## Corrigendum

# Corrigendum: Anomalous dimension in a two-species reaction-diffusion system (2018 J. Phys. A: Math. Theor. 51 034002) 

Benjamin Vollmayr-Lee ${ }^{1,4}{ }^{1}$, Jack Hanson ${ }^{2}$, R Scott Mclsaac ${ }^{3}$ and Joshua D Hellerick ${ }^{1}$<br>${ }^{1}$ Department of Physics \& Astronomy, Bucknell University, Lewisburg, PA 17837, United States of America<br>${ }^{2}$ Department of Mathematics, City College of New York, 160 Convent Ave, New York, NY 10031, United States of America<br>${ }^{3}$ Calico Life Sciences, South San Francisco, CA 94080, United States of America<br>E-mail: bvollmay@bucknell.edu

Received 10 February 2020
Accepted for publication 18 February 2020
Published 6 April 2020


We make two corrections to the renormalization group calculation presented in Vollmayr-Lee et al [1]. First, the field renormalization technique presented is not applicable for the $B$ particle density in $d=2$ because of noncommutitivity of the $\epsilon \rightarrow 0$ and $t \rightarrow \infty$ limits. The $B$ particle density in $d<2$ and the correlation function for $d \leqslant 2$ are unaffected by this issue. Second, we correct a symmetry factor in one of the diagrams, which modifies the correlation function scaling exponents.

The $B$ particle density at the upper critical dimension $d=2$ decays as $\langle b\rangle \sim t^{-\theta}(\ln t)^{\alpha}$. Our calculation of $\alpha$ was based on the assumption that the contribution $A(z) / \epsilon^{2}$ in equation (25) was asymptotically negligible because

$$
A(z) \propto\left(z-z^{*}\right) \sim \begin{cases}t^{-\epsilon / 2} & d<2  \tag{1}\\ 1 / \ln t & d=2\end{cases}
$$

This assumption is valid for $d<2$ since for any $\epsilon>0$, there exists an asymptotic regime where $1 /\left(\epsilon^{2} t^{\epsilon / 2}\right)$ is negligibly small. But for $d=2$ we must take the $\epsilon \rightarrow 0$ limit before the large $t$ limit, and this term cannot be neglected. As a result, the field renormalization technique employed in [1] is not applicable and one must instead employ the technique of Rajesh and Zaboronski [2], where they renormalize instead the logarithmic derivative $t \partial_{t} \ln \langle b\rangle$. Their result agrees with our [1] equation (7), but their value of $\alpha$, which in our notation reads

[^0]\[

$$
\begin{align*}
\alpha= & \left(\frac{1+\delta}{2-p}\right)\left[\frac{3}{2}+\ln \left(\frac{1+\delta}{2}\right)+\frac{1}{2}\left(\frac{1+\delta}{2-p}\right) f(\delta)\right] \\
& -\frac{4 \pi(1+\delta)}{2-p}\left(\frac{1}{\lambda}-\frac{1+\delta}{\lambda^{\prime}}\right), \tag{2}
\end{align*}
$$
\]

corrects the value we reported in equation (8).
However, the problem of the noncommuting $\epsilon \rightarrow 0$ and $t \rightarrow \infty$ limits does not affect the calculation of correlation function scaling exponents $\phi$ and $\alpha_{2}$, defined via

$$
\tilde{C}_{B B}(r, t)= \begin{cases}t^{\phi} f(r / \sqrt{t}) & d<2  \tag{3}\\ (\ln t)^{\alpha_{2}} f(r / \sqrt{t}) & d=2,\end{cases}
$$

provided one renormalizes the scaled correlation function $\tilde{C}_{B B}(r, t)=C_{B B}(r, t) /\langle b(t)\rangle^{2}$. Our bare expansion for the unscaled $C_{B B}^{B}$ in equation (40) is then replaced by

$$
\begin{align*}
\hat{\tilde{C}}_{B B}^{B}=\frac{t \lambda^{\prime 2} h(Q)}{\lambda}[1 & +\lambda t^{\epsilon / 2}\left(\frac{C(z)-2 A(z)}{\epsilon^{2}}\right. \\
& \left.\left.+\frac{D(z)-2 B(z)}{\epsilon}+\ldots\right)\right] . \tag{4}
\end{align*}
$$

The $1 / \epsilon^{2}$ term then vanishes because $C(z)=2 A(z)$. The remaining $1 / \epsilon$ term can be controlled by field renormalization as before, with the same final results:

$$
\begin{equation*}
\phi=\left[\pi\left(D\left(z^{*}\right)-2 B(z *)\right)+\frac{1}{2}\right] \epsilon+O\left(\epsilon^{2}\right) \tag{5}
\end{equation*}
$$

for $d<2$ and

$$
\begin{equation*}
\alpha_{2}=2 \pi\left(D\left(z^{*}\right)-2 B\left(z^{*}\right)\right) \tag{6}
\end{equation*}
$$

for $d=2$.
The second error in [1] was a symmetry factor of two in the first diagram of Class 2 in figure A2. The corrected equation (A.3) reads

$$
\begin{align*}
F_{2}= & 12 Q z(8 \pi)^{\epsilon / 2}\left(\frac{z}{z^{*}}-1\right) \frac{1}{\epsilon^{2}} \\
& +\left(6+24 Q z-8 Q+3 Q^{2} z^{2} f(\delta)-\frac{15 Q z^{2}}{1+\delta}\right) \frac{1}{\epsilon} \tag{7}
\end{align*}
$$

which changes $D\left(z^{*}\right)$ in equation (41) to

$$
\begin{equation*}
D\left(z^{*}\right)=-\frac{9-13 Q}{6 \pi(3-2 Q)}+\frac{3 Q(1+\delta)}{2 \pi}+\frac{Q^{2}(1+\delta)^{2} f(\delta)}{2 \pi}+O(\epsilon) \tag{8}
\end{equation*}
$$

This modifies the correlation function exponents: equation (6) becomes

$$
\begin{equation*}
\phi=\frac{7}{24-18 p} \epsilon+O\left(\epsilon^{2}\right) \tag{9}
\end{equation*}
$$

and equation (10) becomes

$$
\begin{equation*}
\alpha_{2}=-\frac{5-9 p}{12-9 p} \tag{10}
\end{equation*}
$$

In the text after equation (11), the value of $\phi$ for the truncated RG expansion in $d=1$ with $p=1$ and $\delta=1$ is $\phi=\frac{7}{6} \simeq 1.17$.

## ORCID iDs

Benjamin Vollmayr-Lee © https://orcid.org/0000-0002-3794-1248

## References

[1] Vollmayr-Lee B, Hanson J, McIsaac R S and Hellerick J D 2018 J. Phys. A: Math. Theor. 51034002
[2] Rajesh R and Zaboronski O 2004 Phys. Rev. E 70036111


[^0]:    ${ }^{4}$ Author to whom any correspondence should be addressed.

