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Abstract. The diffusion-controlled reaction kA + M is known IO be strongly dependent on 
Ruchlations in dimensions d < d. = 2 / ( k  - 1). We develop a field-theoretic renormalization 
group approach to this system which allows explicit calculation of the observables as expansions 
in c I / ( ~ - I ) ,  where f = d, - d .  For the density it is found that, asymptotically, n - Akr-d/Z. 
The decay exponent is emcl to all orders in 6, and the amplitude Ax is universal, and is 
calculated to second order in 6'/('-') for k = 2.3. The correlation function is dculated to 
first order, along with a long-wavelengJh expansion for the second-order term. For d = d, we 
find n - A k ( l n t / t ) l / ( k - l )  with an exact expression for A X ,  The formalism can be immediately 
generalized to the reaction k A  + t A .  e c k.  with the consequence that the density exponent is 
the same, but the amplitude is modified, 

1. Introduction 

Diffusion-controlled chemical reactions are adequately described by mean-field-type rate 
equations in higher dimensions, but in lower dimensions the fluctuations become relevant 
[1,2]. For the reaction k A  + 0 the critical dimension for fluctuations is conjectured to be 
dc = 2 / ( k  - 1) [3,4]. If d > d, the density n ( t )  obeys the rate equation 

with reaction rate constant r. This implies the density will decay asymptotically like 
n - (l?)-'/('-'). For d < d, it is conjectured on the basis of scaling arguments [3,4], 
rigorous bounds [5], and exact results for d = 1 [&lo], that n - r - d / z .  For d = dc the 
mean-field power law with logarithmic corrections is expected. 

In this paper we apply renormalization group (RG) methods to this system, with the goals 
of verifying the above conjectures and demonstrating universal quantities. The formalism 
developed can be used to calculate the density and correlation function perturbatively in 

where E = dc -d .  This formalism includes infinite sums for each order of <l / (k - l ) ,  
since the initial density is a relevant parameter and must be summed to all orders. 

Previous work in applying RG to this system was carried out by Peliti for the case 
k = 2 [ 111. Using a field-theory formulation of this system, Peliti was able to confirm 
the conjectured decay exponent, and also demonstrate that the reactions A + A -+ B and 
A + A + A are in the same universality class with regard to the decay exponent and the 
upper critical dimension. Peliti also made the observations that the coupling constants can 
be exactly renormalized to all orders and that there is no wavefunction renormalization in the 
theory. The latter has the consequence that simple scaling arguments can be used to extract 
the decay exponent and the upper critical dimension. However, these scaling arguments 
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are not capable of giving other universal quantities in the system, such as amplitudes or 
the asymptotic form of the correlation function. For these one must do the complete RG 
calculation. 

Our formalism enables perturbative calculation of these quantities for general k .  For 
example, we find that the density for d < d, is given by n - Ap('DDt)-"12 with 

and for d = d, 

I 21n8x-5  
A 2 = - +  + O(E) 4xt I6x 

where 'D is the usual diffusion constant. 
Recent work in applying RG to this system includes that of Ohtsuki [ 121, in which the 

density is calculated, although with qualitatively different results than those above. First, 
Ohtsuki predicts that the amplitude for the asymptotic form of the density has the same 
reaction-rate constant dependence as the mean-field solution: n - r-' for k = 2. Second, 
the leading-order term in the +expansion for the density amplitude in 1121 is of order unity. 
An RG scheme involving an external source of particles has been developed by Droz and 
Sasv6ri [13] which leads to scaling functions which confirm the decay exponent. Friedman 
et a1 attempted to calculate the density perturbatively, and concluded that it is necessary 
to perform a non-perturbative sum of all orders of no, the initial density, when calculating 
observables [14]. This infinite sum is exactly what we do in our calculation scheme. To 
ow knowledge there has been no previous satisfactory, complete RG calculation. 

A slightly different field-theory formalism for this system was developed in analogy 
with Base-condensate calculations [15,16]. This approach leads to a confirmation of the 
decay exponents as well. However, this method is not as readily generalized to an RG 
calculation as is the field-theory approach of Peliti. 

The contents of this paper are as follows. In section 2 the system is defined via a 
master equation. This is then mapped to a second quantized representation. and in turn to 
a field theory. In section 3 the renormalization of the field theory and the calculation of 
observables is addressed. The latter requires summing infinite sets of diagrams, for which 
techniques are developed. With the formalism established, the density is then calculated 
in section 4, including correction terms and a discussion of the crossover timescales. An 
alternate method for calculating the leading-order amplitude, which does not involve RG, is 
discussed, and its apparent failure in the case k = 2. In section 5 the correlation function 
is calculated, and with it universal numbers for the fluctuations in particle number, both for 
the total system and for a small volume U. The local fluctuations in particle number are 
found to be divergent. Also the second moment of the correlation function is calculated, 
giving a correlation length scale. The case d = dc is addressed in section 6, and finally 
in section 7 a summary of these results is given, and the generalization to k A  + t A  is 
discussed. 
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2. The model 

Consider a model of particles moving diffusively on a hypercubic lattice of size a, and having 
some probability of annihilating whenever k or more particles meet on a lattice site. This 
model is defined by a master equation for P ( ( n ) ,  I), the probability of particle configuration 
(n)  occuning at time I .  Here (n }  = ( n l ,  n 2 , .  . . , nN) ,  where n; is the occupation number of 
the ith lattice site. The appropriate master equation is 

- ni(ni - 1) .  . , (n, - k + l)P((n],  t ) )  (5) 

where i is summed over lattice sites, and e is summed over nearest neighbours of i .  The first 
piece within curly brackets describes diffusion with diffusion constant ’D. and the second 
describes annihilation with rate constant A. The P((n ) ,  0) are given by a Poisson distribution 
for random initial conditions with average occupation number i o .  

This master equation can be mapped to a second quantized-operator description, 
following a general procedure developed by Doi [ 171. To summarize briefly, operators 
a and at are introduced at each lattice site, with commutation relations [ai, a:] = 8,. The 
vacuum ket is given by ai 10) = 0. The state ket of the system at time t is defined to be 

Then the master equation (5) can be written as 

with the non-Hermitian time-evolution operator 

This has the formal solution I@@)) = exp(-kt)I$(O)). 
To compute averages it is necessary to introduce the projection state 

i 

Then for some observable A( (n ) ) ,  

( ( A ( t ) ) )  = E A ( I n 1 )  W n L  t )  = ( Iiexp(-tfi)l4(0)) (10) 
(“1 

where 
operator 

is the second quantized operator analogue of A. Note that (1.; = (I. Therefore any 
represented in normal ordered form-where all the a/ have been commuted to the 
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left--can be written entirely in terms of the ai. The operator corresponding to the density is 

importance of the &function term will be shown later when the renormalized correlation 
function is calculated. 

The second quantized equation can in turn be mapped to a path integral, with variables 
@i. $i at each lattice site, via the coherent state representation [lS, 191. The action 
corresponding to (7) and (8) is 

simply U;, while the correlation function C(xi ,  x,) is given by u,u,u,u, t . t  or u$ij + niuj. The 

(11)  

The last two terms reflect the Poisson initial conditions and the projection state. The path 
integral form of (10) is then 

{ (A@)))  = N/ n d$i d$i A($(t))e-s'g*t,f' . (12) 

The normalization constant is given by N-' = 1 ni d$i d$; e - s l ~ ~ * * L l .  

Next we take the continuum limit via xi + lddx/ud,  $i + $(x) /ud,  $i + $ ( x ) ,  
io + nod', and - $) -+ a2VZ$. The initial density is now no. The diffusion 
constant exhibits no singular behaviour in the renormalization of the theory, so it is absorbed 
into a rescaling of time, giving the action 

where XO = ~ D - ' U " - ' ' ~ .  
Treating (13) as a classical action gives the equations of motion 

and 

- = -(at, + v*)$ + k i o ( $ x  - I)$'-' - s(t' - t )  = 0. (15) 
SS 

W Z ' )  

Assuming that II, and $ are spatially uniform gives the solution $(t' c f) = 1 and (14) 
becomes 

(16) 

the mean-field rate equation. It is consistent that the rate constant is k l o ,  since IO represents 
the rate at which the reaction occurs, and the resulting change in particle densify is 
proportional to k .  Consider shifting $ by its classical solution: $ + 1 + 4. The action 
which results is (up to an overall constant) 

a 
at 
-$ = -klo@.' +noS(t)  
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where Ai = @)Ao. Note that the boundary terms introduced cancel the @ ( t )  term in (13). 
Averages with respect to this action correspond to physical observables, and are denoted 

by double brackets. Single brackets are used for averages over the curly bracket part of (17). 
That is, for some observable A,  

( ( ~ ( 2 ,  t ) ) )  =(A(., t )  en~~Id”*(x.O)) . (18) 

This is already normalized, since (exp(no$(p = 0))) = 1. 
The dimensions of the various quantities in (17). expressed in terms of momentum, are 

[I] = p - 2  r?m1= PO [@(x)] = p d  [hi] = p 2 - ( k - 1 ) d ,  (1% 

The couplings become dimensionless at the traditionally accepted value of the critical 
dimension, 4 = 2/ (k  - 1) [3,4]. The relative dimensions of @ and $ are arbitrary, but this 
choice is the most natural. Any other choice of dimensions would introduce no-dependence 
into the projection state, and cause the couplings h, to have different dimensions. 

3. Renormalization of observables 

The scheme developed for renormalizing the theory follows conventional RG analysis [20], 
In this vein a renormalized coupling is introduced, and shown to have a stable fixed point 
of order E .  This is the small parameter of the theory, and not no. which implies that the 
computation of observables requires summing over an infinite set of diagrams, corresponding 
to all powers of no in (18). This infinite sum must be grouped into sets of diagrams whose 
sums give a particular order of the coupling constant. It will be shown below that this 
grouping is given by the number of loops. That is, the infinite set of tree diagrams sum 
to give the leading-order term in the coupling, the one-loop diagrams the next-order term, 
and so on. However, before addressing the calculation of observables we tum to the 
renormalization of the theory. 

3.1. Renormalization 

To renormalize the theory all that is required is coupling-constant renormalization. This is 
because the set of vertices in (17) allow no diagrams which dress the propagator, implying 
there is no wavefunction renormalization. As a consequence the bare propagator is the full 
propagator for the theory. 

To determine which couplings get renormalized one first needs to identify the primitively 
divergent vertex functions. A general correlation function with e @’s and m q ’ s  has the 
dimension 

[ ( @ ( I ) .  . . @(e)$(e + 1). . . $ ( e  + mi = pde (20) 

where (1) = (XI, f l ) .  The Green’s function G @ + ) ( p l ,  SI,. . . , P ( + ~ ,  Q + ~ )  is calculated by 
Fourier and Laplace transforming the correlation function above, and factoring out overall 
p-  and s-conserving &functions. The dimensions of this quantity are 

(21) [ ~ ( E . f n ) ]  = pdt2-2t - (dt2)m 
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t t"' 

Figure 1. Sum of 211 the diagram which contribute tn U p ,  12 - 1 1 ) .  Shown here is the case 
k = 3, i = 1. These diagrams can be summed exanly, and m the same for dl 1 

The dimensions of the vertex functions r(csm) are given by the Green's functions with the 
e + m external propagators stripped off: 

[ r ( l . m ) ]  = [ c ( ~ . m ) / ( c ( l . V ) t t m ]  = p2-d(m-l)  (22) 

The vertex functions with m < k are those which are primitively divergent for d < d,. 
Since vertices can only connect k $'s to some number less than or equal to k @'s, then it 
follows that the primitively divergent diagrams have m = k and 8 < k .  

A general q i p k  vertex is renormalized by the set of diagrams shown in figure I .  In 
these diagrams the propagator Go(p. t )  = ( @ ( p ,  t ) $ ( - p ,  0)) = e+ for t > 0, Go = 0 
for t < 0, and is represented by a plain line. Note that this sum is the same for all i, that 
is, all vertices renormalize identically. This is a reflection of the fact that there is a only 
one coupling in the theory. These diagrams can be summed to ail orders, as noted in [ I  I]. 
In ( p .  t )  space the temporally extended vertex function A ( p ,  12 - t l )  is given by 

where I ( p ,  t )  is the k - 1 loop integral 

The 8-function can be written in integral form, which turns the integral into a produc 
Gaussian integrals. This gives 

of k 

Taking the Laplace transform, i ( p ,  s) = 1," dt e"'A(p, t ) ,  makes (23) a geometric sum: 

(27) 
A0 

h ( p ' s ) =  1 +hOBkr(E/dc)(S+pZ/k)-'JLZ 
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where the d and k have been exchanged for E and d,. For a general $'@' vertex the ho in 
the numerator is replaced by hi = (:)Lo, and the denominator is unchanged, Therefore the 
small s and p form of the vertex function is independent of A0 for all i .  

The vertex function (27) is used to define a renormalized coupling. Using the momentum 
K as a normalization point, we define the dimensionless renormalized coupling to be 
gR = K ~ ~ / " ~ ( s ,  and the dimensionless bare coupling go = K ~ / ~ ~ ~ o .  The f3 
function is defined by 

It is exactly quadratic in gR and has a fixed point f3(g;) = 0 at 

g: = {~~r(~/dc) ] - ' .  (29) 

The fixed point is of order E .  From the definition of gR, equation (27), and equation (29), 
it folIows that g;' = 8;' + g$', or 

This will be  used to exhange an expansion in go calculated in perturbation theory for an 
expansion in gR. 

3.2. Calculation scheme 

Next we develop a CallanSymanzik equation for the theory. Given a comelation function 

F("')(t, 10) = (W, t )  (1 ddy $ ( Y ,  t = O ) ) m )  (31)  

the lack of dependence on the normalization scale can be expressed via 

From dimensional analysis [ F ( m ) ]  = pd-"", implying 

1 a 
a K  at 

K- - 2t- - d + md F@'" = 0 (33) 

We are interested in the density n(t .  no. gR, K) = 1, n,"'")/m!. Substituting (33) into 
(32). and summing to get the density gives the equation 

This is solved by the method of characteristics, and has the solution 
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with the characteristic equations for the running coupling and initial density, 

i o ( t )  = no 

Because of the simple form of the B function, the running coupling can be found exactly: 

One then sets t' = K-' and plugs the result into (36). Notice that i n  the large-t limit 

In conventional RG analysis the mechanics developed above is used in the following 
way: one calculates an expansion in powers of go, and then converts this to an expansion 
in powers of gR via (30). As long as the expansion coefficients are non-singular in E ,  then 
the gR expansion can be related to an €-expansion via (35). That is, we substitute t +. K - ~ ,  

no -+ i o ,  gR -+ &, in the gR expansion, and multiply by the overall factor shown in (35). 
Then for large t, gR + g; giving n( t ,  nos i o )  as an expansion in powers of E .  For a given 
coefficient in the gR expansion we keep only the leading term for large no, since i o  - tdI2, 
and so the subleading terms in ito will correspond to sub-leading terms in t. 

The identification of the leading terms in go is less straightforward than it is in 
conventional RG calculations, since the sum over all powers of no must be taken into 
account. For the density, tree diagrams are of order g;nY"-') for integer i. Diagrams 
with j loops are of order g&Y(k-')-i. Since the addition of loops makes the power of go 
higher relative to the power of no, we hypothesize that the number of loops will serve as 
an indicator of the order of go. This will be shown to be the case via explicit calculation. 

3.3. Tree diagrams 

To calculate all possible diagrams of a given number of loops it is necessary to develop 
two tree-level quantities: the classical density and the classical-response function. The term 
classical means averaged with respect to the classical action, which is the action (17), but 
with only the $@ vertex. The classical density is given by sum of all tree diagrams which 
terminate with a single propagator, as shown in figure 2, and is represented graphically by 
a broken line. These diagrams are evaluated in momentum space. From (18) it follows that 
the $(t = 0) in the initial state all have p = 0, so all diagrams at tree level have p = 0. 

Shown also in figure 2 is an exact graphical relation for the infinite sum, which is 
equivalent to the mean-field rate equation (16). This can be seen by considering the diagram 
in position space, and acting with (a, -Vz), the inverse of the Green's function Go. on either 
side of the diagrammatic equation. Note that the combinatoric factors involved in attaching 
the full-density lines to vertices is different than for propagators, which is discussed in the 
appendix. This equation has the exact and asymptotic (large-t) solutions 

B R  + gi(. 
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.' - (b) 
+ -:, - - - - - - - . 

Figure 2. The classical density, represented as a broken line, is given by (a) the complete sum 
of tree dingnms, and (b)  m integral equation. The loner is equivalent to the mean-field m e  
eouation. Shown here is the case k = 2. 

Figure 3. The response function, shown 3s a heavy line, is given as a sum of the bare propagator 
plus a t m  with a single vertex connecting k - 1 full density lines, plus a term with two veriices, 
and so on. Shown here is k = 3. These diagrams can be summed exactly. 

The asymptotic solution depends on the coupling strength, but not the initial density. 
The response function is defined by 

C(P,  tz, tl) = ( ( ! H - P ,  fZ)+(P. tl))) (41) 

and the classical response function is the above quantity with only tree diagrams included 
in the averaging. It is represented graphically by a heavy line, and is given by the sum 
of diagrams as shown in figure 3. Note that the only p-dependence is that of the bare 
propagator. That is, the density lines all carry no momentum. The time dependence of the 
propagators connecting the vertices cancels to leave only overall dependence on f l .  tz. The 
vertices are now symmetric under interchange, so we can trade the requirement that they 
be ordered for a factor of l /nv!,  where n, is the number of vertices. The sum of diagrams 
is then identified as the Taylor expansion of an exponential, giving 

G,,(p,  rz ,  21) = e-p'(r2-'l) exp [ -k2ho 1' dt n,l(t)'-' I 
The extra factor of k associated with each -kho vertex is a consequence of the combinatorics 
(see appendix). From (18) it follows that ((p(t)$(O))) = a((p(t)))/ano or G ( p  = 0, t, 0) = 
an(t)/ano. This relation should also hold for the classical density and response function, 
as is the case for the solution above. 
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Figure 4. One. and two-loop diagrams far k = 2 8 y  using the response function all such 
diagrams are included. Diagnm (a )  is used to calculnte the amplitude correclion. 

4. Density calculation 

With the classical or tree-level solutions of the previous section, and the renormalization 
scheme developed above, the asymptotic form of the density can now be calculated. The 
solution for the tree diagrams in terms of go, 01 ho. is given by (40). To leading order in gR 
one just replaces A0 with gRK&/'. For large t the running coupling & + g;, which gives 

The superscript on the density refers to the number of loops in the calculation. The 
asymptotic form of this expression is 

The term in parentheses is the leading-order term in Ar,  the amplitude of the t -d/2 
component of the density. 

4.1. Amplirude corrections fork = 2 

Next, the corrections from the higher-loop diagrams are calculated, It will be shown that 
adding a loop makes the sum of diagrams an order gA'(k-') higher. At k - 1 loops the 
diagrams will contain a singularity in E ,  caused by the appearance of the first primitively 
divergent diagram. However, this singularity is cancelled when the g i  correction to go in 
(30) is included in the tree diagram sum. In general the higher-order terms in (30) will 
cancel all divergences in the coefficients of the gR expansion. This will be illustrated in the 
one-loop corrections fork = 2. 

The infinite sum of all one-loop diagrams can be written in terms of the classical 
response function found above. The sum of diagrams is shown in figure 4. Expressing this 
graph in integral form 

n"'(r,no,go.K) = 2  dtzdtl- ddp GdO, t. ~ z ) ( - ~ A O ) G ~ I ( P ,  tz ,  td2(-AO)ncl(tl)2 (45) 

where the time integrals are over 0 e tl < t z  < t. Taking the large-no limit of (45) to 
extract the asymptotic part gives 

s (2n)d 
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Notice that this is independent of go, consistent with the prediction that the one-loop 
diagrams are of order g i  and provide a correction to the leading term in (44). The integral 
can be done exactly. Expressing the leading piece in terms of g;, and the rest as an 
expansion in E :  

where C is Euler's constant. 
subleading term in gO(gR) is 

The correction to the tree-level component due to the 

The singular parts of the g: coefficient cancel as advertised. Combining (47) and (48) and 
making use of the Callan-Symanzik solution (35) gives 

The two-loop diagrams are also shown in figure 4. They all contribute to order gk. 
Unfortunately, we are unable to evaluate diagrams (f ,g) due to the complicated time 
dependence of the vertices, which prohibits calculation of the O ( E )  term in A*. The most 
singular of the diagrams, (b)-(d), are of order E - ~ .  These diagrams can be calculated and 
the singular pieces cancel as expected. 

Note that the asymptotic, or large-no, limits of the classical density and the classical 
response function are of order n:, which implies that the asymptotic time dependence of 
the density, calculated to any number of loops, will be r-d12. Therefore the decay exponent 
is exact to all orders in E .  

The cancellation of the singularities which appear in the gR expansion can be most 
easily understood by viewing the correction terms i n  (30) as counterterms introduced to 
cancel primitive divergences. That is. considering &R = g;/& + O(g;), and calculating 
the first-order term in 6gR at tree level gives a diagram similar to figure 4(a), but with 
the counterterm in place of the loop. This diagram, when added to the one-loop diagram, 
cancels the singularity in the g i  coefficient. Two-loop diagrams ( b W )  can be viewed 
as primitively divergent loops added to the one-loop diagram (a). The order 6gR terms 
in the one-loop diagram are equivalent to diagrams (b)- l f )  with a counterterm in place 
of the additional loop, and will cancel the divergences in these diagrams. Diagram (g) 
differs in that it is not a primitively divergent loop 'added on' to diagram (a), but it is also 
non-singular. 

4.2. Amplitude corrections fork = 3 

The one- and two-loop diagrams for k = 3 are shown in figure 5. The one-loop diagram 
contains no singularity, and gives the order gg correction to (44). The asymptotic piece is 
given by the integral 
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Figure 5. One- and two-loop diagrams fork = 3. Diagram ( a )  contains no 6 singularity, and 
is used to calculate the amplitude correction. 

._.. 
‘... ,&.. .. + - ........... - - 

Figure 6. Exact diagrammatic equation for nd,(t), the sum of the dressed-tree diagrams 

Performing the integral and using (35) we find the amplitude 

The two-loop diagrams are of order g;’’, although, similar to the case of k = 2, we are 
unable to calculate diagrams (f)-(i). The only diagram with a singularity is (j) which can 
be calculated to demonstrate that the gk’ coefficient is non-singular, as expected. 

4.3. Dressed free calculation 

There exists an alternate method for calculating the leading-order amplitude of the density 
which does not require using the RG formalism However, there is a discrepancy between 
this method, the dressed-tree sum, and the RG in the case k = 2. We present the dressed-tree 
calculation below, and an explanation for why we believe the RG to be correct for k = 2. 

Consider summing the most divergent diagrams for each power of lo and no. This is 
equivalent to summing the dressed-tree diagrams, which are tree diagrams with all the 
vertices replaced by the temporally extended vertex function (23). The sum of these 
diagrams, nd,(t), satisfies the diagrammatic equation shown in figure 6, where ndt is 
represented by a dotted line. As with the tree-diagram sum, acting on this equation with 
the propagator inverse (a, - v) gives a differential equation 
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Laplace transforming the equation gives 

sn(s) -no = -kh(O. s)nk(s)  (53) 

where n(s) = j '~dte-5 'n( t )  and nk(s)  = j'Fdfe-s'n(f)k. The transform of the vertex 
function h(0, s) is known exactly, and is given by (27) .  However, the equation is not 
algebraic in n(s), making it difficult to obtain an exact solution. To proceed, we assume 
ndt - A r m ,  so that for smdl S ,  n(s)  - Ar(i - a)s*-I. AISO, n'(s) - 2 r ( i  - km)sku-] ,  
and h(0,s) - sf /dc/(Ekr(E/dc)) .  The transform of n&)x is calculated by imposing a 
small-t regulator, which is justified as the transform of the exact solution does exist, and 
then taking the small-s limit. The amplitude which results is independent of the regulator. 
Substituting these in to (53) and taking the small-s limit of the equation gives a = d / 2 .  
and the amplitude 

For k # 2 the non-singular r functions cancel to leading order in E ,  with the result 
d = Ax + O(E'). However, for k = 2 all the r functions are singular, which has the 
consequence that dz = 2Az + O(so). In light of this, i t  seems necessary to find an 
explanation why this particular set of diagrams sums to give the proper leading-order term 
for general k ,  but not f o r k  = 2, if indeed the RG is giving the correct leading-order term. 

Consider the set of dressed one-loop diagram. That is, the set of diagrams given in 
figure 4(a) and figure 5(a), but again with each vertex replaced by the temporally extended 
vertex function. While it would be difficult to calculate this sum, it is possible to see a 
property specific to k = 2 that they have. The analogue of the classical densities in these 
diagrams is the dressed-tree density ndt c( r d l Z .  Therefore for general k there is a time 
integral over or t - k / ( k - l ) - k f I Z .  This time integral will be in the form of a Laplace 
convolution integral, similar to (52). Using a regulated transform as before, the amplitude 
of the small-s limit will be proportional to r((k - 2 ) / ( k  - 1) + k e j 2 ) .  For k # 2 this is 
non-singular at E = 0, but for k = 2 it is of order s-'. Therefore these diagrams are part 
of the leading-order amplitude for k = 2. As a result, it would appear that the discrepancy 
is a consequence of the failure of the dressed-tree method, and not of the RG. 

4.4. Crossovers 

There are two crossover timescales in this system, one given by no and one by ho. For the 
coupling constant crossover we consider the large-t expansion of (39) 

= g; (1 - h, 1 f -W< t o(t-%/dc)) , ( 5 5 )  

Including the correction term in the density calculation will generate a ho-dependent 
term proportional to t - d / z - s l d e .  From (55) it follows that the characteristic crossover 
time is given by fb - (c/h0)4/'.  In terms of the constants in the master equation, 
lA - a 2 2 ) - ' ( E D / a 2 h ) ~ / f .  For small E ,  or large ho, the time required to reach the fluctuation- 
dominated regime becomes small. 

The no crossover is calculated by keeping the order no' terms in the integrals performed 
above. These terms will pick up an extra factor of t -d/2 when put into (33, so the exponent 
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of the leading no-dependent term in the density is f -d.  The characteristic crossover time is 
only weakly <-dependent, and is given by io, - D-1n,2/d = 02D-1i -Z/d  0 ’  

If the no crossover occurs first, then for intermediate times rno << r << i A Q  one 
would expect the system to obey the asymptotic form of the mean-field solution. That 
is, n - [k(k - l ) h ~ t ] - ” ( ~ - ~ ) .  If the ho crossover occurs first it is less clear what the 
behaviour in the intermediate regime will be. The contribution from the tree diagrams will 
be exactly (43), which does not become a power law until the no crossover is reached. This 
is complicated even further by the higher-order diagrams. 

5. Correlation function calculation 

The density correlation function is given by 

c ( x ,  t )  = ( ( (w ,  t) + sd(x)) !b(o,  r))) (56) 

where the &function is a consequence of the second quantized operators developed in 
section 2. A Callan-Symanzik equation for the correlation function can be developed in a 
similar fashion as before. Consider the function 

Dimensional analysis gives [F(”’)] = pd+“. The correlation function C ( p .  r) is given by 
C m n t F ( m ) / m ! .  This leads to the equation 

which has the solution 

c(P. f, no. gR, K )  = ( K 2 r ) - d / z C ( F ( K - Z ) ,  f = K - ’ , h ( K - ’ ) ,  &(K- ’ ) ,  K )  (59) 

with & and 20 given by (38) and (39), and 

Again the calculation of the right-hand side of (59) is divided into the number of loops. 
First the connected and disconnected pieces are separated 

C ( P ,  t) = n(t) + g(p+ r )  + sd(p)n(r ) ’ .  (61) 

The first term on the right-hand side is a consequence of the &function in (56), and is 
considered part of the connected correlation function. The disconnected tree-level graphs 

,and represent the leading-order terms in the correlation function. are of the order gAno 
This is reasonable, as the classical solution of this system corresponds to the absence of 
correlations. The connected tree-level diagrams, which are the leading terms in g(p. r), are 
of order g ~ n ~ + i ( k - l )  and represent the leading corrections due to fluctuations. The tree-level 

2+i(k-I) 
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and one-loop diagrams for g ( p ,  t )  in the case k = 2 are shown in figure 7 .  Diagram ( U )  

can be calculated explicitly to give the leading term 

The function f z ( x )  is regular at x = 0, with f2(0) = f .  For large x ,  f z ( x )  - 1/(2x). 
We are unable to evaluate the oneloop diagrams analytically for general p. although 

it is possible to calculate an expansion in p z ,  which we have done to order p z .  For the 
connected correlation function. c ( p 3  t )  = n(r) + g ( p ,  t ) .  

) pZt + ...I r-d'2 + O(E) 
1 151n8i-r - 19 

lO8n (%+ 7 2 0 n  
(63)  

With the expansion above it is possible to calculate the second moment of c ( x ,  I ) ,  giving 
a length scale for the correlations. For ? ( p ,  f) = A + Bp2 + . . . the second moment 
-ez S d d x x Z ~ . ( x , t ) / S d d x ~ ( x .  t )  = - 2 B / A .  The negative sign in the definition of 6 
is required since the second moment is negative, indicating that the particles are negatively 
correlated at larger distances. Fork = 2 the length 6 is given by 

The correlation function can be used to calculate the fluctuations in the density. For 
example, the fluctuations in the local density are given by integrating C ( p ,  I )  over p .  
However, the p-independent term causes this integral to diverge. One can consider the 
fluctuations of the average particle number of fiducial volume U. This is given by 

where translational invariance is assumed. The order U contribution originates from the 
&function in (56) .  For small v the fluctuations go as 6N,  - m, which is universal. 

( e )  (f) (8) 

Figure 7. The diagnms for the connected correlation function at tree level and one loop, for 
k = 2 .  
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, 

(e) (0 ' (8) 

Figure 8. The diagrams for the conneaed correlation function a1 me level and one loop. for 
k = 3 .  

Also, S N , / N ,  - l / a ,  which diverges as U goes to zero, consistent with the local 
fluctuations being divergent. 

The fluctuations in the total number of particles is given by V c ( p  = 0, t ) .  where V is 
the volume of the system. When divided by the square of the average number of particles, 
Vzn(r)*. this gives 

Note that all these fluctuation terms would be negative if the &function term were neglected. 
That is, ( ( @ ( x ) ~ ) )  < 0, a demonstration that the fields introduced via the path integral 
formulation of [18] are complex. 

The diagrams contributing to g ( p ,  r )  fork = 3 are shown in figure 8. The leading-order 
term for the connected part is 

(67) 
where elf@) = -ierf(ii) = (2/&)): dye?'. The function f 3 ( x )  is also regular, with 
h(0) = 

The one-loop diagram can be calculated as an expansion in p z .  with the net result 
and h(x) - 1/(2x) for large x .  

. -  

- 3 f i  ' I2 8 1 6  2°F 
C ( p , t )  = - - +- - 

[10(3ns) '1600 875 k 

In this case the sign of the second moment of the correlation function depends on 6 .  For 
E .c 0.4 the second moment is negative, and the resulting length scale is given by 

The fluctuations in total particle number are given by 
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6. d = d, 

In general, when d < d,, certain relevant parameters determine the critical exponents of the 
system. When d = ri, these parameters become marginally irrelevant. In such a case the 
exponents are given by mean-field theory, but with logarithmic corrections. In our system 
the marginally irrelevant parameter is the coupling A.o. 

When d = dc the CallanSymanzik solution (35) stili holds, although with a different 
running coupling. The p function can be calculated either with a cutoff which is taken to 
infinity or by taking E -+ 0 in (28) with the same result: &&) = 2B&. This gives the 
running coupling 

For large t the coupling goes to zero, which is the only fixed point of the 
the asymptotic form &. - (& In(K’ t ) } - ’  in the tree-level sum gives 

function. Using 

Higher-order terms in & will give sub-leading time dependence, so this represents the full 
leading-order amplitude. Notice that the correction terms are only an order (In t)-’/(k-l) 
smaller, which will make time required to reach the asymptotic regime large. 

The same procedure gives an exact expression for the leading term in the correlation 
function as well. For k = 2 

and for k = 3 

7. Summary and generalization to kA + eA 

With the RG calculation developed above we are able to calculate various universal quantities 
for this system. These include the amplitude of the asymptotic density for d < 8, given 
by (49). (51), and (72), and the connected correlation function. Also universal are the 
fluctuations in total particle number and the fluctuations in particle number in a small 
volume U. 

The density amplitude for k = 2 can be compared to the exact solution for d = 1 of 
A2 = (8n)-’/’ ~3 0.20 171. Putting E = 1 in our expansion yields A2 = 0.08 + 0.03 + . . .. 
The agreement is less than satisfactory, indicating that the +expansion will not be 
quantitatively accurate to E = 1. However, the €-expansion provides the only systematic 
derivation of universality and scaling. 
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Our results can be immediately generalized to a coagulation reaction kA + t A ,  e c k. 
The only change in the field theory is the vertices Ai in (17): 

The renormalization follows identically. For example. the leading term in the amplitude, 
given by (44), is generalized to 

This proportionality is not generally true for all terms in the E expansion, although it does 
happen to hold when k = 2. To see this consider a rescaling q + b@, $ -+ $ / b ,  and 
no + bno in the action (17). The only t e r m  changed by such a rescaling are the couplings 
Ai + bimkAi, which for k = 2 is only the coupling A I .  Starting from the theory A + A -+ 0 
and making the scale transformation with b = 2 gives exactly the theory for A + A -+ A .  
As a consequence, the density for A + A  + A, starting from an initial density of no. will for 
all times be exactly twice the density of the system A + A  + 0 with initial density of 4 2 .  
This result agrees with the recent exact solution of a particular model of A + A --f (0, A )  in 
d = 1 [lo], although it should be noted that this relation is not truly universal for all times, 
as i t  only holds when the irrelevant couplings are excluded. The asymptotic amplitude is 
universal, and so the relation A2.1 = 2Az.o is exact to all orders in E ,  and independent of 
the initial densities. 

For k = 3 such a simple relation does not hold. We can consider all three theories, 
L = 0, 1,2,  combined with relative strengths ro, r l ,  rz, where xi r, = 1. The rescaling 
defined above will relate two systems with different rc in that the densities will be identical 
up to a rescaling. However, this rescaling only removes one degree of freedom from the 
two independent variables, so unlike k = 2, one cannot necessarily scale one theory into 
another. Considering ro and r l ,  we find 

(77) 

(78) 
where ?o, i l  are the values of ro, rl prior to rescaling. Consider the system which is purely 
e = 0, or FO = 1, il = 72 = 0. For any b # 1 then r l (b)  c 0, which implies that there is 
no combination of systems with different t which is equivalent to = 0 up to a rescaling. 
This is not the case for the pure e = 1 system. This system can be rescaled from b = 1 
to b = 2. At the latter point one has ro = -, rl = 0. and rz = z v  I so this combination 
of systems, with an initial density of 3no/4, will give exactly the density of the e = I 
system at all times. Similarly, starting with Fz = 1 the system can be rescaled from b = 1 
to b = 5. At the latter point ro = I, rl = l, 4 and rz = 0. 

It should be noted that the correlation function will not be identical up to a rescaling for 
any of the systems described above. This is a consequence of the fact that the correlation 
function contains both $ and q’ pieces. 

While the reaction considered here is not as generally interesting as that of A + B -+ 0, 
it is a suitable starting point for developing the application of RG methods to these systems. 
A similar approach may be applicable to the reaction mA + nB + 0, a system where the 
universality classes appear to depend on the nature of the initial conditions [21-241. 

ro(b) = (1 - b)’ + b(2b - I )% + b( 1 - b)?l 
rl(b) = (3 - b)(b - 1) + Zb(1 - b)Fo + bZ?l 

I 
4 

3 
4 
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Appendix. Symmetry factors 

Diagrams which contain the classical density or the classical response function are 
representations of infinite sums of diagrams. While they resemble ordinary perturbation 
theory diagrams, they differ in combinatorics. When calculating the Wick contraction 
combinatorics one treats propagators as distinguishable, although the resulting combinatoric 
factor is then cancelled by a factor which is absorbed into the definition of the coupling 
constant. Our diagrams differ from this in two ways. First, the classical density is attached 
to vertices as an indistinguishable object. This will be demonstrated below. Second, we 
have chosen to introduce in the coupling constants no pre-adjusted combinatoric factor. This 
is merely a matter of convention, and is motivated by the indistinguishability mentioned 
above, and by the direct relation of the coupling constant to the parameters used in the 
master equation. 

The indistinguishability of the density lines can be demonstrated by considering the 
contraction of k q’s, representing a vertex, with the infinite sum which is the initial state: 

where Cgl,,,,,,k = m!/(ml!. . .mk! )  is the number of ways to partition m objects into k 
distinct boxes. The sums can be replaced with unrestricted sums over ml . . . mk, and the 
above expression factors completely, giving 

Wk))d = (($))$ , (A.2) 
The significance of (A.2) is that there is no k !  prefactor. The k classical density lines which 
are connected to the vertex are effectively indistinguishable. 

In calculating the classical response function it is necessary to consider attaching one 
propagator and k- 1 density lines to a qk vertex. This brings in a factor of k, for the number 
of distinguishable ways the propagator can be attached. The remaining k - 1 densities follow 
through the same combinatorics as that shown above, and contribute a factor of 1. 

In general, where the classical response function appears in a diagram it can be treated 
as a propagator for combinatorics. The exception to this situation is in diagrams such as 
figures 4 and 5 (diagrams (d)). Here the symmetry of the two disconnected branches will 
result in the branches attaching as indistinguishable objects. 
Nofe added. When d = dc the density amplitudes for e # 0 are given exactly by the 
relation Al,! = A t .  This is because the set of diagrams which contribute are 
the same as those which give the leading-order amplitude when d c dc. These amplitude 
have recently been measured numerically for the reactions 3A + A and 3A + 2A with 
the results A3,] 0.76 and A3.2 % 0.93 [25]. Our calculations yield instead AJJ % 0.26 
and A3.2 0.37. This discrepancy has not been resolved. 
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