
8/1/2017 simulation_example

http://localhost:8888/notebooks/python/jupyter/juptyer_examples/simulation_example.ipynb 1/6

Simulated Data Sets and a Demonstration of Central Limit
Theorem

Material to accompany coverage in Hughes and Hase.

Introductory section complements Section 3.5, and generates graphs like those in Figs.3.6, 3.7, 3.8.
Second section complements Chapter 8 on hypothesis testing using

NOTE: In this notebook I use the module scipy.stats for all statistics functions, including generation of
random numbers. There are other modules with some overlapping functionality, e.g., the regular python
random module, and the scipy.random module, but I do not use them here. The scipy.stats module includes
tools for a large number of distributions, it includes a large and growing set of statistical functions, and there
is a unified class structure. (And namespace issues are minimized.) See
https://docs.scipy.org/doc/scipy/reference/stats.html (https://docs.scipy.org/doc/scipy/reference/stats.html).

χ 2

In [1]:

Rolling of the dice

Consider rolling a fair 6-sided die many times and recording the results. This "original" distribution has a
mean and variance given by

μ = i = × i∑6
i=1 pi ∑6

i=1
1

6

= (i − μσ2 1

6
∑6

i=1)2

import scipy as sp
from scipy import stats

import matplotlib as mpl # As of July 2017 Bucknell computers use v. 2.x
import matplotlib.pyplot as plt

Following is an Ipython magic command that puts figures in the notebook.
For figures in separate windows, comment out following line and uncomment
the next line
Must come before defaults are changed.
%matplotlib notebook
#%matplotlib

As of Aug. 2017 reverting to 1.x defaults.
In 2.x text.ustex requires dvipng, texlive-latex-extra, and texlive-fonts-recommended,
which don't seem to be universal
See https://stackoverflow.com/questions/38906356/error-running-matplotlib-in-latex-type1cm?
mpl.style.use('classic')

M.L. modifications of matplotlib defaults using syntax of v.2.0
More info at http://matplotlib.org/2.0.0/users/deflt_style_changes.html
Changes can also be put in matplotlibrc file, or effected using mpl.rcParams[]
plt.rc('figure', figsize = (6, 4.5)) # Reduces overall size of figures
plt.rc('axes', labelsize=16, titlesize=14)
plt.rc('figure', autolayout = True) # Adjusts supblot parameters for new size

https://docs.scipy.org/doc/scipy/reference/stats.html

8/1/2017 simulation_example

http://localhost:8888/notebooks/python/jupyter/juptyer_examples/simulation_example.ipynb 2/6

In [2]:

The following code simulates rolling the die 10 times by sampling random numbers betwen 1 and 6:

In [3]:

And the average of a sample of 10 numbers from this distribution is

In [4]:

or

In [5]:

The average of a fixed number of rolls is itself a random variable. The question is: What is the probability
distribution for the average? Let's repeat the "experiment" 1000 times and look at the distribution of values,
but this time let's let the number of rolls in each experiment be .

In the language of Hughes and Hase on p. 33 (right before the beginning of Section 3.5.1, the values of ,
, , etc., are the results of individual rolls of the die, and corresponds the number of rolls that are

going to be averaged (400) to get a sample mean. The number of "experiments" (nEx) is the number of
times we calculate the mean to get the distribution of the sample means.

n = 400

x1
x2 x3 N

In [6]:

In [7]:

Out[2]: (3.5, 1.707825127659933)

Out[3]: array([1, 5, 4, 5, 3, 5, 4, 2, 5, 3])

Out[4]: 2.8999999999999999

Out[5]: 3.7000000000000002

i = sp.arange(1, 7, 1)
mu = sum(i)/6
sigma = sp.sqrt(sum((i - mu)**2)/6)
mu, sigma

low, high, n = (1, 6, 10)
sp.stats.randint.rvs(low, high+1, size=n)
#sp.random.randint(low, high+1, n)

sum(sp.stats.randint.rvs(low, high+1, size=n))/n

sp.mean(sp.stats.randint.rvs(low, high+1, size=n))

Simulation - "unpythonic" version
n_ex = 1000
n = 400
sim_data = sp.array([]) # Create an empty array
for i in range(n_ex):
 sim_data = sp.append(sim_data, sp.mean(sp.stats.randint.rvs(low, high+1, size=n)))

Simulation - more concise
n_ex = 1000
n = 400
sim_data = sp.array([sp.mean(sp.random.randint(low, high+1, n)) for i in range(n_ex)])

8/1/2017 simulation_example

http://localhost:8888/notebooks/python/jupyter/juptyer_examples/simulation_example.ipynb 3/6

In [8]:

In [9]:

The central limit theorem says that this data should be approaching a normal distribution with a mean and
standard deviation given by

Let's look at the simulated data. First, let's look at a histogram of the sample averages.

= μμsample
=σsample

σ

n√

Figure 1

     



Out[9]: (1000, 1000)

plt.figure(1)
x = sp.linspace(0, n_ex, n_ex)
y = sim_data
#plt.xlim(0,n_ex)
plt.axhline(mu)
plt.xlabel('Experiment #')
plt.ylabel('Average of %s randomly selected rolls'%(n_ex))
plt.title('%s randomly selected rolls'%(n_ex))
plt.scatter(x, y)
plt.show()

len(sim_data), len(x)

8/1/2017 simulation_example

http://localhost:8888/notebooks/python/jupyter/juptyer_examples/simulation_example.ipynb 4/6

In [10]:

This resembles a normal distribution, but let's check the mean and standard deviation. The CLT predicts

 and .= μμCLT = σ /σCLT 400
⎯ ⎯⎯⎯⎯⎯

√

In [11]:

In [12]:

Agreement with standard deviation predicted by CLT is pretty good.

Hypothesis testing: test (From Chapter 8 of Hughes and Hase)χ2

Question: The binned data in Fig.2 looks like it could be from a normal distribution, but can we be more
quantitative? Is there statistical evidence that the probablity that the data presented in Figs. 1 and 2 came

from a normal distribution with mean and standard deviation ? The idea is to
test the null hypothesis: assume that the data comes from the assumed distribution, and see if there is
evidence that it doesn't.

μ = 3.5 = 3.5/σsam 400
⎯ ⎯⎯⎯⎯⎯

√

Figure 2

     



Out[11]: (3.5027124999999999, 0.084192405202310264)

Out[12]: 0.085391256382996647

plt.figure(2)
nbin, low, high = [40, 3.20, 3.80]
plt.xlim(low, high)
plt.xlabel("Average")
plt.ylabel("Occurrences")
plt.title("Histogram of averages")
plt.hist(sim_data,nbin, [low,high], edgecolor='black');
plt.show()

mu_sample = sp.mean(sim_data)
sigma_sample = sp.std(sim_data)
mu_sample, sigma_sample

sigmaCLT = sigma/sp.sqrt(n)
sigmaCLT

8/1/2017 simulation_example

http://localhost:8888/notebooks/python/jupyter/juptyer_examples/simulation_example.ipynb 5/6

The approach is outlined in Ch. 8, and the steps are in the bulleted list on p. 112.

The histogram of (of H&H), the binned data, is in the array "observed."
The histogram of (of H&H), the expected occurrences, is in the array "expected" (calculated using
the CDF of a normal distribution with the assumed mean and standard deviation).
The value of is given by

Oi

Ei

χ 2

=χ 2 ∑
i

(−Oi Ei)
2

Ei

In [13]:

Calculate and :χ 2 χ 2ν

In [14]:

Calcuate :P(; ν)χ 2

Forward to next view

Figure 3

     



Out[14]: 1.1838045392154173

plt.figure(3)
bins = sp.array([-10, -2., -1.5, -1., -0.5, 0., 0.5, 1., 1.5, 2., 10])*sigmaCLT
bins = bins + mu*sp.ones(len(bins))
plt.xlim(mu-3*sigmaCLT, mu+3*sigmaCLT)
plt.ylim(0,225)
observed = plt.hist(sim_data, bins, alpha=0.5, edgecolor='black')[0] # alpha controls opacity
expected =sp.array([sp.stats.norm.cdf(bins[i], mu, sigmaCLT) - sp.stats.norm.cdf(bins[i
 mu, sigmaCLT) for i in range(1, len(bins))])*n_ex
binMid = sp.array([(bins[i]+bins[i-1])/2 for i in range(1, len(bins))])
plt.scatter(binMid,expected)
plt.title("Binned averages for calulation of χ^2")
plt.xlabel("Average")
plt.ylabel("Occurences")
plt.show()

chi2 = sum((observed - expected)**2/expected)
d = len(observed) - 1
chi2/d

8/1/2017 simulation_example

http://localhost:8888/notebooks/python/jupyter/juptyer_examples/simulation_example.ipynb 6/6

In [15]:

CONCLUSION: For the run shown in the posted html version of the notebook, the value of
indicates that there is no evidence that the data DIDN'T come from the assumed model. The value

 indicates that there is a probability of that data selected from the
assumed distribution would result in a value of . There is no reason to reject the null hypothesis
that the data was drawn from the assumed distribution that is predicted by the CLT.

Rule-of-thumb guidelines are discussed on p. 112 of Hughes and Hase.

≃ 1.18 ∼ 1χ 2ν

P(; ν) = 0.70)χ 2 (1 − 0.70) = 0.30

> 1.18χ 2ν

Version details

version_information is from J.R. Johansson (jrjohansson at gmail.com)
See Introduction to scientific computing with Python:
http://nbviewer.jupyter.org/github/jrjohansson/scientific-python-lectures/blob/master/Lecture-0-Scientific-
Computing-with-Python.ipynb (http://nbviewer.jupyter.org/github/jrjohansson/scientific-python-
lectures/blob/master/Lecture-0-Scientific-Computing-with-Python.ipynb)
for more information and instructions for package installation.

If version_information has been installed system wide (as it has been on Bucknell linux computers with
shared file systems), continue with next cell as written. If not, comment out top line in next cell and
uncomment the second line.

In [16]:

In [17]:

In []:

Out[15]: 0.69984474488252124

Loading extensions from ~/.ipython/extensions is deprecated. We recommend managing ex
tensions like any other Python packages, in site-packages.

Out[17]: Software Version

Python 3.6.1 64bit [GCC 4.4.7 20120313 (Red Hat 4.4.7-1)]

IPython 6.1.0

OS Linux 3.10.0 327.36.3.el7.x86_64 x86_64 with redhat 7.2 Maipo

scipy 0.19.1

matplotlib 2.0.2

Tue Aug 01 10:47:39 2017 EDT

sp.stats.chi2.cdf(chi2, d)

%load_ext version_information

#%install_ext http://raw.github.com/jrjohansson/version_information/master/version_information.py

%version_information scipy, matplotlib

http://nbviewer.jupyter.org/github/jrjohansson/scientific-python-lectures/blob/master/Lecture-0-Scientific-Computing-with-Python.ipynb

