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We present experiments on the motion of chemical fronts in ordered and disordered vortex flows with
imposed uniform winds. Fronts in a chain of alternating vortices are found to freeze (pin to the separatrix)
for a wide range of opposing winds that grows nonlinearly with the characteristic strength of the
underlying vorticity. Experiments in spatially disordered flows demonstrate that freezing of fronts is
common to cellular flows; furthermore, it is not dependent on boundary conditions. We therefore
anticipate similar pinning in a wide range of 2D cellular flows and front-producing systems.
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Numerous chemical, biological, and physical systems
are characterized by two coexisting phases and by the
movement of a front that separates these phases. Front
propagation is relevant to a wide variety of dynamical
processes, including natural and industrial chemical pro-
cesses [1], plasma systems [2], solidification [3], the
spreading of a disease in a population [4], and marine
ecology systems [5]. The dynamics of front propagation
are well understood in stagnant fluids [6,7]; an issue of
significant current interest [8] is how fluid flows affect the
motion of fronts. This issue is of particular importance in
light of recent and ongoing development of microfluidic
devices for both chemical processing and biological diag-
nostic applications.

If a uniform ‘‘wind’’ opposing a front is applied to an
otherwise motionless fluid, the front simply propagates at
its reaction-diffusion (no flow) velocity minus the wind
speed. If the same wind is applied to a fluid with an
underlying cellular flow, however, the behavior is dramati-
cally different. In this Letter, we present experiments
showing that cellular flows can freeze the motion of a
reaction front against an opposing wind. We study this
phenomenon as a function of the strength of the vortex
flow. Fronts produced by the ruthenium-catalyzed excit-
able Belousov-Zhabotinsky (BZ) reaction [9,10] are
studied in both ordered and disordered vortex flows. The
flows studied are time independent; nevertheless, the ex-
perimental results may have implications for many two-
dimensional (2D), vortex-dominated, time-dependent
flows as well.

In the absence of fluid flows, a front propagates with a
reaction-diffusion (RD) velocity given by the well-known
Fisher-Kolmogorov-Petrovskii-Piskunov (FKPP) result
[6,7] v0 � 2

����������
D=�

p
, where D is the molecular diffusivity

and � is the reaction time scale. In the past 10 years, there
has been growing interest in the effects of fluid advection
on front propagation. Theoretical [11] and experimental
[12] studies have shown that a front propagating against a
simple pipe flow moves with velocity v0 independent of
the imposed flow due to no-slip boundary conditions at the

walls. No-slip conditions also play a key role in explaining
anomalous front velocities in flows through a porous me-
dium [13]. Other theoretical studies of front propagation in
advection-reaction-diffusion (ARD) systems include pre-
dictions of fractal fronts in open flows with chaotic mixing
[14,15]. Recent theories [16–18] have extended the stan-
dard FKPP theory to account for nondiffusive transport.
However, to our knowledge, there are no general theories
of front propagation in ARD systems that account explic-
itly for the effects of cellular flow structures, which domi-
nate in a wide variety of natural and industrial,
predominately 2D flows. The importance of such flow
structures, for example, is in evidence in time-periodic
vortex chains, which cause fronts to mode lock to the
external forcing [19,20]. A mode-locked front propagates
an integer number of vortex pairs in an integer number of
oscillatory drive periods, inconsistent with straightforward
FKPP approaches. Our experiments indicate the funda-
mental importance of coherent vortices in general descrip-
tions of ARD dynamics.

Two flows are used for most of these experiments
(Fig. 1): a chain of 20 counterrotating vortices and a
random vortex flow, both created using magnetohydrody-
namic forcing [21] and confined to an annulus bounded by
Plexiglas rings of radii 6.1 and 8.3 cm. A radial current
passing through a 2-mm-thick electrolytic solution inter-
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FIG. 1. Schematics of the fluid flow for � � 0 (no wind).
(a) Ordered chain of counterrotating vortices. The maximum
vortex velocity U is measured at the separatrix. (b) Two-
dimensional disordered array.
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acts with a magnetic field produced by Nd-Fe-B magnets
below the fluid. Two concentric rings of 3=4-in.-diameter
magnets with alternating polarity are used for the ordered
vortex chain, and a disordered pattern of 1=4-in. magnets is
used for the random flow. The magnets are mounted on a
motor that rotates at a constant rate, thus moving the
vortices. In a reference frame moving with the magnets,
the vortices are stationary and there is a constant, uniform
wind with a velocity W equal to the drift velocity of the
magnets. (This has been verified experimentally with dye
and particle-tracking transport studies that agree with nu-
merical simulations of transport in a vortex chain with an
imposed wind [22].)

The electrolytic solution is composed of the chemicals
for the excitable Ru-catalyzed BZ reaction [10]. In this
reaction, orange Ru2� ions are oxidized to a green Ru3�

state, forming a propagating pulselike front, which is im-
aged using a 12-bit CCD camera with a red interference
filter. The Ru-catalyzed BZ reaction is also inhibited by
blue-green light. We use photoinhibition techniques to
confine the reaction to the area of interest [21]. The reac-
tion is triggered with a silver wire. The vortices are sta-
tionary (i.e., with no wind) at the beginning of each run; the
wind is gradually increased to the desired strength after the
reaction is initiated. The enhanced images are digitally
‘‘decurled’’ into a linear chain and shifted into a reference
frame moving with the vortices for analysis.

The front velocity vf, wind speed W, and maximum
vortex velocity U are all scaled by the RD velocity: � �
vf=v0, � � W=v0, and� � U=v0. In the limit �! 0, the
addition of a uniform wind is the equivalent of a Galilean
transformation; in a reference frame moving with the wind,
there is no flow. Consequently, for � � 0

 � � 1� �: (1)

In this limit, a front is ‘‘frozen’’ (i.e., � � 0) only if W is
precisely equal to v0, i.e., if � � 1.

The addition of underlying vortex structures (� � 0)
has a significant effect on front behavior. Sequences of
images (Fig. 2) show the regimes of front propagation in
this case. In an ordered vortex flow with small � [Fig. 2(a)],
the front propagates forward against the wind; it is ad-
vected around each vortex and then burns across the sep-
aratrix from one vortex to the next. The front freezes for
intermediate wind speeds [Fig. 2(b)]: the wind prevents the
front from burning across the separatrix into the next
vortex. However, the wind does not blow the front back-
wards even though � significantly exceeds 1; instead, the
front circles in the leading vortex. In the comoving refer-
ence frame of Fig. 2, the front is frozen; in any other
reference frame, the front is pinned to the motion of the
leading vortex. For large enough � [Fig. 2(c)], the front is
pushed back by the wind, as viewed in the comoving
(vortex) reference frame. In the laboratory reference frame

the front may still move forward, but not as fast as the
vortices.

Front velocities in the comoving reference frame are
plotted as a function of the opposing wind speed in
Fig. 3 for three values of �, along with the prediction
from Eq. (1) for the � � 0 limit [23]. The most salient
feature of Fig. 3 is the plateau, clearly visible for all three
values of �, where the front velocity � � 0. The width of
the frozen-front plateau decreases with decreasing � and
the velocities approach the theoretical limit as � ap-
proaches 0. Also note that advection due to the vortices
enhances the front speeds when � < 1, consistent with
previous studies of the � � 0 limit [21,24,25].

The variation with � of the width of the pinned-front
regime can be seen in a parameter-space diagram (Fig. 4).
The minimum wind speed to achieve frozen fronts is

FIG. 2. Sequences of decurled images, showing regimes of
front propagation. In all cases, the imposed wind blows from
right to left. (a) Forward-propagating front; � � 0 and � � 40.
The front is advected around the vortex and burns across the
separatrix in order to propagate forward. (b) Frozen front; � �
2:6 and � � 12. The wind prevents the reaction from burning
across the separatrix. (c) Backward-propagating front; � � 8:6
and � � 12. The front is initially in the leading vortex but is
blown backwards by the wind. (d) Frozen front for a narrow
random array of vortices; � � 4:0 and � � 12.
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(within error) the RD front velocity: � � 1. This can be
understood by considering the behavior near the separa-
trices, where the wind is perpendicular to the underlying
vortex flow and where forward propagation is not aided by
advection. If � exceeds 1, the wind is stronger than the
forward-burning RD velocity, and the front stalls at the
separatrix. The end point of the plateau is significantly
below �� 1 (i.e., the sum of the RD velocity and the
advective velocity), and it diverges from this line in a
nonlinear fashion. We are currently investigating this non-
linear behavior, particularly in light of secondary flows
[26] and no-slip boundary conditions in the experiments.

Frozen fronts are not limited to ordered chains of vorti-
ces; our results extend to random, 2D vortex arrays, which
better approximate 2D flows found in nature. Frozen fronts
in narrow random vortex flows are shown in Fig. 2(d) and
the inset of Fig. 3. The freezing mechanism remains the
same—the front is pinned at the (more convoluted) sepa-
ratrices. The minimum � necessary for frozen fronts is
greater than 1, however. The separatrices are not typically
perpendicular to the wind for random flows; as a result,
higher W is required for the perpendicular component of
the wind to exceed v0 and thus prevent the front from
burning across a separatrix.

Freezing of fronts is even more general; it is not re-
stricted to flows with a limited number of vortices, nor is it
dependent on no-slip boundary conditions in a confined
geometry. A frozen front is shown in Fig. 5 for a signifi-
cantly wider annulus (inner and outer radii 2.6 and 8.3 cm),
along with a streak photograph showing the underlying
disordered pattern of vortices. Because of the annular
geometry, we can no longer approximate a uniform wind;

W grows by a factor of 3 between the inner and outer
edges. Despite this significant variation in W fronts freeze
across the entire annulus, a further indication of the robust-
ness of this phenomenon. As seen in Fig. 5(b), the frozen
front generally follows the separatrices, although it is
pushed back slightly from the edge of the vortices at larger
radii due to the increased wind.
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FIG. 4. Parameter-space diagram, showing the increase in the
range of the frozen-front regime with increasing �. Open tri-
angles denote forward propagation of the front against the wind,
closed diamonds represent pinned fronts, and open circles denote
backward (downwind) front propagation. The solid line shows
the boundary between pinned and unpinned fronts. The error
bars show the uncertainty in � and are representative for all
points with the same value of �. The dashed line is at � �
�� 1, the normalized sum of the RD and advective velocities.
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FIG. 5. Frozen front in a wide, 2D, random array of vortices.
The images are decurled with the inner and outer radii at the
bottom and top of the image, respectively. (a) Image of the
frozen reaction front. The normalized wind � ranges from 1.8 to
5.8 from the bottom to the top of each image. (b) Streak
photograph of the underlying vortex flow with � � 0. The front
from (a) (black curve) is superimposed on the section of the flow
where it freezes. (c) Snapshots of frozen front.
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FIG. 3. Front velocities in the face of opposing wind. The data
shown are for � � 4, 12, and 40 (open diamonds, filled circles,
and stars, respectively) along with the theoretical limit [Eq. (1)]
for � � 0 (dashed line). The inset shows the same data for a
narrow random chain of vortices at � � 12. For both graphs,
error bars are not visible for the frozen (� � 0) cases, since it is
very easy to identify a frozen front with a high degree of
certainty. A frozen front circles within the leading vortex but
is pushed back from the hyperbolic fixed point.
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Our experiments indicate that pinning of reaction fronts
should occur in a wide range of steady 2D vortex flows,
regardless of the spatial pattern of the vortices. Further-
more, these results help interpret and predict front behavior
in time -dependent flows. We can use front pinning, for
example, to explain mode locking in an oscillating vortex
flow [19,20]. In a comoving (i.e., oscillating) reference
frame, the vortices are stationary in the presence of an
oscillating wind. For sufficiently large oscillatory velocity,
the wind pins the front to a vortex during a significant
fraction of each oscillation period. Thus, the front can only
propagate during a well-defined segment of each period,
tying the front propagation speed to the oscillation
frequency.

Moving vortices in other 2D, time-dependent flows can
be expected to pin reaction fronts similarly, if only tempo-
rarily, in a manner that fundamentally alters the speed and
method of front propagation. In our experiments with
ordered vortex flows, fronts pin in a single vortex in the
chain. Consequently, pinning in general should be possible
with only one vortex. Consider the case of a vortex and a
front moving in the same direction. If the vortex passes
through the front with a sufficient speed, the front will pin
and be dragged forward [27]. (In the reference frame of the
vortex, this is equivalent to the frozen-front case.) Even if
the vortex later slows down or speeds up such that it can no
longer hold the front, it will have already significantly
altered the shape and location of the front. Transient and
long-lived coherent vortices are often found even in 2D
turbulent flows [28–30] and may temporarily pin fronts as
they move through the fluid. These predictions are being
tested in ongoing experiments that we are conducting on
the role of vortices in front propagation in time-dependent
flows. Ultimately, a general theory is needed of front
propagation in ARD systems that accounts for pinning of
fronts by vortices in the flow.
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