8/1/2017 hughes-hase_ch2-3

Problems from Hughes and Hase

In [1]: dimport scipy as sp
from scipy import stats

import matplotlib as mpl # As of July 2017 Bucknell computers use v. 2.x
import matplotlib.pyplot as plt

Following is an Ipython magic command that puts figures in the notebook.
For figures in separate windows, comment out following line and uncomment
the next line

Must come before defaults are changed.

%matplotlib notebook

#%matplotlib

As of Aug. 2017 reverting to 1.x defaults.

In 2.x text.ustex requires dvipng, texlive-latex-extra, and texlive-fonts-recommende
which don't seem to be universal

See https://stackoverflow.com/questions/38906356/error-running-matplotlib-in-latex-t)
mpl.style.use('classic')

M.L. modifications of matplotlib defaults using syntax of v.2.0
More info at http://matplotlib.org/2.0.0/users/deflt style changes.html
Changes can also be put in matplotlibrc file, or effected using mpl.rcParams[]

plt.rc('figure', figsize = (6, 4.5)) # Reduces overall size of figures
plt.rc('axes', labelsize=16, titlesize=14)

plt.rc('figure', autolayout = True) # Adjusts supblot parameters for new s.
Problem 2.2

Twelve data points given:

In [2]: data = sp.array([5.33,4.95,4.93,5.08,4.95,4.96,5.02,4.99,5.24,5.25,5.23,5.01])

a) Calculating the mean: = % DX

In [3]: print("mean =",sum(data)/len(data))
mean = 5.07833333333

or

In [4]: print("mean =",sp.mean(data))

mean = 5.07833333333

o 1
b) standard deviation: ¢ = \/m Z,-(Xi - u)?

In [5]: print("standard deviation =",sp.sqrt(sum((data-sp.mean(data))**2)/(len(data)-1)))
standard deviation = 0.143579774046

http://localhost:8888/notebooks/python/jupyter/juptyer_examples/hughes-hase_ch2-3.ipynb 1/9

8/1/2017 hughes-hase_ch2-3

or

In [6]: print("standard deviation =",sp.std(data))
standard deviation = 0.137467167797

These results do not agree!!

By default the scipy std method calculates o), which is similar to the oxy_; given in Eq.(2.3) of H&H, except
the denominator is N instead of N — 1. The difference doesn't usually matter, and we won't go into this in
any depth now. But if we set the 'ddof=1" option scipy will calculate on_; -

Remember: you can see all the details of sp.std by typing sp.std?.
In [7]: print("standard deviation =",sp.std(data,ddof=1))

standard deviation = 0.143579774046

c) Standard error, or standard deviation of the mean

Use Eq.(2.7): a = 2=t

\/]T/

In [8]: print("standard error =",sp.std(data,ddof=1)/sp.sqrt(len(data)))
standard error = 0.0414479105979

d) Formatted result

sensitivity = 5.071 + 0.041

Sample n random numbers from the normal distribution with mean p, standard deviation ¢, and pdf

1
p(x) = ——=exp(—(x — p)*/c”)

\2ro6?

Problem 2.3

The standard error, or standard deviation of the mean, is given by Eq.(2.7):

To decrease «a by a factor of 10, the denominator must be increased by the same factor, which means that N
must increase by a factor of 100. Translating to the described experiment, this means that data should be
collected for 100 minutes (assuming that everything in the experiment is stable for that length of time).

Problem 2.6

(i) If the mean is 5 = 3.27346, and the standard error (standard deviation of the mean) is « = 0.01913, |
would report § = 3.27 + 0.02 (although some might report this as $\delta = 3.273 \pm 0.019).

http://localhost:8888/notebooks/python/jupyter/juptyer_examples/hughes-hase_ch2-3.ipynb 2/9

8/1/2017

In [9]:

In [10]:

In [11]:
Out[11]:

In [12]:

Out[12]:

In [13]:
Out[13]:

In [14]:
Out[14]:

In [15]:
Out[15]:

hughes-hase_ch2-3
Problem 3.2

import sympy as sym # import sympy for symbolic integration
sym.init printing() # for LaTeX formatted output

a, X, mu = sym.symbols('a x mu') # must declare symbolic variables in sympy
I will use mu for x-bar

Define the probability distribution function.
(The conditional will be incorporated in the limits of integration.)

p=1/a

a) A probability distribution is normalized if the integral over all space is one, i.e.,

/5 Py(x;x,a)dx = M”_Z‘f Py(x;x,a)dx = 1.

sym.integrate(p, (x,mu-a/2,mu+a/2))
1(a + >+ 1<a 4 >
a 2 # a\?2 a

sym.simplify() # The underscore " " is like the Mathematica %
1t refers to the previous output.

b) The mean is just the first moment of the distribution given by Eq.(3.4):

)_c=/ooP(x)xdx

sym.integrate(p*x, (x,mu-a/2,mu+a/2))

(-2 +u)° .\ (£ +n)°
2a 2a

sym.simplify()

u

c) The square of the standard deviation, or variance, is given by Eq.(3.5):

6> = / " P(x)(x — X)* dx

(e]

sym.sqrt(sym.integrate(p*(x-0)**2, (x,-a/2,a/2)))

Viva

6

Problem 3.5

Normally distributed pasta bags with a mean weight of 502 g, and an s.d. of 14 g.

http://localhost:8888/notebooks/python/jupyter/juptyer_examples/hughes-hase_ch2-3.ipynb

3/9

8/1/2017

In [16]:

In [17]:

Out[17]:

In [18]:
Out[18]:

In [19]:

hughes-hase_ch2-3

mean = 502.
sigma = 14.

What is the probability that a bag contains less than 500 g?
This information is given directly by the cumulative distribution function (c.d.f.)

sp.stats.norm.cdf (500, mean, sigma)

0.443201503184

In a sample of 1000 bags, how many are expected to contain at least 530 g?
This information is given indirectly by the c.d.f. The probability of one bag containing more than 530 is (1 -
c.d.f), and we must multiply by the number of bags.

1000*(1-sp.stats.norm.cdf (530, mean, sigma))
22.7501319482

Problem 3.7

Radioactive decays recorded during 58 successive one-second experiments.

data = sp.array([I[1,1],[2,0],I[3,2],[4,3],[5,61,[6,9]1,[7,11],1[8,8],[9,8],\
(1le,6],[11,2],[12,1],[13,1]])

For fun, let's reproduce Fig.3.8 from Hughes & Hase.

http://localhost:8888/notebooks/python/jupyter/juptyer_examples/hughes-hase_ch2-3.ipynb

4/9

8/1/2017

In [20]:

In [21]:

Out[21]:

In [22]:
Out[22]:

In [23]:
Out[23]:

hughes-hase_ch2-3

plt.figure(1)

n = data.T[0] # get values for horizontal axis (use transform of data array)

height = data.T[1]

plt.title("Figure 3.8 of Hughes & Hase, p. 33",fontsize=14)

plt.xlabel("Number of Counts, N")

plt.ylabel("Occurence")

plt.bar(n,height,align="center',alpha=0.5) # alpha sets opacity so data will
data will be visible later

plt.show()

Figure 1 [0)

- Figure 3.8 of Hughes & Hase, p. 33

Occurence

0

2 0 2 4 [+) 8 10 12 14 1a
Number of Counts, v

A € > 4 O
Check that we have the correct number of trials:
ntrials = sum(height)

ntrials

58

That was good. Now calculate the total number of counts recorded. Remember that multiplication of scipy

arrays is "element by element."

sum(n*height)

423

or equivalently

sp.dot(n,height)
423

The mean count rate is the total number of counts divided by the total number of trials:

http://localhost:8888/notebooks/python/jupyter/juptyer_examples/hughes-hase_ch2-3.ipynb

5/9

8/1/2017

In [24]:

Out[24]:

In [25]:

Out[25]:

In [26]:
Out[26]:

In [27]:

Out[27]:

In [28]:
Out[28]:

In [29]:

Out[29]:

hughes-hase_ch2-3

mean = sp.dot(n,height)/ntrials
mean

7.29310344828
The easiest way to determine the probability of 5 counts or fewer is to use the CDF:

prob = sp.stats.poisson.cdf(5,mean)
prob

0.264848929955
The expected number of occurrences is the probability X the number of experiments:

prob*ntrials

15.3612379374
The expected number of occurrences 20 or more is (1 - ¢.d.f(19)):

prob2 = 1 - sp.stats.poisson.cdf(19,mean)
prob2

7.67424359367¢ — 05
The expected number of occurrences 20 or more is the probability X the number of experiments:

prob2*ntrials

0.00445106128433

CONCLUSION: We're not going to observe any runs with 20 or more counts. If the mean is 7, that implies
that 6 = \/7 A detection of 20 counts would be (20 — 7)/\/— = 4.9 standard deviations away from the
mean.

y = sp.stats.poisson.pmf(n,mean)*ntrials
plt.scatter(n,y,c='r")

<matplotlib.collections.PathCollection at 0x7f49edclb828>

Problem 3.8

Another radioactive decay problem = another Poisson distribution problem.

Use counts/min as units. Then the mean count rate is just 270 (only 1 trial). So

7 =270
o = \/270
a= 2 = =164

<3

W
4.

So the error in the mean count rate is a = 16.

The fractional error is:

http://localhost:8888/notebooks/python/jupyter/juptyer_examples/hughes-hase_ch2-3.ipynb

6/9

8/1/2017 hughes-hase_ch2-3

In [30]: sp.sqrt(270)/270
Out[30]: 0.060858061945

Counting for 15 minutes should yield a count rate of 15 X 270 + 4/15 x 270:

In [31]: 15%270,sp.sqrt(15*270)
Out[31]: (4050, 63.6396103068)

The mean of the distribution should be 4050. The probability of getting exactly this value is given by the pmf:

In [32]: sp.stats.poisson.pmf(4050,4050)
Out[32]: 0.00626864416478

Problem 3.9

Comparing Poisson distribution with mean of 35 to a normal distribution with a mean of 35 and a standard

deviation of 4/35.

In [33]: mean = 35
upper = 2*mean # limit for graphs

http://localhost:8888/notebooks/python/jupyter/juptyer_examples/hughes-hase_ch2-3.ipynb 7/9

8/1/2017 hughes-hase_ch2-3

In [34]: x1 = sp.linspace(0,upper,upper+l)
yl = sp.stats.poisson.pmf(x1,mean)
X2 = sp.linspace(0,upper,500)
y2 = sp.stats.norm.pdf(x2,mean,sp.sqrt(mean))

plt.figure(2)
plt.xlim (0, upper)
plt.axhline(0)
plt.scatter(x1l,yl)
plt.plot(x2,y2);

Figure 2 o
0.08 . ; ; T T T
0.06 |
0.04}
002}
0.00 [olaialal St e et |
_902 1 1 1 1 1 1
0 10 20 30 40 50 60 70

A € > ¢ 0 B

Version details

version_information is from J.R. Johansson (jrjiohansson at gmail.com)

See Introduction to scientific computing with Python:
http://nbviewer.jupyter.org/github/jrjohansson/scientific-python-lectures/blob/master/L ecture-0-Scientific-
Computing-with-Python.ipynb (http:/nbviewer.jupyter.org/github/jrjiohansson/scientific-python-
lectures/blob/master/Lecture-0-Scientific-Computing-with-Python.ipynb)

for more information and instructions for package installation.

If version_information has been installed system wide (as it has been on linuxremotes), continue with
next cell as written. If not, comment out top line in next cell and uncomment the second line.

In [35]: %load ext version information

#%install ext http://raw.github.com/jrjohansson/version information/master/version inf

Loading extensions from ~/.ipython/extensions is deprecated. We recommend managing ex
tensions like any other Python packages, in site-packages.

http://localhost:8888/notebooks/python/jupyter/juptyer_examples/hughes-hase_ch2-3.ipynb 8/9

http://nbviewer.jupyter.org/github/jrjohansson/scientific-python-lectures/blob/master/Lecture-0-Scientific-Computing-with-Python.ipynb

8/1/2017 hughes-hase_ch2-3

In [36]: version information scipy, matplotlib, sympy

Out[36]: software Version
Python 3.6.1 64bit [GCC 4.4.7 20120313 (Red Hat 4.4.7-1)]
IPython 6.1.0
OS Linux 3.10.0 327.36.3.el7.x86_64 x86_64 with redhat 7.2 Maipo
scipy 0.19.1
matplotlib 2.0.2
sympy 11
Tue Aug 01 11:08:17 2017 EDT
In[1]:

http://localhost:8888/notebooks/python/jupyter/juptyer_examples/hughes-hase_ch2-3.ipynb 9/9

