DRAWING TOOL: XFIG

1. Xfig Intro

I will guide you trough the following main commands of xfig, which is a drawing tool to make figures of sketches (examples: Ising model lattice, sketch of experimental setup, sketch of galaxy):

- To get started: Type on the command line: xfig & This will open a new window. (or in case you plan to use latex-commands please see below (1) of "Advanced xfig Users")
- drawing tools: background grid, circle, line, text, rotation & symmetry flip, picture, grouping, scaling, copying, editing.
- To save an xfig session use File → SaveAs and give your xfig-file a name ending with .fig. You can get back to this session any time on the command line with xfig filename.fig & or within xfig with File → Open.
- To make an eps-file out of your figure use File → Export, make sure to choose "EPS (Encapsulated Postscript)" and choose the same filename but with the ending .eps. This eps-file can then be included in your latex file for the paper. To have a placeholder for the filename you used, in the following I use filename, so you would save filename.eps meaning e.g. experimentalsketch.eps.
- To look at the eps-file, i.e. to check that the figure looks as intended, type on the command line evince filename.eps (so for given example you would type evince experimentalsketch.eps)
- For Advanced xfig Users: In case you would like to use latex commands within xfig use the following steps: First copy two files from our phys310-linux account scp phys310@linux.bucknell.edu:XfigXmgrace/xfig2eps . scp phys310@linux.bucknell.edu:XfigXmgrace/xfig2pdf . (Don't forget the period, which copies the file into your working directory; I will remind you of the password in class) then make both executable (these are perl-scripts) chmod u+x xfig2*. These xfig2* files will be needed for step (3) below. Instead of xfig use instead (1) xfig -specialtext -latexfonts -startlatexFont default (2) first save then export to "Combined PS/LaTeX (both parts)." This creates two files: filename.pstex and filename.pstex_t. To then make an eps-file (which you can include in your paper) (3a) xfig2eps filename or to make a pdf-file use (3b) xfig2pdf filename

- 2. Start working on a figure for your first paper.
 - Ben, JD, Kate, Zach: Work on a sketch of the Ising model lattice with spins and highlight one of the spins and its four neighbors; You could also work on a figure for the Metropolis algorithm, if so, I recommend to use the advanced xfig.
 - Pete, Julia R., Jonathan, Rajasri: You could work on a sketch of the galaxy with the center, Earth, and cloud with velocity.
 - Houtan, Ryan, Michael, Ziqi: You might work on a sketch for the Sodium transition, and maybe sketches for the photoelectric effect etc.
 - Eddie, Julia B.: You could make a sketch of the experimental apparatus, indicating the different relevant lengths and sketching the light rays to explain the necessity of the additional plate.

PLOTTING GRAPHS: XMGRACE

1. xmgrace Introduction:

The following tool, xmgrace, is for making graphs of data and functions. To have some data files use the following copy commands:

scp phys310@linux.bucknell.edu:XfigXmgrace/TME.data .

```
scp phys310@linux.bucknell.edu:XfigXmgrace/fsqt5000to2500_q17_0ns.data .
scp phys310@linux.bucknell.edu:XfigXmgrace/fsqt5000to2500_q17_16ns.data .
scp phys310@linux.bucknell.edu:XfigXmgrace/tau_2500from5000_q17.data .
scp phys310@linux.bucknell.edu:XfigXmgrace/tau_3000from5000_q17.data .
and to have a sample xmgrace file:
```

scp phys310@linux.bucknell.edu:XfigXmgrace/fsqt.xmgr .

- To get started with xmgrace type on the command line xmgrace &.
- To import a dataset use Data → Import → ASCII and under Selection add tau_2500from5000_q17.data then click OK. Similarly pull in the dataset tau_3000from5000_q17.data . (An alternative would have been to type in the command line instead of xmgrace & the command xmgrace tau* &)
 To important data with error bars, use Data → Import → ASCII and for LoadAs choose Blockdata and for DataType choose xydy under Selection add tau_2500from5000_q17 then click OK and choose the columns of the data file which you would like to use.

Alternative: use in the command line xmgrace -type xydy tau* &

- Symbol Settings: I will show you, how to change: labels for data, symbols, line symbols
- a few useful fonts:
 - $f{1}$ switches to italics

- $f{0}$ switches to roman
- \S switches to superscript
- $\ N$ switches back to default (nont superscript)
- \s switches to subscript
- $\mathbf x$ switches to symbols, e.g. $\mathbf xa$ gives you α
- Axis Settings: I will show you, how to change x-range and y-range, line width, label incl. size, tick marks, logarithmic axis Alternative: use in the command line xmgrace -log xy tau* &
- Legend Settings: I will show you, how to change its positions and size.
- To save an xmgrace session use File → SaveAs (use a filename which ends with .xmgr). It is important to use SaveAs the first time because default is to overwrite your data-file! For the second time saving you may use Save. To continue a previously saved xmgrace session use File → Open.
- To make an eps-file use File → Print setup and choose as device EPS. This only sets up the printing, to get the eps-file printed use File → Print.
- To plot a mathematical function Edit \rightarrow Data sets \rightarrow right-click on the clear area \rightarrow create new \rightarrow By formula. Then choose the xrange with Start at, Stop at and Length (number of points) and type in the formula, e.g. x=\$t (that's default) and e.g. for y=3.4*\$t^2, and then Accept or Apply.
- You may also want to play some with the example fsqt.xmgr

2. For your first paper make a figure which would satisfy the expectations on figures for scientific publications. Make an eps-file and include it in your latex file from last class.

PLOTTING PART OF SCREEN

To make an eps-file of any part of your screen use on the command line import picturefilename.eps

and use the left mouse button to pick the area (drag & let go). This will create the file picturefilename.eps.

Scientific Literature Search

You will learn more about how to find scientific papers on March 29. I will introduce then Web of Science. You find a link to this search tool on our phys 310 webpage http://www.eg.bucknell.edu/physics/ph310/under Literature Search Tools.