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Two-slit Interference
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» Detection as particles.
» Distribution of detections as if waves.

» At low intensity, only one “particle” in apparatus at a time.



Interference

Dirac:

i“

ach photon then interferes only with itself.
Interference between two different photons never
occurs.”



Wave-Particle Duality

Photons: Waves or Particles?

Points to remember:
» Photons are massless.
» Inherently relativistic.

» Non-relativistic Schrodinger equation doesn't tell us anything
about photons; there isn't a wavefunction () for a photon.

» Light is described by a relativistic quantum field theory.



Wave-Particle Duality

Photons: Waves—orParticles?

Points to remember:
» Photons are massless.
» Inherently relativistic.

» Non-relativistic Schrodinger equation doesn't tell us anything
about photons; there isn't a wavefunction () for a photon.

» Light is described by a relativistic quantum field theory.

Better questions:
» What can we measure?

» What are the differences between the predictions of a classical
field theory and the predictions of a quantum field theory?



Measurements

Intensity (Measured at single point)

Classical: Proportional to square of a measurable field strength
Quantum: Rate of detection of photons

Sensitivity to phase of fields (interference)?

Intensity Correlation (Measured at two points)

Classical: Proportional to product of squares of field strengths
Quantum: Rate of detections of two photons (joint probability)

Sensitivity to phase of fields (interference)?



Simple Model

» One-dimension.
» Single Polarization.
» Atoms

» Classical: Random-phase dipole oscillators
» Quantum: Two-level atoms



Classical Field Intensity at t = 0.15

Instantaneous Averaged over period
and random phases
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Quantum Field “Intensity” at ¢t = 0.15
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Classical Field Intensity at t = 0.4

Instantaneous Averaged over period
and random phases
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Quantum Field “Intensity” at ¢t = 0.4
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Dramatic Pause



Intensity Correlation

Two detectors are better than one!

2.2 Wave—Particle Dualily for Single Photons w35
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Figure 2-5 Anticoincidence Experiment of Aspect and Co-workers.” The trigger
photon from the single-photon source is detected: this alerts the two detectors
PMT, and PMT, to expect a photon sometime during the brief “gate period” w.



Intensity Correlation

Classical Field:
I(z1)I(22) — (I(z1)I(22))g, .4,
Quantum Field:

(Prob. of Detecting Photon at z1)x(Prob. of Detecting Photon at x7)



Quantum Intensity Correlation Function
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Quantum Intensity Correlation Function

(E(x1)E(22) E(22) E(21))
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Classical Intensity Correlation Function
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Interference in Classical Correlation (Hand Waving)
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| Ap | I(z1) | I(w2) | I(w3) | I(w1) x I(w2) | I(w1) x I(w3) |

0 1 0 1 0 1
T 0 1 0 0 0
2| 12 | 12 | 1/2 1/4 1/4

| Avg. | \ \ \ 1/12 \ 5/12 |




Quantum Intensity Correlation Function
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Classical Intensity Correlation Function
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Correlation: Quantum vs. Classical

Classical Field: o7
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Simplest Field Theory

Model Features:
» “Modes of the universe” (1-D); Quantized standing wave
modes
» Multiple modes (201) — quasi-continuum

» Spontaneous emission via interaction with multiple empty
modes.

» Schrodinger picture.

» — “Localized” photons.



Simplest Field Theory

Basis States:

lee; 0):

le gi 1k ):

g € 1k):
19.9: 1k, 1)
9 9: 2k):

both atoms excited, no photons

atom 1 excited, atom 2 in g.s., 1 photon (mode k)
atom 1 in g.s. atom 2 excited, 1 photon (mode k)
both atoms in g.s., 2 photons in distinct modes

both atoms in g.s., 2 photons in same mode



Simplest Field Theory

Initial State: |1(0)) = |ee; 0)

Time—Dependent State:

[ (t))

= a(t)lee; 0) —i—Zblk (t)eg; 1k) +Zb2k ()lg e lk)

+ ) crwlt |99v1k,1k' +de: )19 9: 2k)
o,k <k

Hamiltonian: Two-level atoms, RWA, multimode.

H

Hatoms + Hfield + Hinteraction
1) (1 2) (2) f 1
ol 1ol 3 (efon + )

4 Z A <Q1U$)ak + QTU( )ak) sin [(ko + k)ﬂxl}
k

4 Z A (ngf)ak + Qo )ak) sin [(ko + k)ﬂm}
k



|diosyncratic (but simple) Dynamics Calculation

Project initial state onto energy eigenstates:

[¥(0)) = le,e0)
= Z‘Eq><Eq‘e’e?O>

Use known time evolution of eigenstates:

(1)) = 3 e Et N B, (E, e, e; 0).
q
Project onto state of interest, e.g.:
cre(t) = (9,9 L, L [9(2))
= Y e Fi g, g Ly, L | Ey) (Eyle, €; 0)
q
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Conclusions

» Photons are strange (non-classical).

» Photons do retain some aspects of classical attributes (phase,
relative phase).

» The nature of photons can be probed via non-local
correlations.

» It's amplitudes that interfere, not fields.
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