Hypothesis Testing (a very brief introduction)

> Phys 310 Bucknell University

March 21, 2017

Parameter Estimation

So far in this course, we have used curve fitting and χ^2 minimization to estimate parameters. We worked on the assumption that the model was correct, and that what was to be determined was the parameter(s).

Hypothesis testing

- Data can not prove a theory or hypothesis... because there may be other data that can contradict the theory
- However, data can be used to reject a theory if there is a contradiction to what may be expected.
- We can therefore use data to test hypotheses.

Basic Concepts

 H_0 : The Null Hypothesis (The model being tested)

 H_1 : The alternative hypothesis

t: test-statistic, a function of the data (mean, st. dev., χ^2 ...)

Types of Errors

 $P(T \in \omega | H_0) = \alpha$ Type I Errors: *T* in critical region, given H_0 is true α = probability of Type I error

 $P(T \in W - \omega | H_1) = \beta$ Type II Errors: T in acceptable region, though H_0 is false β = probability of Type II error

Figure: Probability densities for the test statistic t under the assumption of the hypothesis H_0 and H_1 . H_0 is rejected if t is observed in the critical region, here shown as $t > t_{cut}$. (from Cowan: Statistical data analysis, 1998)

Goodness of Fit

0.30

 H_0 : data y_i (the sample distribution) is well modelled by a particular function $y(x_i)$ (The parent distribution).

T: Test statistic =
$$\chi^2$$

We know the χ^2 pdf given ν the number of degrees of freedom:

$$X(\chi^2;\nu) = \frac{(\chi^2)^{(\frac{\nu}{2}-1)} \exp[-\chi^2/2]}{2^{\nu/2} \Gamma(\nu/2)}$$

Goodness of Fit

In Mathematica, the command

 $PDF[ChiSquareDistribution[\nu], x]$

calculates $X(\chi^2;\nu)$ Likewise, to get

$$P(0 \le \chi^2 \le \chi^2_{min}; \nu) = \int_0^{\chi^2_{min}} X(\chi^2; \nu) d\chi^2$$

we enter

 $CDF[ChiSquareDistribution[\nu], xmin]$

Exercise1

What is the most probable value of $\chi^2,$ given ν degrees of freedom for:

- $\blacktriangleright \nu = 5$
- ► $\nu = 10$
- $\nu = 30$

Exercise2

Consider a fit to a data shown below:

Model: y(x) =	Bg+N1+exp[-x/T1]+N2+exp[-x/T2]
X ²	66.1
No. of data points	59

	Estimate	Standard Error	t-Statistic	P-Value
Bg	10.1358	2.09963	4.82742	0.0000117718
N1	128.302	23.4401	5.47361	1.1724 × 10 ⁻⁶
N2	957.788	54.7796	17.4844	6.78919 × 10 ⁻²⁴
T1	209.657	35.1231	5.96921	1.91063 × 10 ⁻⁷
T2	34.242	2.788	12.2819	2.90782 × 10 ⁻¹⁷

Exercise2 (cont)

- Is the data consistent with the model at the 95 % confidence level. (i.e. Can we reject the hypothesis with Type I error < 5%?)
- ► If not, for what value of \(\chi^2\) can we conclude that the data is not consistent with the model at the 95 % CL?