and subtract minimum value
Z = sp.zeros((len(B),len(B[0])))
for i in range(len(B)):
    for j in range(len(B[0])):
        Z[i,j] = (sp.sum((func(x,sp.array([B[i,j],M[i,j]]))-y)**2/u**2)-chi2)/(len(data
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In [14]:

Simulated data gives no new info about the value of  and , but the spread in the values of does
give info about  and . Agrees with results from least-squares fit. Nothing new, yet.

m b
σm σb

In [15]:

Extend Monte Carlo idea to get information on uncertainty in 

For every simulated data set, pick random  consistent with measured value
Use simulated data set and  to determine value for 
Repeat

x⋆

y∗

y⋆ x⋆

Figure 5

     



uncertainty in intercept = 0.526492894823 ; uncertainy in slope = 0.154100945486 

plt.figure(5)
CS = plt.contour(B, M, Z,levels=[1,2,3],colors="k")
plt.title("Monte Carlo results for slope and intercept",fontsize=14)
plt.xlabel("$b$")
plt.ylabel("$m$")
plt.xlim(0,3)
plt.ylim(1.6,2.4)
plt.axhline(sp.mean(mSim))
plt.axhline(sp.mean(mSim)+sp.std(mSim),linestyle='--')
plt.axhline(sp.mean(mSim)-sp.std(mSim),linestyle='--')
plt.axvline(sp.mean(bSim))
plt.axvline(sp.mean(bSim)+sp.std(bSim),linestyle='--')
plt.axvline(sp.mean(bSim)-sp.std(bSim),linestyle='--')
plt.scatter(bSim,mSim,marker='.',s=0.5);
plt.clabel(CS);

print("uncertainty in intercept =",sp.std(bSim), "; uncertainy in slope =",sp.std(mSim))
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In [16]:

Results

Uncertainty in  is standard devation of simulated values. This is "new."x⋆

In [17]:

Can also make histogram of Monte Carlo values of x∗

In [18]:

Uncertainties II: Using the covariance matrix

xstar = 1.23730484139 +/- 0.308731948792 

Figure 6

     



nSim = 1000             # Number of simulated data sets
mSim = sp.array([])     # Array for values of slope from simulated sets
bSim = sp.array([])     # Array for values of intercept from simulated sets
xstarSim = sp.array([]) # Array for values of xstar from simulated sets
 
for i in range(nSim):
    ySim = sp.random.normal(m*x+b,u)     # Generate simulated data set
    a = LinearModelFit(x,ySim,u)[0]  # Fit simulated data set
    ystarRan = sp.random.normal(ystar,uystar) # Pick a random ystar
    xs = (ystarRan -a[0])/a[1]       # Calculate simulated xstar
    bSim = sp.append(bSim,a[0])      # Record intercept
    mSim = sp.append(mSim,a[1])      # Record slope
    xstarSim = sp.append(xstarSim,xs)# Record xstar

print("xstar =",xstar,"+/-",sp.std(xstarSim))

nbins = 10
low = sp.mean(xstarSim) - 3*sp.std(xstarSim)
high= sp.mean(xstarSim) + 3*sp.std(xstarSim)
plt.figure(6)
plt.xlabel("value")
plt.ylabel("occurences")
plt.title("Histogram; equal sized bins",fontsize=14)
out = plt.hist(xstarSim,nbins,[low,high])
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Uncertainties II: Using the covariance matrix

As mentioned above, the total uncertainty in the unknown  is not given by adding all of the uncertainties in
quadrature:

Rather, it can be shown that the variance in  is given by

where  is the covariance between the correlated parameters  and  that is defined in Eq. (7.29) on p.
94 of Hughes and Hase. The variances and the covariance in the square brackets can be collected in the
covariance matrix:

which is one of the things returned by the least square fitting procedure used above. Writing the variance in
the value of  in terms of the covariance matrix and the row vector , in which the derivatives are taken
with respect to  and  and evaluated at the best fit values of these parameters, gives
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x∗

= + [ + 2 + ]σ2
x∗ ( )

∂x∗

∂y∗
σy∗

2

( )
∂x∗

∂b
σb

2
∂x∗

∂m

∂x∗

∂b
σbm ( )

∂x∗

∂m
σm

2

σbm b m

Σ ≡ ( ) ,
σ2
b

σbm

σbm

σ2
m

λ∗ ∇λ⋆

b m

= + (∇ ) ⋅ Σ ⋅ (∇σ2
x∗ ( )

∂x∗

∂y∗

2

σ2
y∗ x⋆ x⋆)T

In [19]:

In [20]:

In [21]:

Version details

version_information is from J.R. Johansson (jrjohansson at gmail.com) 
See Introduction to scientific computing with Python: 
http://nbviewer.jupyter.org/github/jrjohansson/scientific-python-lectures/blob/master/Lecture-0-Scientific-
Computing-with-Python.ipynb (http://nbviewer.jupyter.org/github/jrjohansson/scientific-python-
lectures/blob/master/Lecture-0-Scientific-Computing-with-Python.ipynb)  
for more information and instructions for package installation. 

If version_information has been installed system wide (as it has been on Bucknell linux computers with
shared file systems), continue with next cell as written. If not, comment out top line in next cell and
uncomment the second line.

The value of the unknown wavelength is 1.23730484139 +/- 0.308188846621 

import numdifftools as nd     # Module for numerical evaluation of derivatives

def f(p):       # Function for calculation of lambda-star from b and m
    return (ystar-p[0])/p[1]
def f2(ystar):  # Same function, but ystar is the variable
    return (ystar-b)/m

best = sp.array([b,m])
unc_p = nd.Derivative(f2)(ystar)*uystar
beta = nd.Gradient(f)(best)          # Gradient of lambda-star evaluated at (b,m)
unc_mb = sp.sqrt(beta@cov@beta.T)    # As of python 3.5, @ symbol gives matrix multiplication
unc_xstar = sp.sqrt(unc_p**2 + unc_mb**2)
print("The value of the unknown wavelength is",xstar,"+/-",unc_xstar)

http://nbviewer.jupyter.org/github/jrjohansson/scientific-python-lectures/blob/master/Lecture-0-Scientific-Computing-with-Python.ipynb
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In [22]:

In [23]:

In [ ]:

Loading extensions from ~/.ipython/extensions is deprecated. We recommend managing ex
tensions like any other Python packages, in site-packages. 

Out[23]: Software Version

Python 3.6.1 64bit [GCC 4.4.7 20120313 (Red Hat 4.4.7-1)]

IPython 6.1.0

OS Linux 3.10.0 327.36.3.el7.x86_64 x86_64 with redhat 7.2 Maipo

scipy 0.19.1

matplotlib 2.0.2

Tue Aug 01 11:05:03 2017 EDT

%load_ext version_information
 
#%install_ext http://raw.github.com/jrjohansson/version_information/master/version_information.py

%version_information scipy, matplotlib

 


