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Two-slit Interference

◮ Detection as particles.

◮ Distribution of detections as if waves.

◮ At low intensity, only one “particle” in apparatus at a time.



Interference

Dirac:

“Each photon then interferes only with itself.

Interference between two different photons never

occurs.”



Wave-Particle Duality

Photons: Waves or Particles?

Points to remember:

◮ Photons are massless.

◮ Inherently relativistic.

◮ Non-relativistic Schrödinger equation doesn’t tell us anything
about photons; there isn’t a wavefunction ψ(x) for a photon.

◮ Light is described by a relativistic quantum field theory.
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Better questions:

◮ What can we measure?

◮ What are the differences between the predictions of a classical
field theory and the predictions of a quantum field theory?



Measurements

Intensity (Measured at single point)

Classical: Proportional to square of a measurable field strength
Quantum: Rate of detection of photons

Sensitivity to phase of fields (interference)?

Intensity Correlation (Measured at two points)

Classical: Proportional to product of squares of field strengths
Quantum: Rate of detections of two photons (joint probability)

Sensitivity to phase of fields (interference)?



Simple Model

L/4 L/4
L

Atom 1 Atom 2

L/c ≡ 1

◮ One-dimension.

◮ Single Polarization.

◮ Atoms
◮ Classical: Random-phase dipole oscillators
◮ Quantum: Two-level atoms



Classical Field Intensity at t = 0.15

Instantaneous Averaged over period
and random phases
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Quantum Field “Intensity” at t = 0.15

〈ψ| : Ê(x)Ê(x) : |ψ〉

 0

 0.5

 1

 1.5

 2

 2.5

 0  0.2  0.4  0.6  0.8  1

in
te

ns
ity

 (
ar

b.
 u

ni
ts

)

position



Classical Field Intensity at t = 0.4

Instantaneous Averaged over period
and random phases
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Quantum Field “Intensity” at t = 0.4

〈ψ| : Ê(x)Ê(x) : |ψ〉
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Dramatic Pause



Intensity Correlation

Two detectors are better than one!



Intensity Correlation

Classical Field:

I(x1)I(x2) −→ 〈I(x1)I(x2)〉φ1,φ2

Quantum Field:

(Prob. of Detecting Photon at x1)×(Prob. of Detecting Photon at x2)



Quantum Intensity Correlation Function

x2

0.2 0.2

x1 = 0.3 t = 0.2

〈Ê(x1)Ê(x2)Ê(x2)Ê(x1)〉



Quantum Intensity Correlation Function
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Classical Intensity Correlation Function

〈I(x1)I(x2)〉φ1,φ2

x1 = 0.5 t = 0.45

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0  0.2  0.4  0.6  0.8  1

In
te

ns
ity

 C
or

re
la

tio
n

x2



Interference in Classical Correlation (Hand Waving)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

x1 x2 x3

λ/2

λ/4

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

x1 x2 x3

λ/2

λ/4

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

x1 x2 x3

λ/2

λ/4

∆φ I(x1) I(x2) I(x3) I(x1) × I(x2) I(x1) × I(x3)

0 1 0 1 0 1

π 0 1 0 0 0

π/2 1/2 1/2 1/2 1/4 1/4

Avg. 1/12 5/12



Quantum Intensity Correlation Function
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Classical Intensity Correlation Function

〈I(x1)I(x2)〉φ1,φ2

x1 = 0.69 t = 0.45
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Correlation: Quantum vs. Classical

Classical Field:

|EL(0.69)+ER(0.69)|2×|EL(x2)+ER(x2)|
2

Quantum Field:

|AL(0.69)AR(x2) + AL(x2)AR(0.69)|2
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Simplest Field Theory

Model Features:

◮ “Modes of the universe” (1-D); Quantized standing wave
modes

◮ Multiple modes (201) → quasi-continuum

◮ Spontaneous emission via interaction with multiple empty
modes.

◮ Schrödinger picture.

◮ −→ “Localized” photons.



Simplest Field Theory

Basis States:

|e e; 0〉: both atoms excited, no photons

|e g; 1k〉: atom 1 excited, atom 2 in g.s., 1 photon (mode k)

|g e; 1k〉: atom 1 in g.s. atom 2 excited, 1 photon (mode k)

|g g; 1k, 1k′〉: both atoms in g.s., 2 photons in distinct modes

|g g; 2k〉: both atoms in g.s., 2 photons in same mode



Simplest Field Theory

Initial State: |ψ(0)〉 = |e e; 0〉

Time-Dependent State:

|ψ(t)〉 = a(t)|e e; 0〉 +
∑

k

b1k(t)|e g; 1k〉 +
∑

k

b2k(t)|g e; 1k〉

+
∑

k,k′<k

ck,k′(t)|g g; 1k, 1k′〉 +
∑

k

dk(t)|g g; 2k〉

Hamiltonian: Two-level atoms, RWA, multimode.

H = Hatoms +Hfield +Hinteraction

= ~ω(1)
eg σ

(1)
3 + ~ω(2)

eg σ
(2)
3 +

∑

k

~ωk

(

a†kak +
1

2

)

+
∑

k

~

(

Ω1σ
(1)
+ ak + Ω∗

1σ
(1)
− a†k

)

sin
[

(k0 + k)
πx1

L

]

+
∑

k

~

(

Ω2σ
(2)
+ ak + Ω∗

2σ
(2)
− a†k

)

sin
[

(k0 + k)
πx2

L

]

,



Idiosyncratic (but simple) Dynamics Calculation

Project initial state onto energy eigenstates:

|ψ(0)〉 = |e, e; 0〉

=
∑

q

|Eq〉〈Eq|e, e; 0〉

Use known time evolution of eigenstates:

|ψ(t)〉 =
∑

q

e−iEqt/~|Eq〉〈Eq|e, e; 0〉.

Project onto state of interest, e.g.:

ckk′(t) = 〈g, g; 1k , 1k′ |ψ(t)〉

=
∑

q

e−iEqt〈g, g; 1k , 1k′ |Eq〉〈Eq|e, e; 0〉
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Conclusions

◮ Photons are strange (non-classical).

◮ Photons do retain some aspects of classical attributes (phase,
relative phase).

◮ The nature of photons can be probed via non-local
correlations.

◮ It’s amplitudes that interfere, not fields.

Thanks to:

◮ Steve Becker

◮ Ryan Oliveri, Bucknell

◮ Maggie Trias, Mt. Holyoke −→ Yale

◮ John Elgin, University of Tulsa −→ Stony Brook

◮ Frank King, College of Wooster −→ Ohio State


