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We consider a phase ¯eld model for molecular beam epitaxial growth with slope selection with

the goal of determining linear energy stable time integration methods for the dynamics. Stable

methods for this model have been found via a concave-convex splitting of the dynamics, but this
approach generally leads to a nonlinear update equation. We seek a linear energy stable method

to allow for simple and e±cient time marching with fast Fourier transforms. Our approach is to

parametrize a class of semi-implicit methods and perform unconditional von Neumann stability
analysis to identify the region of stability in parameter space. Since unconditional von Neumann

stability does not ensure energy stability, we perform extensive numerical tests and ¯nd strong

agreement between the predicted and observed stable regions of parameter space. This analysis

elucidates a novel feature that the stability region in parameter space di®ers for a mono-domain
system (single equilibrium slope) versus a many-domain system (coarsening facets from an

initially °at surface). The utility of these steps is then demonstrated by a comparison of the

coarsening dynamics for isotropic and anisotropic variants of the model.

Keywords: Epitaxial crystal growth; coarsening; energy stability; unconditional von Neumann

stability.

PACS Nos.: 11.25.Hf, 123.1K.

1. Introduction

In growing crystal surfaces by molecular beam epitaxy (MBE), the Ehrlich–

Schwoebel–Villain e®ect1–3 can destabilize a °at interface and lead to the formation

of pyramids or mounds (see Ref. 4 for a recent review). These surface features then

coarsen, with their height and spatial extent growing as powers of time. Theoretical
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studies of MBE coarsening typically employ continuum models with nonlinear

equations of motion. Unfortunately, numerical integration of these equations is

hampered by instabilities. As such, much recent e®ort has been devoted to ¯nding

stable integration methods. In this work, we determine a class of linear energy stable

integration methods that are particularly e±cient and simple to implement because

the updated ¯eld can be obtained via the fast Fourier transform (FFT).

Our model consists of a height ¯eld hðx; y; tÞ that obeys the equation of motion

@h

@t
¼ �"2r4h�r � fð1� jrhj2Þrhg; ð1Þ

applicable for homoepitaxial growth with isotropic slope selection. The motivation

for this and related models is discussed below. With these dynamics, equilibrated

regions of uniform gradient and unit slope form. Domains with di®erent slope

orientations meet at edges of constant width w, which is of order ". As the system

evolves the edges are healed out, resulting in the growth of the characteristic domain

size LðtÞ. For this particular model, the power law growth LðtÞ � t1=3 has been found

from theoretical analysis,5–8 simulations,6,7,9 and rigorous bounds.10

Numerical simulations of coarsening are useful for testing scaling and the pre-

dicted growth laws and for measuring properties of the scaling state, such as cor-

relations, growth law amplitudes, autocorrelation functions, and more (see Ref. 11

for a coarsening review). But these simulations face several restrictions. To reach the

asymptotic scaling regime, it is necessary to evolve until the domain size is much

greater than the edge width, LðtÞ � w. But the lattice size �x must be su±ciently

small compared to w, in order to resolve the edge shape and corresponding line

tension. Finally, the system size Lsys must be large enough that domains can grow

into the scaling regime before ¯nite size e®ects appear. To satisfy this string of

conditions,�x < w � LðtÞ � Lsys, requires lattices of very large linear size Lsys=�x,

evolved to late times.

Thus, for coarsening studies it is crucial to use integration schemes that are

accuracy-limited rather than stability-limited. The order of the accuracy and the size

of the truncated error is relatively less important. The distinction is that stability-

limited methods require marching with a ¯xed-size time step, while an uncondi-

tionally stable method, i.e. one with no conditions on �t, allows a time step deter-

mined by the natural time scale of the dynamics. Since the characteristic edge

velocity scales as vedge � @L=@t � t�2=3, where t is the instantaneous time, this allows

a growing time step �t � At2=3 (see Refs. 12, 13). The order of the method and the

size of the truncation error a®ect the optimal choice of the coe±cient A, but do not

alter the time exponent. Using dt=dn � �t, where n is the number of integration

steps, it follows that unconditionally stable methods allow accurate evolution with

t � n3, rather than the stability-limited t � n. For typical simulation parameters,

this provides greater than a 1000-fold increase in e±ciency!

Eyre provided a general approach for generating unconditionally stable semi-

implicit integration methods, based on a convex-concave splitting.14 These schemes
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are energy stable, which means they preserve the monotonic energy decrease of the

continuous time equation. This convex-concave splitting has been successfully

applied to Eq. (1),9,15–17 but these schemes have nonlinear implicit terms that require

iteration to solve for the updated ¯eld. Qiao, Sun, and Zhang constructed linear

energy stable methods,18 but their implicit terms contain nonconstant, ¯eld-depen-

dent factors, so the update equation must similarly be solved iteratively rather than

directly by FFT.

Our goal is to ¯nd integration methods for Eq. (1) that are (i) unconditionally

energy stable, i.e. stable for any size time step �t, and (ii) linear in the updated ¯eld

with constant coe±cients, so the updated ¯eld can be obtained directly via FFT. Such

methods were found for a model of MBE growth without slope selection.19,20 For the

model with slope selection, Xu and Tang proved that a scheme with both properties is

possible, given an assumption that the magnitude of the slope jrhj has an upper

bound.21 Our work is complementary to Ref. 21 in ways we will describe below.

Our method is to parametrize steps with linear implicit terms that can be solved

directly by FFT, determine the range of step parameters that satisfy unconditional

von Neumann (UvN) stability, and then test these parameters numerically for energy

stability. This approach yielded stable, direct steps for the Cahn–Hilliard and Allen–

Cahn equations.12 We ¯nd for the equation of motion, Eq. (1), there exists a class of

¯rst-order, semi-implicit steps

htþ�t ¼ ht þ�t½�"2r4ht �r � fð1� jrhtj2Þrhtg�
� b1�tr2ðhtþ�t � htÞ � b2"

2�tr4ðhtþ�t � htÞ ð2Þ
that provides stable numerical integration for appropriate choice of the parameters

b1 and b2, as shown in Fig. 1. The b1 and b2 terms are added for stability purposes and

are the same order as the error. The results of our UvN stability analysis are pre-

sented as shaded regions while our numerical tests of energy stability are plotted as

points. Although UvN stability does not ensure energy stability, we ¯nd that it is

very e®ective in determining the energy stable regions.

The UvN stability conditions plotted here are independent of lattice type or

details of the spatial derivatives (e.g. ¯nite di®erence versus spectral methods), re-

lying only on the negative semi-de¯nite spectrum of the laplacian. In comparison to

Xu and Tang,21 the current work provides the following:

(a) Xu and Tang proved energy stability for the parameters b1 < �1 and b2 ¼ 1.

While we lack a proof and rely on numerical con¯rmation, our results are con-

sistent with theirs and extend the stable parameter range to all b2 > 1=2.

(b) The UvN stability analysis and our numerical tests reveal an interesting feature:

the stability range di®ers for single- and many-domain systems. The analysis

shows that the most unstable Fourier mode is that with its wavevector oriented

with the local slope rh. In the many-domain system, of interest in coarsening

studies, each mode samples many di®erent slope directions, which acts to sup-

press the instability. This expands the stable parameter range to b1 < �1=2.

Linear energy stable methods for an epitaxial growth model
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(c) We perform extensive numerical tests, building on the testing done in Refs. 7, 21.

This is important for supporting the assumption present in both Xu-Tang and

the present work that the slope jrhj may safely be assumed to be bounded.

(d) We ¯nd, in conjunction with Ref. 12, a pattern of success for UvN stability

analysis predicting the parameter range of energy stable methods. This is

noteworthy because it is a relatively straightforward procedure that can be

easily brought to new phase ¯eld models to develop more linear energy stable

methods.

(e) As with Xu and Tang, our results can be generalized straightforwardly to ani-

sotropic growth, where only a discrete set of slope orientations is preferred. We

demonstrate this explicitly for a model with square symmetry, appropriate for

growth on (100) surface. An application taking full advantage of the accuracy

restriction yields the most extensive (to date) demonstration of power law

growth, and challenges recent claims8 that the square symmetry model should

exhibit asymptotically t1=3 growth.

The remainder of the paper is as follows. In Sec. 2, we review some of the properties of

the model to provide necessary background for subsequent sections. In Sec. 3, we

present the UvN stability analysis, both for single- and many-domain systems. We

describe the numerical tests of energy stability in Sec. 4, and in Sec. 5 we extend our

analysis to the anisotropic model with square symmetry. Details of our ¯nite dif-

ference scheme are presented in Sec. 6, followed by the application of comparing the

Fig. 1. (Color online) Stability diagram for the parameters b1 and b2 in Eq. (2). The UvN stable

parameter values are shaded in gray, with the darker region corresponding to a single-domain system and

the combined gray regions corresponding to a many-domain system. The points represent numerical tests
of energy stability: the (blue) triangles are parameter values that are stable for single-domain systems;

these together with the (purple) squares are stable for multi-domain systems; and the � are parameter

values that were found to be unstable.
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asymptotic coarsening of the isotropic and square symmetry model in Sec. 7. Finally,

we summarize our results in Sec. 8.

2. The Continuous Time Model

In this section, we provide motivation for the model and present some of its prop-

erties, showing in particular the instability to pyramid formation and the energy

decreasing dynamics of the continuous time model.

The height ¯eld, hðx; y; tÞ, is de¯ned in a co-moving frame so that its average is

zero, and obeys a continuity equation. The current J has an equilibrium surface

di®usion contribution equal to the gradient of the local curvature,22 JSD ¼ rð"2r2hÞ,
and a nonequilibrium component JNE:

@h

@t
¼ �r � J ¼ �"2r4h�r � JNE: ð3Þ

A noise term is omitted as this is considered to be irrelevant for coarsening.11 We

consider the slope-selecting nonequilibrium current

JNE ¼ ð1� jrhj2Þrh; ð4Þ
which gives JNE � rh for small gradients, an uphill current due to the Ehrlich–

Schwoebel–Villain e®ect,3 and JNE ¼ 0 for slopes of unit magnitude. Inserting Eq. (4)

into the continuity Eq. (3) yields the equation of motion, Eq. (1).

Common variations on this model include slope-selecting currents that vanish for

only a discrete set of rh directions, re°ecting the underlying crystalline structure,

and models without slope selection. The physical basis and experimental evidence for

these various models are described in Refs. 5, 6, 23–25 and references therein.

The equation of motion, Eq. (1), can be written as a gradient °ow

@h

@t
¼ � �F

�h
ð5Þ

for the free energy functional

F ½h� ¼
Z

d2x
1

2
"2ðr2hÞ2 þ 1

4
ð1� jrhj2Þ2

� �
: ð6Þ

Gradient °ow results in a monotonically decreasing free energy,

d

dt
F ¼

Z
d2x

�F

�h

� �
@h

@t
¼ �

Z
d2x

@h

@t

� �
2

� 0: ð7Þ

As ¯rst noted by Eyre,14 the essential stability criterion for discrete time steps is to

preserve the energy decreasing property of the continuous time equation.

Next, we review the linear stability of the continuous time equation, which will be

useful context for the von Neumann (VN) stability analysis in Sec. 3. Consider a

height ¯eld

hðx; y; tÞ ¼ Cxþ �ðx; y; tÞ; ð8Þ

Linear energy stable methods for an epitaxial growth model
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which consists of small deviations � from a uniform slope. Inserting this into Eq. (1),

linearizing in �, and Fourier transforming to ~�ðk; tÞ 	 R
d2x expðik � xÞ�ðx; y; tÞ

gives

@~�ðk; tÞ
@t

¼ ðk2 � "2k4 � C2k2 � 2C2k2
xÞ ~�ðk; tÞ: ð9Þ

For an interface that is initially °at we set C ¼ 0 and obtain the growth rate for

small °uctuations in the initial conditions:

@~�ðk; tÞ
@t

¼ k2ð1� "2k2Þ ~�ðk; tÞ: ð10Þ

Long wavelength modes with k < "�1 are unstable and grow, which is exactly the

instability that leads to pyramid formation. In the context of the Cahn–Hilliard

equation, this is the spinodal instability.11 Note that the exponential growth of

the mode is nevertheless accompanied by a decreasing total free energy, as required

by Eq. (7).

For an equilibrium interface, we set the slope C ¼ 1 to obtain

@~�ðk; tÞ
@t

¼ �ð"2k4 þ k 2
xÞ ~�ðk; tÞ: ð11Þ

The negative right-hand side indicates that height °uctuations about the equilibrium

slope decay, and the uniform slope pro¯le is stable.

3. UvN Stability Analysis

The goal in constructing a discrete time method is to be faithful to the physical

behavior of the continuous time equation. In our case, this means our discrete step

should be energy stable to preserve the energy-decreasing property of the continuous

equation. However, in this section, we analyze instead the vN stability, i.e. the linear

stability of the discrete step, Eq. (2). This analysis has certain advantages. It is

relatively straightforward and, as shown in Fig. 1 and in Ref. 12, it successfully

predicts the parameter range for energy stability, as judged by numerical tests. Also,

the method provides insight into the dynamics of the Fourier modes, which in

the present case proves useful in clarifying the distinction between the single- and

many-domain systems.

We ¯rst present vN stability analysis on the Euler step as an example with

conditional stability, i.e. a lattice-dependent upper bound on �t. Then we consider

our parametrized semi-implicit step and perform UvN stability analysis; that is, we

seek parameter values which yield vN stable steps for any size �t. Note that we will

only impose vN stability on the equilibrium, sloped interface and not on the °at

interface, where the linear instability is part of the physical behavior of the contin-

uum equation.

In addition to the time discretization, the spatial derivatives in our equation of

motion must be treated by ¯nite-di®erence or spectral methods. Without specifying

G. M. Seyfarth & B. Vollmayr-Lee
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the details of the scheme, we denote the Fourier transform of the two-dimensional

numerical laplacian as �ðkÞ. In the continuum limit, �ðkÞ ! �k2. For spatially

discretized systems, 0 
 �ðkÞ 
 �min, where the value of the lower bound �min �
�1=�x2 depends on the details of the discretized laplacian. Our stability conditions

will rely only on the universal upper bound of zero.

We will use �ðkxÞ to represent the Fourier transform of the numerical derivative

second derivative @2=@x2.

3.1. Euler step

Our discrete time step, Eq. (2), reduces to an Euler step in the case b1 ¼ b2 ¼ 0.

We plug in h ¼ xþ � (i.e. slope C ¼ 1), linearize in �, and Fourier transform to

obtain

~�tþ�t ¼ ½1þ�tf�"2�ðkÞ2 þ 2�ðkxÞg�~�t: ð12Þ
The vN stability condition is that the square bracket term has magnitude less than

unity, to ensure °uctuations die away. The negative curly bracket term in Eq. (12),

has no lower bound in the continuum limit�x ! 0, and thus the Euler step would be

vN unstable for any size �t. The situation is improved by the numerical derivative,

which places a lower bound on the curly bracket terms, leading to vN stability for

�t. j�minj�2"�2 � �x4. The analysis is essentially identical to what happens in the

Cahn–Hilliard equation.26 The Euler step provides an example of a lattice-dependent

stability condition (relying on the lower bound of �ðkÞ rather than the upper bound

of zero) and it results in a ¯xed bound on the time step, regardless of the natural time

scale of the dynamics.

3.2. UvN stability for a single domain

We return to our parametrized discrete step, Eq. (2), but now we leave b1 and b2
unspeci¯ed. We seek to ¯nd ranges for the parameters which will lift any restrictions

on �t, i.e. unconditional stability. We substitute Eq. (8), with slope C ¼ 1 into

Eq. (2), linearize, and Fourier transform. The resulting step can be written as

½1þ�tLðkÞ� ~�tþ�t ¼ ½1þ�tRðkÞ� ~�t ð13Þ

with

LðkÞ ¼ b1�ðkÞ þ b2"
2�ðkÞ2 ð14Þ

and

RðkÞ ¼ 2�ðkxÞ þ b1�ðkÞ þ ðb2 � 1Þ"2�ðkÞ2: ð15Þ
Before imposing the UvN stability, we note that it is necessary to have LðkÞ 
 0 so

that the square bracket on the left of Eq. (13), is nonvanishing for all �t and k. This

gives the requirement that b1 � 0 and b2 
 0.

Linear energy stable methods for an epitaxial growth model
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Next, the UvN stability condition, j~�tþ�tj < j~�tj for all �t and k, will be satis¯ed

if LðkÞ > jRðkÞj. In the case that RðkÞ is positive, this gives the condition

0 < LðkÞ � RðkÞ ¼ �2�ðkxÞ þ "2�ðkÞ2; ð16Þ
which is intrinsically satis¯ed due to the nonpositivity of �ðkxÞ. While here and below

the k ¼ 0 mode saturates the bound, we can safely ignore it since it is static.

The crucial condition, then, comes from imposing LðkÞ > �RðkÞ, which becomes

�ðkxÞ þ b1�ðkÞ þ b2 �
1

2

� �
"2�ðkÞ2 > 0: ð17Þ

The last term is positive for b2 > 1=2. Next, noting that �ðkxÞ 
 �ðkÞ, we have a

lower bound on the remaining two terms:

�ðkxÞ þ b1�ðkÞ 
 ð1þ b1Þ�ðkÞ: ð18Þ
This will be positive provided that b1 < �1. Thus, our conditions for UvN stability of

a single-domain system are

b1 < �1; b2 > 1=2; ð19Þ
which is plotted as the dark gray region of Fig. 1.

Note that for b1 slightly above �1, in the unstable region, it is Fourier modes with

�ðkxÞ � �ðkÞ that ¯rst violate Eq. (17). This corresponds to wavevectors k that are

nearly oriented along the x-axis, i.e. the gradient direction of the equilibrium

interface.

3.3. UvN stability for a many-domain system

In a many-domain system, which is the relevant case for coarsening studies, we are

not free to choose the coordinate axes to align the x axis with the interface gradient,

since there are many facets with di®erent gradient directions. To analyze this case,

we ¯rst linearize about a single domain but with an arbitrary normal direction,

parametrized by the polar coordinate �

hðx; y; tÞ ¼ cosð�Þxþ sinð�Þyþ �ðx; y; tÞ: ð20Þ

This follows through just as before, with the important stability condition Eq. (17),

becoming

cos2��ðkxÞ þ sin2��ðkyÞ þ b1�ðkÞ þ b2 �
1

2

� �
"2�ðkÞ2 > 0: ð21Þ

Now, if many domains are present in the system with essentially random orienta-

tions, then for any particular Fourier mode, the above equation will be averaged over

�, giving hcos2�i ¼ hsin2�i ¼ 1=2. Using

�ðkxÞ þ �ðkyÞ � �ðkÞ ð22Þ

G. M. Seyfarth & B. Vollmayr-Lee
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reduces Eq. (21) to

b1 þ
1

2

� �
�ðkÞ þ b2 �

1

2

� �
"2�ðkÞ2 > 0: ð23Þ

Thus, our UvN stability condition for many-domain systems is

b1 < �1=2; b2 > 1=2; ð24Þ
which is depicted as the combined shaded regions of Fig. 1. The averaging over

multiple orientations provides a greater parameter range of stability than the single-

domain case.

Note that in general Eq. (22) is only an approximate relationship. It is a strict

equality in the �x ! 0 continuum limit, and also in the common ¯ve-point stencil

for the numerical laplacian on a square lattice, but for other choices of numerical

derivatives it need not be exact.

4. Numerical Tests of Energy Stability

Since the ¯eld equation of motion is nonlinear, the vN stability analysis is not suf-

¯cient to prove energy stability. For that reason, we have conducted extensive nu-

merical tests for energy stability for a range of b1 and b2 parameter values. We

present the details of the numerical derivative implementation in Sec. 6, but we note

here two important general features such an implementation should have. First, the

local conservation law should be constructed to hold exactly, without order �xn

truncation error, and second, the energy-decay property of the continuous time

equation should be maintained when spatially discretizing. That is, the particular

scheme of calculating the spatially discrete analog of the free energy F ½h� in Eq. (6)

and the equation of motion should be consistent, so that

d

dt
hij ¼ � @

@hij

F

�x2

� �
ð25Þ

is an exact relation, without order �xn truncation error.

For each b1 and b2 value represented as a data point in Fig. 1, we performed the

following tests. First, we nondimensionalize Eq. (2) without loss of generality by

rescaling length, height, and time via

x ! "x0 h ! "h0 �t ! "2�t0 t ! "2t0: ð26Þ

This transformation results in the same Eq. (2) for the primed quantities with " ¼ 1.

We then evolved 512� 512 sized lattices with lattice constant �x0 ranging from 0:1

to 1 (or �x ranging from 0:1" to "), up to a ¯nal time t 0max. These systems were

evolved using three di®erent methods: an Euler step with �t0 ¼ 0:003 out to a

t 0max ¼ 104, a semi-implicit step with b1 ¼ �1:5 and b2 ¼ 1 and growing time step

�t0 ¼ 0:003t02=3 out to time t 0max ¼ 105, and the same semi-implicit parameters

with a ¯xed time step �t0 ¼ 10 out to time t 0max ¼ 105. For each of these cases,

Linear energy stable methods for an epitaxial growth model
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we analyzed multiple runs and varied between random initial conditions and

sinusoidal initial conditions with long and short wavelengths, including the cases

studied in Refs. 7, 21. These times may be translated to " 6¼ 1 units for any choice of "

by the rescaling t ¼ "2t0.
At regular intervals during the evolution we tested a single step calculated via

Eq. (2), with sizes varied between 1 � �t0 � 106. This step was used only for energy

stability testing and did not contribute to the subsequent time evolution. Any time

that the free energy was found to increase, that particular set of parameter values

was identi¯ed as unstable.

For the many-domain system, we used periodic boundary conditions and an

initially °at interface (plus the random or sinusoidal °uctuations). For the single-

domain system, we ¯rst re-write the ¯eld equation of motion, Eq. (1), in terms of

deviations from the uniform slope, giving

@�

@t
¼ �"2r4� þ 2@ 2

x� þ 2@xjr�j2 þ 2ð@x�Þr2� þr � ðjr�j2r�Þ; ð27Þ

where @x ¼ @=@x, and then constructed the analogous numerical implementation of

this equation. This approach was necessary to eliminate sensitivity to truncation

error. We imposed periodic boundary conditions on �, which corresponds to shifted

periodic boundary condition on h.

In Fig. 1, we show the results of this testing both for the single- and many-domain

systems. The (blue) triangles represent parameter values that were found to be stable

for the single-domain system, that is, under all our testing, there were no single

incidents of energy increase. The (purple) squares are parameters values that were

found to be unstable in the single-domain system, but stable for the many-domain

case. The remaining � are parameter values found to be unstable for both single- and

many-domain systems. We ¯nd a striking degree of agreement between the predic-

tions of UvN stability analysis and the numerical tests for unconditional energy

stability. This is one of our main results.

5. Model with Square Symmetry

While the isotropic growth model, Eq. (1), provides a useful starting point for an-

alyzing surface growth coarsening, experimental systems typically select for only a

discrete set of slope orientations. For example, homoepitaxial growth on a Cu(100)

surface exhibits a square symmetry with four equilibrium slope orientations.27 This

symmetry can be easily added to the phase-¯eld model by adding a term to the free

energy functional

Fsq½h� ¼ Fiso½h� þ �

Z
d2x ð@xhÞ2ð@yhÞ2; ð28Þ

where Fiso½h� is the free energy of Eq. (6), � is a nonnegative coe±cient determining

the strength of the anisotropy, and @x ¼ @=@x. The additional term is nonnegative

G. M. Seyfarth & B. Vollmayr-Lee

1850059-10

In
t. 

J.
 M

od
. P

hy
s.

 C
 2

01
8.

29
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 W

SP
C

 o
n 

08
/0

7/
18

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



and vanishes for slopes oriented with the cartesian axes. For � ¼ 1, the potential is

isotropic to quadratic order about any of the four equilibrium points.

Taking @h=@t ¼ ��Fsq=�h then gives the equation of motion

@h

@t
¼ �"2r4h� @xf½1� jrhj2 � 2�ð@yhÞ2�@xhg

� @yf½1� jrhj2 � 2�ð@xhÞ2�@yhg: ð29Þ
We parametrize our ¯rst-order accurate time step as before, with

htþ�t ¼ ht þ�t
@h

@t

� �
t

� b1�tr2ðhtþ�t � htÞ � b2"
2�tr4ðhtþ�t � htÞ: ð30Þ

UvN stability analysis about an equilibrium slope, h ¼ xþ �, takes the same form

Eq. (13), with LðkÞ unchanged and

RðkÞ ¼ 2ð1� �Þ�ðkxÞ þ ð2�þ b1Þ�ðkÞ þ ðb2 � 1Þ"2�ðkÞ2: ð31Þ

Following the method of Sec. 3.2 for a single equilibrium domain, the crucial

condition L þR > 0 then results in the stability region

b1 < �maxð1; �Þ; b2 > 1=2: ð32Þ

For � < 1, the stability boundary is determined by the Fourier mode in the direction

of the slope gradient, while for � > 1 the boundary is determined by the Fourier

mode perpendicular to the slope gradient.

For a multidomain system, we need to average over domains with gradients in

the �x̂ and �ŷ directions, analogous to the average over orientations in Sec. 3.3.

Fig. 2. (Color online) Stability diagram for the square symmetry model of Sec. 5. Squares represent

ðb1; b2Þ parameter values which were energy stable in our numerical tests, whereas the � were found to be

unstable. The shaded region represents UvN stable parameter values.

Linear energy stable methods for an epitaxial growth model
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This results in the stability region

b1 < � 1þ �

2
; b2 > 1=2: ð33Þ

We conducted numerical tests of energy stability for the multidomain system with

� ¼ 1 following the same protocol shown in Sec. 4 and again ¯nd good agreement,

as shown in Fig. 2. The details of our numerical spatial derivatives are provided

in Sec. 6.

As this section demonstrates, it is straightforward to generalize the analysis of the

isotropic model to the case with a discrete set of preferred slope orientations. In

particular, the analysis for models with six-fold symmetry6 and three-fold symme-

try28 should follow analogously.

6. Finite Di®erence Scheme

Here, we present details of the spatial discretization scheme we used in our numerical

tests. We present these in a discrete-space, continuous time picture, as our goal is to

ensure that the conservative dynamics and the gradient °ow are exact, i.e. preserved

to all orders in �x. The essential condition for gradient °ow is that the equation of

motion must be connected to a particular choice for the free energy functional

such that

@hi;j

@t
¼ � @

@hi;j

F

�x2

� �
: ð34Þ

Local conservation is imposed by ensuring that the equation of motion has the form

dhi;j

dt
¼ � 1

�x
½fJxgiþ1=2;j � fJxgi�1=2;j � fJygi;jþ1=2 � fJygi;j�1=2� ð35Þ

so that the same fJxgiþ1=2;j °ows into hiþ1;j and out of hi;j, and the same fJygi;jþ1=2

°ows into hi;jþ1 and out of hi;j.

Our implementation uses an on-site ¯nite-di®erence expression for r2h, for which

we take the standard ¯ve-point stencil,

fr2hgi;j ¼
1

�x2
½hiþ1;j þ hi�1;j þ hi;jþ1 þ hi;j�1 � 4hi;j�; ð36Þ

and the cell-centered expression for jrhj2,

fjrhj2giþ1=2;jþ1=2 ¼
1

2�x2
½ðhiþ1;j � hi;jÞ2 þ ðhiþ1;jþ1 � hi;jþ1Þ2

þ ðhi;jþ1 � hi;jÞ2 þ ðhiþ1;jþ1 � hiþ1;jÞ2�: ð37Þ
With these choices, it is straightforward to show that

@

@hk;l

X
i;j

fjrhj2giþ1=2;jþ1=2 ¼ �2fr2hgk;l: ð38Þ

G. M. Seyfarth & B. Vollmayr-Lee
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For the isotropic model, our equation of motion is given by Eq. (34), with the

choice

F

�x2
¼

X
i;j

"2

2
fr2hg2

i;j þ
1

4
ð1� fjrhj2giþ1=2;jþ1=2Þ2

� �
: ð39Þ

By making use of Eq. (38), the equation of motion can be shown to satisfy the

discrete continuity equation (35) with current

fJxgiþ1=2;j ¼ fJ SD
x giþ1=2;j þ fJ NE

x giþ1=2;j; ð40Þ
where the surface di®usion current is

fJ SD
x giþ1=2;j ¼ "2

fr2hgiþ1;j � fr2hgi;j
�x

; ð41Þ

and the nonequilibrium current is

fJ NE
x giþ1=2;j ¼

hiþ1;j � hi;j

�x

� 1� 1

2
ðfjrhj2giþ1=2;jþ1=2 þ fjrhj2giþ1=2;j�1=2Þ

� �
; ð42Þ

and analogous expressions for fJygi;jþ1=2. The discrete form of the free energy,

Eq. (39), was used for the numerical tests for energy stability.

For the square symmetry model, we need additionally the cell-centered

derivatives

fð@xhÞ2giþ1=2;jþ1=2 ¼
1

2�x2
½ðhiþ1;j � hi;jÞ2 þ ðhiþ1;jþ1 � hi;jþ1Þ2�

fð@yhÞ2giþ1=2;jþ1=2 ¼
1

2�x2
½ðhi;jþ1 � hi;jÞ2 þ ðhiþ1;jþ1 � hiþ1;jÞ2�:

ð43Þ

The free energy is given by Eq. (39) with the additional term

Fsq

�x2
¼ F

�x2
þ �

X
i;j

fð@xhÞ2giþ1=2;jþ1=2fð@yhÞ2giþ1=2;jþ1=2; ð44Þ

which corresponds to the nonequilibrium currents

fJ NE;sq
x giþ1=2;j ¼ fJ NE

x giþ1=2;j � �
hiþ1;j � hi;j

�x

� �

�ðfð@yhÞ2giþ1=2;jþ1=2 þ fð@yhÞ2giþ1=2;j�1=2Þ; ð45Þ
and

fJ NE;sq
y gi;jþ1=2 ¼ fJ NE

y gi;jþ1=2 � �
hi;jþ1 � hi;j

�x

� �

�ðfð@xhÞ2giþ1=2;jþ1=2 þ fð@xhÞ2gi�1=2;jþ1=2Þ: ð46Þ

Linear energy stable methods for an epitaxial growth model
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7. Coarsening Application

While the isotropic growth model is understood to exhibit L � t1=3 coarsening,

experiments27 and simulations6,29 have found L � t1=4 for crystal growth with square

symmetry. However, some variants of this square symmetry model can result in t1=3

growth,30 and more recently, it has been argued that all MBE coarsening with slope

selection should asymptotically crossover to t1=3 growth, with the observed t1=4 be-

havior being a metastable transient.8

As an application, we have simulated the coarsening for both � ¼ 0 (isotropic)

and � ¼ 1 (square symmetry) using the stable step parameters b1 ¼ �1:5 and b2 ¼ 1

and a growing step size

�t0 ¼ maxð0:1; 0:01t02=3Þ ð47Þ
in units with " ¼ 1, which are generally used in coarsening studies (see, e.g. Refs. 8,

10–13, 24–26, 29). The time t0 can be translated to a time t for any value of " by

t ¼ �2t0, as in Eq. (26). Shown in Fig. 3 are snapshots of domain con¯gurations

for various times for the isotropic model, Eq. (1), simulated on a 512� 512 lattice.

The analogous con¯gurations for the square symmetry model, Eq. (29), are shown

in Fig. 4.

To measure the coarsening rate, we performed 20 independent runs on a 2048�
2048 lattice with �x ¼ " ¼ 1 (which is still small enough to resolve the rounding of

Fig. 3. (Color online) Plotted is the laplacian of hðx; y; tÞ, for a system evolved with a growing time step

�t � t2=3. Simulation details are provided in the text. Positive values (troughs) are red, negative values
(peaks) are blue, and the white regions are domains of uniform slope with zero laplacian.
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the facet edges), out to time t 0max ¼ 107. This extends at least two decades farther

into the scaling regime than previous simulations. We measure the length scale via

the free energy: once equilibrated domains form, the free energy density f ¼ F=L2
sys

is proportional to the amount of edge in the system, which is inversely proportional

to the characteristic size of the domains, so f � 1=LðtÞ. Figure 5 shows the decay of

Fig. 4. (Color online) Plotted is the laplacian of hðx; y; tÞ as described in Fig. 3, but here for the square

symmetry model.

Fig. 5. (Color online) The free energy density f ¼ F=L2
sys � 1=LðtÞ as a function of time, where the time

evolution utilized a growing time step, �t � t2=3. Simulation details are in the text. The lower (red) curve

is the isotropic model, while the upper (blue) curve is for the anisotropic model with square symmetry.

Linear energy stable methods for an epitaxial growth model
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the free energy with time for � ¼ 0 (isotropic) and � ¼ 1 (square symmetry). For the

time range simulated, we observe the expected t1=3 growth for the isotropic model,

and slightly slower than t1=4 growth, with a exponent around 0:22, for the square

symmetry model. While these results do not rule out an asymptotic crossover to t1=3

growth, we ¯nd no signature of the crossover in the extended time range of our

simulation.

Next, we explore the hypothesis of a square symmetry to isotropic crossover

further by weakening the anisotropy strength �. We measure the growth rates for

� ¼ 0, 0:01, 0:1 and 1, as shown in Fig. 6, scaled by the expected time dependence of

the isotropic model (again measuring the length scale via the free energy density

f � 1=L). We ¯nd that for weak �, the dynamics initially tracks the isotropic model,

and after su±cient evolution approaches that of the square-symmetry. That is, we

see the crossover happen in the opposite direction! Evidently with small enough �,

the facets initially form with a nearly isotropic distribution, but the dynamics slowly

evolves this towards the square-symmetry distribution over a time scale that varies

inversely with �.

8. Summary

We have parametrized a ¯rst-order accurate discrete time step for MBE growth with

slope selection, given in Eq. (2), that is energy stable for appropriate choices of the

parameters b1 and b2. We determined the stability range for these parameters via

UvN stability analysis, and then tested these predictions with numerical tests for

energy stability, as shown in Fig. 1. We ¯nd that the UvN stability analysis serves as

an accurate proxy for unconditional energy stability, similar to the behavior of the

Cahn–Hilliard equation.12 We extended this analysis to a model with square sym-

metry, appropriate for growth on a (100) surface.

Fig. 6. (Color online) The free energy density f ¼ 1=LðtÞ for varying anisotropy strengths �, scaled by
the expected t1=3 time dependence for the isotropic model. For weak � there is evidence of a crossover from

the isotropic to the square-symmetry growth law.

G. M. Seyfarth & B. Vollmayr-Lee

1850059-16

In
t. 

J.
 M

od
. P

hy
s.

 C
 2

01
8.

29
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 W

SP
C

 o
n 

08
/0

7/
18

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



Our unconditional stability analysis and tests hold for any value of ", since this

parameter can be freely varied by rescaling length and time scales, as in Eq. (26). The

accuracy-limited growing step size �t0 ¼ A0t02=3 in � ¼ 1 units translates directly to

the condition �t ¼ At2=3 for � 6¼ 1 units, with A ¼ �2=3A0. In particular, the power-

law growth of the accuracy-limited time step size is unchanged.

Our stability analysis contained an implicit assumption that the interface slopes

do not exceed unit magnitude, which we justify by noting that the dynamics natu-

rally select for this slope. This came into our UvN analysis by our choice to linearize

about a unit slope domain. We note that the numerical tests for energy stability

contained no such assumption, so the agreement between the two approaches con-

¯rms validity of the unit slope assumption. The UvN stability analysis also revealed a

distinction in the stability for single-domain and multi-domain interfaces.

The increase in e±ciency due to an energy stable method is substantial. For the

simulations presented in Fig. 5, computation by Euler step, for which the largest

stable step size (in " ¼ 1 units) is �t0 ¼ 0:03, would require 3:3� 108 time steps. In

contrast, using a stable method with step size �t ¼ maxð�t0;At2=3Þ the number of

time steps required to reach some tmax is given by 3t
1=3
max=A, which for our simulations

is 6:5� 104 steps. Each stable step involves an overhead factor of 2.4 due to the

addition of the FFT, but the net result is an overall increase of e±ciency by a factor

of 2100 for the data we present! Note that this factor will increase as computational

resources allow for larger systems to be evolved to later times.

We used this method to extend the range of coarsening simulations for these

models by roughly two decades in time. As a result, we found even for weak an-

isotropy no signature of the recently argued crossover to t1=3 coarsening for the

square symmetry model.8

The method of parametrizing linear semi-implicit steps, performing UvN stability

analysis, and then testing the predictions numerically for energy stability has yielded

e±cient stable methods for the Cahn–Hilliard and Allen–Cahn equations12 and now

for a class of MBE crystal growth models. We anticipate that this procedure will

prove useful to many other phase ¯eld models.
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