Definitions

(x, y, s) = data (x, y), y-uncertainty s n = number of data points N = number of parameters in the fit m = Best fit model curve r = residual = y - m $\widetilde{r} = normed residual = r/s$ $\chi^2 = \sum \widetilde{r}^2$ dof = Degrees of freedom = n - N $\widetilde{\chi}^2 = Reduced \chi^2 = \chi^2/dof$

Linear(?) Data

Occam's Razor: Which Model is Correct?

Quality-of-fit: What are the odds of getting a poorer value of χ^2 by chance?

Probability of poorer fit by chance = $\int_{\chi^2}^{\infty} PDF(x^2; dof) dx^2$

Small probability = unlikely to occur by chance; poor fit.

Illustration from Wikipedia

Occam's Razor: Reduced χ^2

Model	χ²	dof	χ²/dof	Prob (%)
Linear	68.8	48	1.43	2.6
Quadratic	52.5	47	1.12	26.9
Cubic	52.5	46	1.14	23.6

from scipy.stats import chi2
print 1.0 - chi2.cdf(68.8, 48)
print 1.0 - chi2.cdf(52.5, 47)
print 1.0 - chi2.cdf(52.5, 46)

Occam's Razor: Information Criteria

Akaike Information Criterion (AIC)

$$AIC = \chi^2 + 2N$$

Lowest AIC chooses the model that maximizes information entropy.

Bayesian Information Criterion (BIC)

$$\mathrm{BIC}=\chi^{2}+N\ln\left(n\right)$$

Lowest BIC chooses the best fitting model by integrating the conditional probability of measurements given the model and parameters.

Assumes *n* is large.

Occam's Razor - Results

Model	χ²	dof	χ²/dof	Prob (%)	AIC	BIC
Linear	68.8	48	1.43	2.6	72.8	76.6
Quadratic	52.5	47	1.12	26.9	58.5	64.2
Cubic	52.5	46	1.14	23.6	60.5	68.1

print 'AIC = ', chisq + \
 2. * (order+1)
print 'BIC = ', chisq + \
 (order+1) * log(1.0*len(x))

Occam's Razor: F-test

Consider two models, where model 1 is **nested** within model 2.

Example: A linear model is nested within a quadratic model.

The (Fisher's) F-statistic is given by,

$$F = \left(\frac{\chi_1^2 - \chi_2^2}{\chi_2^2}\right) \left(\frac{n - N_2}{N_2 - N_1}\right).$$

The F-statistic follows the F-distribution, $F(N_2 - N_1, n - N_2)$. Large values of the statistic suggests significantly better fit at higher order.

Illustration from Wikipedia.

Practical Example: SED Fitting

Model	Chi-squared	BIC
cdo	381.1	453
cbdo (add hot dust)	379.9	464
cndo (add ionized gas)	373.6	457
cnbdo (add both)	372.0	468

Kharb et al. (2016) MNRAS

Occam's Razor - Results

Model	X²	dof	F-stat	Prob (%)
Linear	68.8	48		
Quadratic	52.5	47	14.6	0.040
Cubic	52.5	46	1.14	92.3

Prob (%) = odds of getting such a large value of the F-statistic by chance.

```
from scipy.stats import f
F = (68.75668121 - 52.491355)/(3. - 2.) * (50. - 3)/ 52.491355
print 1.0 - f.cdf(F, 3.-2., 50.-3.) # 1 - CDF
```

Does my "G" Agree with Accepted "G?"

Use the "z" statistic (assumes normally distributed uncertainties).

measured =
$$G_m \pm \delta G_m$$

accepted = $G_a \pm \delta G_A$
z statistic = $\frac{(G_m - G_a)}{\sqrt{\delta G_m^2 + \delta G_a^2}}$

Under the "null hypothesis," z follows a Gaussian distribution, mean = 0, stdev = 1.0.

Two sided test: the odds of getting such a large z is given by,

Probability =
$$2 \int_{|z|}^{\infty} PDF(z) dz = 2(1 - CDF(z))$$

Repeated Measurements: Student's t-test

measured =
$$\overline{x} = \sum_{i=1}^{n} (x_i)/n$$

uncertainty = s/\sqrt{n}
accepted = μ
 $t = \frac{(\overline{x} - \mu)}{s/\sqrt{n}} = (\text{ mean - accepted }) / (\text{ SEM })$

The t-statistic follows a Student's t-distribution with v = n - 1.

The probability of getting a large value of *t* by chance is (two-sided),

Probability =
$$2\int_{|z|}^{\infty} PDF(z; n-1) dz = 2(1 - CDF(z; n-1))$$

Illustration from Wikipedia.