
PHYS 333 — Final Exam

Friday December 13, 2013

Name:

1. Consider the illustrated vector field. Assume that the field is the same in all planes

parallel to the illustrated plane, i.e., the field at a point doesn’t change as you move

into or out of the page.
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(a) Is the divergence of the field at the center of the illustrated region (x = 1, y = 1)

positive, negative, or zero? Explain your reasoning.

(b) Is the z-component of the curl of the field at the center of the illustrated region

(x = 1, y = 1) zero or non-zero? Explain your reasoning.



2. Consider the illustrated line of charge with length L and linear charge density λ.
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(a) Determine an expression for the electric field at point P1. You may leave your

answer in the form of an integral which could be evaluated by a computer or

calculator.

(b) Determine an expression for the electric field at point P2. You may leave your

answer in the form of an integral which could be evaluated by a computer or

calculator.



3. Find the force on the square loop with sides of length b that placed as shown in the

figure a distance a away from an infinite straight wire. The long wire carries a steady

current I1 and the square loop carries a steady current I2.
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4. A sphere has charge uniformly distributed throughout its volume. The total charge is

Q and the radius is b, and the sphere is centered on the origin. Determine the electric

field vector E at the point P a distance a away from the origin, where a < b. For full

credit you must use the illustrated Gaussian surface in your solution. This

surface is a hemispherical dome of radius a with a flat bottom in the x-y plane.
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5. Begin a solution of Laplace’s equation, ∇2V = 0, by separation of variables in spherical

coordinates assuming there is no dependence on the azimuthal variable φ. You may

stop as soon as you have determined the ordinary differential equations that must be

solved for your product functions. You do not need to solve the differential equations.



6. Two semi-infinite grounded metal plates lie parallel to the x-z plane, one at y = 0,

the other at y = c. These plates are joined to an infinite strip of width c lying in the

x-y plane that is maintained at a constant potential V0. (The strip is insulated from

the grounded plates.)
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The general solution to Laplace’s equation in Cartesian coordinates for the potential

can be written as

V (y, z) =
∑

n

(

Ane
knz + Bne

−knz
)

(Cn sin kny +Dn cos kny) ,

where the sum is over postive integers n. Use the boundary conditions to determine

everything you can about the values of

(a) kn,

(b) An,

(c) Dn,

(d) the product BnCn.



7. A coaxial cable consists of two very long cylindrical conducting tubes, separated by a

linear insulating material of magnetic susceptibility χm. A free current I flows down

the the inner conductor and returns along the outer one; in each case the current

distributes itself uniformly over the surface.
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(a) Find H and B for all distances from the axis of the cable s, such that s > a

(b) Determine all bound currents.



8. Write down the electric and magnetic fields for a monochromatic plane wave propa-

gating in free space with electric field amplitude E0, angular frequency ω, phase angle

zero, for the following cases.

(a) A wave traveling in the negative z direction and polarized in the y direction;

(b) A wave traveling in the direction from the origin to the point (1, 1, 0), with

polarization parallel to the x-y plane.

Your answer should be expressed in terms of E0, ω, Cartesian coordinates, Cartesian

unit vectors, and physical constants.



9. Determine the electric potential at the center of a uniformly charged spherical shell of

radius R and total charge Q. NOTE: This is a thin shell of charge; the charge

is not distributed throughout the volume. Use a point infinitely far away from

the sphere as your reference point where V = 0.



10. Consider the illustrated loop of radius a in the x-y plane.
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The magnetic field on the z-axis due to the illustrated current loop is

B =
µ0I
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(a) Find a Taylor’s series approximation for the field on the z-axis that is valid for

points that are far from the origin. Include the first two non-vanishing

terms in your expansion.

(b) Treat the current loop as a dipole, and determine the magnetic field due to the

dipole for points on the z-axis. When is this expression valid?



Equations
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∫
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E·dl
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4πǫ0

∫

ρ(r′)
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∑
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∑
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∫

ρV dτ

W =
ǫ0
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∫

all space

E2 dτ

C ≡
Q

∆V

(1 + x)n = 1 + nx+
n(n− 1)

2!
x2 +

n(n− 1)(n− 2)

3!
x3 + · · ·

V (r) = Vmonopole(r) + Vdipole(r) + · · ·

Vmonopole =
1

4πǫ0

Q

r

Vdipole =
1

4πǫ0

p · r̂

r2

Edip(r) =
p

4πǫ0r3
(2 cos θ r̂+ sin θ θ̂) =

1

4πǫ0

1

r3
[3(p · r̂) r̂− p]



Q =
n

∑

i=1

qi −→

∫

ρ(r′) dτ ′

p =
n

∑

i=1

qiri −→

∫

r′ρ(r′) dτ ′

Edip(r, θ) =
p

4πǫ0r3

(

2 cos θ r̂+ sin θ θ̂
)

N = p× E

F = (p · ∇)E

σb = P · n̂

ρb = −∇ ·P

ρ = ρb + ρf

D = ǫ0E+P

∇ ·D = ρf −→

∮

D · da = Qfenc

P = ǫ0χeE (linear dielectrics)

D = ǫ0(1 + χe)E ≡ ǫE (linear dielectrics)

ǫr ≡ 1 + χe =
ǫ

ǫ0

‘



B(r) =
µ0

4π
I

∫

dl′ × ˆ˚rfflr

˚rffl
2
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dl⊥
−→ σv

J ≡
dI

da⊥
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F = q [E+ (v ×B)]

Fmag =

∫

I(dl×B)←→

∫
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(J×B) dτ

Babove −Bbelow = µ0(K× n̂)
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Bdip(r) =
µ0m

4πr3
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2 cos θ r̂+ sin θ θ̂
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=
µ0

4πr3
[3(m · r̂)r̂−m ]

N = m×B

F = ∇(m ·B)

J = σE

E ≡

∮

fs · dl −→

∮

(felec + fmag)·dl

Φ ≡

∫

B · da



E = −
dΦ

dt

∮

E·dl = −
∂

∂t

∫

B · da←→ ∇× E = −
∂B

∂t

∮

B·dl = µ0

(

Ienc + ǫ0
∂

∂t

∫

E·da

)

←→ ∇×B = µ0J+ µ0ǫ0
∂E

∂t

Jd ≡ ǫ0
∂E

∂t

Φ = LI and Φ = MI

E = −L
dI

dt

W =
1

2
LI2

Wmag =
1

2

∫

(A · J) dτ =
1

2µ0

∫

B2dτ

∇2E = µ0ǫ0
∂2E

∂t2
∇2B = µ0ǫ0

∂2B

∂t2

Traveling Plane Wave Solutions:

E(r, t) = E0 cos(k · r− ωt+ δ) n̂ B(r, t) =
E0

c
cos(k · r− ωt+ δ) (k̂× n̂)

∫ a

0

sin(nπy/a) sin(n′πya) dy =







0, if n′ 6= n.

a
2
, if n′ = n.

Jb = ∇×M

Kb = M× n̂



H =
1

µ0

B−M

∇×H = Jf

∮

H · dl = Ifenc

M = χmH

B = µ0(1 + χm)H = µH


