8/1/2017

In [1]:

sympy_1

Intro to sympy:

« variables
« differentiation
« integration

« evaluation of symbolic expressions

import sympy as sym
sym.init printing() # for LaTeX formatted output

import scipy as sp

import matplotlib as mpl # As of July 2017 Bucknell computers use v. 2.x
import matplotlib.pyplot as plt

Following is an Ipython magic command that puts figures in the notebook.
For figures in separate windows, comment out following line and uncomment
the next line

Must come before defaults are changed.

%smatplotlib notebook

#%smatplotlib

As of Aug. 2017 reverting to 1.x defaults.

In 2.x text.ustex requires dvipng, texlive-latex-extra, and texlive-fonts-recommendet
which don't seem to be universal

See https://stackoverflow.com/questions/38906356/error-running-matplotlib-in-latex-t!
mpl.style.use('classic')

M.L. modifications of matplotlib defaults using syntax of v.2.0
More info at http://matplotlib.org/2.0.0/users/deflt style changes.html
Changes can also be put in matplotlibrc file, or effected using mpl.rcParams/[]

plt.rc('figure', figsize = (6, 4.5)) # Reduces overall size of figures
plt.rc('axes', labelsize=16, titlesize=14)

plt.rc('figure', autolayout = True) # Adjusts supblot parameters for new s.
NOTES

« Sympy functions, and variables, and even floats aren't the same as numpy/scipy/python analogues. For
example

= sym.exp !=sp.exp

* Sympy has some math functions included, but not full numpy/scipy, as demonstrated in the following
cells.

« Symbols that are going to used as symbolic variable must be declared as such. This is different than in
Mathematica.

» One consequence is that sympy symbolic expressions must be turned into scipy/numpy/python
expressions if they are to be evaluated for plotting or numerical results. This is done with the Llambdify
command.

* In fall 2016 we're using sympy 1.0. Documentation and tutorial can be found at
http://docs.sympy.org/latest/ (http://docs.sympy.org/latest/

« ML's conclusion as of 9/17/16: Don't mix sympy and scipy/numpy. Do symbolic work with sympy, and
then switch by "lambdifying" symbolic exressions, turning them into python functions.

http://localhost:8888/notebooks/python/jupyter/juptyer_examples/sympy_1.ipynb 1/7

http://docs.sympy.org/latest/

8/1/2017

In [2]:

In [3]:
Out[3]:

In [4]:
Out[4]:

In [5]:
Out[5]:

In [6]:

sympy_1
« sympy does have it's own plotting capabilities for symbolic expressions (matplotlib is a back-end). ML
hasn't explored this very deeply; so far just using matplotlib on "lambdified" expressions.

Symbolic variables

Given the way | imported things, the following cell doesn't work.

exp(3.)

NameError Traceback (most recent call last)
<ipython-input-2-d2eld4ecff293> in <module>()

----> 1 exp(3.)

NameError: name 'exp' is not defined

This does work.

sym.exp(3.)
20.0855369231877

And, as in Mathematica, the output of the following cell will be symbolic.

sym.exp(3)

63

The analogue of Mathematica's Exp[3]//N, or N[Exp[3]1, is

sym.exp(3).evalf()
20.0855369231877

The analogue of Mathematica's "slash-dot using" syntax Exp[x]/.x->3is

sym.exp(x).subs({x:3})

NameError Traceback (most recent call last)
<ipython-input-6-abbbceec8362> in <module>()
----> 1 sym.exp(x).subs({x:3})

NameError: name 'x' is not defined

Oops! This is an example of not having declared x to be a symbolic variable. Let's try again.

In sympy, variables that are going to be used as algebraic symbols must be declared as such. Here's an
example of a simple declaration:

http://localhost:8888/notebooks/python/jupyter/juptyer_examples/sympy_1.ipynb 2/7

8/1/2017

In [7]:

Out[7]:

In [8]:
Out[8]:

In [9]:

Out[9]:

In [10]:
Out[10]:

In [11]:
Out[11]:

In [12]:

Out[12]:

In [13]:

Out[13]:

sympy_1

X = sym.symbols('x")
sym.exp(x).subs({x:3.})

20.0855369231877

type(x)
sympy.core.symbol.Symbol

You can control, to some degree, assumptions about the symbolic variables. (As of sympy 1.0, this is still a
work in progress for sophisticated assumptions.)

y = sym.symbols('y',negative=True)
(4 - y).is positive

True

The variable name used in python code, and the output representation do not have be the same. Here's a
built-in example:

sym.pi, sym.E

(z, o)

sym.pi.evalf(), sym.E.evalf()
(3.14159265358979, 2.71828182845905)

Sympy knows how to convert some standard variables to LaTeX output:

Sigma = sym.symbols('Sigma')
Sigma

z

But you can be more creative:

sigma, sigma p = sym.symbols('Sigma, \Sigma”~{\prime}')
sigma, sigma p

(z. ¥)

There are other shorter ways to declare symbolic variables, but you lose some of the flexibility demonstrated
above. You can import directly from a set of common symbols in the following way:

o from sympy.abc import w

Integration

Now let's evaluate the following integral:

/[sin(xy) + cos(yz)] dx

http://localhost:8888/notebooks/python/jupyter/juptyer_examples/sympy_1.ipynb 3/7

8/1/2017

In [14]:

In [15]:

In [16]:
Out[16]:

In [17]:
Out[17]:

In [18]:

Out[18]:

In [19]:

In [20]:

In [21]:
Out[21]:

In [22]:
Out[22]:

In [23]:

Out[23]:

sympy_1

X,Y¥,Z = sym.symbols('x,y,z")
f = sym.sin(x*y) + sym.cos(y*z) # scipy trig functions won't work!
sym.integrate(f,x)

0 fory=20
xcos (yz) +

- %cos (xy) otherwise

Now let's make it a definite integral:
1
/ [sin(xy) + cos(yz)] dx
-1
sym.integrate(f, (x,-1,1))
2 cos (yz)

And now a 2-d integral with infinity as a limit:

/ / e dxdy

sym.integrate(sym.exp(-x**2 - y**2) \
(x, =sym.oo, sym.oo), (y, =-sym.o0, Sym.00))

Differentiation
X,Y¥,z = sym.symbols('x,y,z")
g = Sym.cos(x)**2

sym.diff(g,x) # First derivative (or sym.diff(g,x,1))

—2 sin (x) cos (x)
sym.diff(g,x,2) # Higher order derivative (or sym.diff(g,x,x))

2 (sin* (x) — cos® (x))

Evaluate

XyZ

e
0%x0y

h = sym.exp(x*y*z)
sym.diff(h,x,x,y)

vzt (xyz + 2) e™*

http://localhost:8888/notebooks/python/jupyter/juptyer_examples/sympy_1.ipynb a/7

8/1/2017

In [24]:

In [25]:
Out[25]:

In [26]:

In [27]:

In [28]:
Out[28]:

In [29]:

Out[29]:

In [30]:
Out[30]:

In [31]:
Out[31]:

In [32]:

sympy_1

def m(x):
return 3*x**4

sym.diff(m(x),x)
12x3

Evaluating sympy expressions humerically

X,Y¥,z = sym.symbols('x,y,z")

Evaluation at a single point
a = 12*x**3

a.subs(x,2) # or a.sub({x:2}). In general, the argument is a dictionary

96

b = a*sym.exp(y)
b

12x3¢”

b.subs(x,2)
96¢”

b.subs({x:2,y:sym.log(1/2)})
48.0

Turn sympy expression into a python function for subsequent use

sym. lambdify(x,a) # Creates a python function f(x)
sym. lambdify((x,y),b) # Creates a python function g(x,y)

(o]
o

http://localhost:8888/notebooks/python/jupyter/juptyer_examples/sympy_1.ipynb

5/7

8/1/2017 sympy_1

In [33]: xx = sp.arange(-4,4,0.05) # xx so that it doesn't collide with symbolic x
= f(xx)
z = g(xx,sp.log(1/2))
plt.figure(1)
plt.plot(xx,y)
plt.plot(xx,z);

Figure 1 [0)

800

0 1 2 3 4

x=-1.63775 y=617.221

Version Information

version_information is from J.R. Johansson (jrjiohansson at gmail.com)
See Introduction to scientific computing with Python:
http: //nbwewer jupyter. orq/q|thub/|r|ohansson/s<:|ent|f|c pvthon Iectures/blob/master/Lecture 0-Scientific-

lectures/blob/master/Lecture-0- SC|ent|f|c Computing-with-Python.ipynb)

for more information and instructions for package installation.

If version information has been installed system wide (as it has been on linuxremotes), continue with
next cell as written. If not, comment out top line in next cell and uncomment the second line.

In [34]: %load ext version information

#%install ext http://raw.github.com/jrjohansson/version information/master/version inf

Loading extensions from ~/.ipython/extensions is deprecated. We recommend managing ex
tensions like any other Python packages, in site-packages.

http://localhost:8888/notebooks/python/jupyter/juptyer_examples/sympy_1.ipynb 6/7

http://nbviewer.jupyter.org/github/jrjohansson/scientific-python-lectures/blob/master/Lecture-0-Scientific-Computing-with-Python.ipynb

8/1/2017 sympy_1

In [35]: version information scipy, sympy, matplotlib

Out[35]: software Version
Python 3.6.1 64bit[GCC 4.4.7 20120313 (Red Hat 4.4.7-1)]
IPython 6.1.0
OS Linux 3.10.0 327.36.3.el7.x86_64 x86_64 with redhat 7.2 Maipo
scipy 0.19.1
sympy 1.1
matplotlib 2.0.2
Tue Aug 01 14:21:23 2017 EDT
In[1]:

http://localhost:8888/notebooks/python/jupyter/juptyer_examples/sympy_1.ipynb 717

