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The A + B ~  ~ diffusion-limited reaction, with equal initial densities a (0)= 
b(0)=n0, is studied by means of a field-theoretic renormalization group 
formulation of the problem. For dimension d > 2 an effective theory is derived, 
from which the density and correlation functions call be calculated. We 
find the density decays in time as a ,b~Cv /~ (Dt )  -a/4 for d<4 ,  with 
3 = n 0 - C'n0 a/-~ + ..., where C is a universal constant and C' is nonuniversal. 
The calculation is extended to the case of unequal diffusion constants D a ~ DB, 
resulting in a new amplitude but the same exponent. For d~<2 a controlled 
calculation is not possible, but a heuristic argument is presented that the results 
above give at least the leading term in an t = 2 - -d  expansion. Finally, we 
address reaction zones formed in the steady state by opposing currents of A and 
B particles, and derive scaling properties. 

KEY WORDS: Diffusion-limited reaction; renormalization group; asymptotic 
densities. 

1. I N T R O D U C T I O N  

Dif fus ion - l imi t ed  c h e m i c a l  r e a c t i o n s  a re  k n o w n  in l o w e r  d i m e n s i o n s  to  

exh ib i t  a n o m a l o u s  k inet ics .  ~''2) T h a t  is, t he  e v o l u t i o n  o f  t he  dens i t y  d e p e n d s  

s t rong ly  o n  f l uc tua t i ons ,  a n d  c a n n o t  be  de r i ved  f r o m  m e a n - f i e l d  r a t e  e q u a -  

t ions .  In  th is  p a p e r  we a p p l y  r e n o r m a l i z a t i o n  g r o u p  ( R G )  t e c h n i q u e s  to  the  

two-spec ies  r e a c t i o n  A + B ~ ~ ,  w i t h  the  goa l  o f  d e t e r m i n i n g  sys t ema t i ca l l y  

the  effects o f  t he se  f luc tua t ions .  

T h e  m o d e l  for  the  A + B ~ ~ r e a c t i o n  invo lves  two  types  o f  par t ic les ,  

b o t h  u n d e r g o i n g  ~liffusive r a n d o m  walks ,  a n d  r e a c t i n g  u p o n  c o n t a c t  to  f o r m  

~Institute for Physical Science and Technology, University of Maryland, College Park, 
Maryland 20742. 

z All Souls College and Theoretical Physics, University of Oxford, Oxford OXI 3NP, United 
Kingdom. 

911 

0022-4715/95/0900-0971507.50/0 �9 1995 Plenum Publishing Corporation 



972 Lee and Cardy 

an inert particle. In the density rate equation approach it is assumed that the 
A and B particle densities a and b are uniform, and that reactions occur at 
a rate proportional to the product ab, giving 

da db 
- - F a b  (1.1) 

d t - d t  

with rate constant F. In the case of equal initial densities a ( 0 ) =  b (0 )=  no, 
the solution goes as a, b ~ (Ft)-J  asymptotically, with an amplitude which 
is independent of the initial density. 

It was first suggested by Ovchinnikov and Zeldovich t3) and later 
demonstrated by Toussaint and Wilezek ~4) that relaxing the assumption 
of uniformity yields a slower density decay. In particular, Toussaint and 
Wilczek made the observation that if the two species have the same diffu- 
sion constants DA = D s = D ,  then the density difference a - b  obeys the 
diffusion equation. As a result they found, by using central limit arguments 
to calculate the fluctuations in a - b  due to equal-density, random initial 
conditions, the asymptotic density 3 

a, b ~ o  (Dt)_d/4 (1.2) 
7~ 112(87~)dl4 

where d is the dimension of space. Comparing with the result of the rate 
equation, we see that for d < 4 the asymptotically dominant process is the 
diffusive decay of the fluctuations in the initial conditions. 

Using a particular version of the model, Bramson and Lebowitz confirmed 
rigorously the decay exponent of Toussaint and Wilczek, finding for d < 4 

a, b ~ Ca ~ o  t -a/4 (1.3) 

where Ca is some constant which depends on the dimension d. t5"6) In their treat- 
ment they demonstrated that the two species are asymptotically segregated for 
d <  4. This segregation was assumed in ref. 4 in deriving Eq. (1.2). 

Numerical simulations have confirmed the value - d / 4  for the decay 
exponent in one ,  14'7) two; (4,s) and three dimensions) 9) For all of these 
simulations restrictions were placed on the occupation number per site, 
and usually only single occupancy allowed. In the one-dimensional simu- 
lation of Toussaint and Wilczek the initial density was varied, and 
reasonable agreement was found with their analytic result, Eq. (1.2)) 4) 
However, in higher dimensions the x/~o amplitude dependence, when 
tested, has not been observed. (s'9) In the former case the initial average 

3 There is a misprint in the d= 3 amplitude of ref. 4, Eq. (19c). 
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occupation number per site was kept low, whereas for the higher dimen- 
sional simulations it was necessary to start with a nearly full lattice in order 
to reach the asymptotic regime. This suggests that Eq. (1.2) might not be 
a universal result, but rather a limit for small initial density n o. 

While d =  4 appears to be the upper critical dimension for homo- 
geneous initial conditions, this is not the case when the two species are 
initially segregated, where instead the upper critical dimension is found to 
be d =  2. ~I~ That is, as a result of the segregation, a localized region forms 
in which nearly all reactions occur. This reaction zone exhibits scaling 
behavior, and the characteristic exponents are independent of the dimen- 
sion d when d > 2, but cross over to dimension-dependent values for d < 2. 
Hence, one of our goals in applying RG techniques is to better understand 
the role of the dimensions d = 2 and d = 4. 

The problem can be mapped to a field theory by starting from a 
master equation description of the model, tH~ From an analysis of the field 
theory we find that there is an upper critical dimension dc = 2, which is 
associated with the stochastic processes of reaction and diffusion. Hence, 
for d >  2 one can replace the full field theory with an effective theory, which 
is valid for asymptotically late times, while for d ~< 2 one must instead per- 
form an explicit renormalization group calculation. 

The effective theory for d >  2 is equivalent to the deterministic partial 
differential equations 

a,a = DA V2a -- Fab, O,b = DsV2b -- l a b  (1.4) 

with stochastic, nonnegative effective initial conditions. In deriving the 
effective theory we find that the initial distribution is finitely renormalized 
due to the presence of relevant initial terms, the analog of surface terms for 
a t = 0 boundary in a ( d +  1 )-dimensional theory. The resulting distribution 
can be characterized by a parameter A which depends nonuniversally on the 
initial density. 

We demonstrate explicitly that from these equations follows generally 
the asymptotic segregation of the A, B particles when d <  4, and subse- 
quently the universal decay exponent - d / 4 .  However, the amplitude of 
the density decay depends on the initial conditions, and is therefore non- 
universal. It is important to note that if one uses instead central limit 
arguments to calculate the initial distribution which should be fed into 
(1.4), then one is implicitly making the assumption that these equations 
hold for all times, rather than just asymptotically. Such an assumption will 
get the exponent correct, but we claim that it does not, in general, predict 
the correct amplitude because it neglects the dynamics at short times. 



974 Lee and Cardy 

For 2 < d < 4  and DA =Dn we find 

Dt (1.5) 

where the angular brackets denote averages over both the processes of 
reaction and diffusion and the initial conditions. Here A is the coupling 
constant of the induced initial terms, and can be calculated as an expansion 
in the initial density, giving 

( d +  2 ) (d+  4) ~a/z,,a/2 
" ' e f t " O  "q'- " ' "  Zl = n o 3 8 4 ( 8 ~ ) a / 2 -  1 sin[ re (d-  2)/2] 

(1.6) 

where )~crr is a nonuniversal effective rate constant, defined in Section 2.3 
and used in (2.28). Hence, in the small-no limit the amplitude is universal, 
and we recover the result of Toussaint and Wilczek, Eq. (1.2). The higher 
order terms in no are nonuniversal, and offer a possible explanation for the 
deviation from x/~o behavior found in the simulationsJ 8"9) 

Our results (1.5) and (1.6) appear to disagree with those of Bramson 
and Lebowitz ~6) for d =  4 as well as in the case above. However, we stress 
that since the dependence of the amplitude on the initial density is non- 
universal, there is no explicit contradiction. Our model is defined by a 
continuous-time master equation in which the reaction occurs at a rate 2, 
and multiple occupancy per site of each particle type is allowed. Bramson 
and Lebowitz also study a continuous-time model with multiple occupancy 
allowed, but with an instantaneous reactionJ 5"6) In this case a lattice site 
can only contain one type of particle. We use a finite reaction rate since 
this is convenient for mapping to the field theory, and because it allows one 
to determine better the extent of universality. However, we cannot directly 
relate our results to those of Bramson and Lebowitz, since the field theory 
techniques we use are no longer valid in the limit /l ~ ~z, to which their 
model corresponds. We note that if our results should be valid for large but 
finite 2, then 2err given by (1.6) goes to a limiting value of the order h a-'-, 
where h is the short-distance cutoff. 

For d~< 2 the full field theory and the subsequent renormalization 
must be considered. We find that the field theory may be exactly renor- 
malized, as was shown by Peliti for the one-species reactions A + A---, A 
and A + A  ~ ~.(12) However, the e-expansion calculation of observables 
requires nonperturbative sums over all orders of the initial density no and 
the parameter A, and while these may be carried out straightforwardly in 
the one-species reaction, ~)3) we are unable to apply these methods to the 
present case beyond the leading order in e = 2 -  d. Thus, at least in this 
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approach, we are not yet able to establish even the power law t -a/4 for the 
density to all orders in e, although we believe it to be true. 

We also consider the case of unequal diffusion constants D,~ -~ DB and 
show from the effective theory that in the small-no limit 

( a ( f i ) )  ~ [ Q(d, 6)] 1/2 (a(fi = 0))  (1.7) 

where ~ = (Da - D s ) / ( D A  + D s )  and 

4[(1 + ~)2-a/2 + (1 - - 6 ) 2 - d / 2 - - 2 ]  

Q(d, 6 ) -  j 2 ( d _  2)(d__ 4) (1.8) 

Therefore this falls into the same universality class, with regard to the 
decay exponent, as the symmetric case. 

From the effective field theory for 2 < d < 4 it follows that the density 
difference a - b  is at late times a Gaussian random field. This, combined 
with the asymptotic segregation a + b ~ [ a -  b[, allows one to calculate any 
correlation function. We calculate exactly the equal-time two-point correla- 
tion functions (a ( r )  a (0))  and (a ( r )  b(0)).  

The final topic we discuss is that of reaction zones, which form whenever 
A and B particles are segregated. One example of a reaction zone is that which 
results from opposing currents of A and B particles. We apply RG methods 
to this steady-state case, and show that the densities and the rate of reaction 
have universal scaling forms. The upper critical dimension for this system is 
d,. = 2. These results can be extended to apply to reaction zones in initially 
segregated systems I ~0.14. ~ 5~ and also homogeneous systems for d < 4.~ ~6> 

2. THE  M O D E L  A N D  T H E  C O R R E S P O N D I N G  F IELD T H E O R Y  

The model is defined by a continuous-time master equation for the 
probability P({rn}, {n}, t). The set {m} denotes the occupation numbers of 
A particles on each lattice site, {n} denotes the occupation numbers of B 
particles, and P is the probability of a given configuration occurring at 
time t. The master equation for P reads 

0 OSP({m}, {.}, t) 

DA 
= h---T ~ TM,. . {(mj+ 1) P( .... m i -- 1, m j §  1 ..... t ) - - m , e }  

t ,J  

D s  
+ Z { ( . j +  1) P( .... n , -  1. , , :+ 1 ..... t ) - , , ; P }  

I , ]  

+ 2 ~ , { ( m , + l ) ( n , + l ) P (  .... m , + l  ..... n , + l  ..... t ) - - m i n , P }  (2.1) 
i 
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where DA and D s are the diffusion constants for A and B particles, h is the 
size of the hypercubic lattice, and 2 is the microscopic reaction rate con- 
stant. In the first two curly bracket terms, which describe the diffusion of 
A and B particles, i is summed over all sites, and j is summed over nearest 
neighbors to i. 

The initial conditions for P are given by a Poissonian distribution, 
with the average occupation number per lattice site equal to if0 for each 
species. That is, 

~mi "4" n i  

e({m}, {n}, 0) = e -2~~ 1--[ ,.__~o, __; (2.2) 
i mi~ hi: 

2.1. Mapping to Field Theory 

The first step in mapping the master equation to a field theory is to 
recast it in a "second quantized" form, following a procedure developed by 
Doi/17) Two sets of creation and annihilation operators--& 3t for A par- 
ticles and /~,/~, for B particles--are introduced at each lattice site. These 
obey the usual commutation relations: 

[a,, aJ] = [~,,/~J] = a U (2.3) 

with all other commutators zero. The vacuum ket is defined by 4; [ 0 ) = 0  
and/~i 1 0 ) = 0  for all i. In terms of these operators the state of the system 
at time t is defined to be 

I~b(t)>= Y', P({m},{n} , t ) I~(~t~) '~ ' (b~)" lO> (2.4) 
{m}, {,,} i 

The master equation can be rewritten in terms of this state as 

0 
Ot Iff(t)) -- /~ I~(t)) (2.5) 

with the operator 

cD ., o. ^, 
a =  ( . ,  -t,'i ) ( e , - e , )  (b, - 

+ 2 Z (e,.*/~* - 1) e,/~, (2.6) 
i 

The formal solution of Eq. (2.5) is 

[~(t)) = e - e '  IS(0)) (2.7) 
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The density and other averages, which are defined in the original 
occupation number representation, can be calculated from kb(t)) by intro- 
ducing the projection state 

(" I = (0l l--I ea'+f" (2.8) 
i 

in terms of which the average is 

( (A( t ) ) )  =- ~ A({m}, {n}) P({m}, {n}, t )=  ( .  IAe -a '  I~b(0)) (2.9) 
{,~/,{,} 

The operator analog A can be derived for any A({m}, {n}) by Taylor 
expanding the latter with respect to m i, ni and then substituting rni --* 8td~, 
ni~/~,.*/~,. Note that 

( .  [ 4,*. = ( .  [/~,.* = ( .  [ (2.10) 

for all i, implying that A can be expressed solely in terms of annihilation 
operators by first writing it in normal ordered form. 

The second quantized version of the model is mapped to a field theory 
by the use of the coherent state representation, t11'~8) The time evolution 
operator in Eq. (2.7) is rewritten via the Trotter formula 

exp(-_Ot) = lim ( 1 - / ~  At) 'm' (2.11 ) 
z l t~0  

The right-hand side, before the At--* 0 limit is taken, can be regarded as a 
factorization of the operator into time slices, and a complete set of states 
inserted between each factor. The identity is given in the coherent state 
basis by 

1 = C d2z Iz)<zl (2.12) 
d 7~ 

where [z) is the normalized eigenstate of the annihilation operator with 
complex eigenvalue z: 

[Z ) = e z'~t-lzt2/2 10)  ( 2 . 1 3 )  

Equation (2.12) is generalized to a product over all lattice sites and particle 
species, and then the operator ( 1 - l ~ A t )  is evaluated between successive 
time slices, resulting as At ---, 0 in a path integral representation of (2.9). 

822/80/5-6-4 
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The corresponding action is 

S=fdax[~oldt{a*(Ot----ffDAv2)a+b*fO\ ,-Dn~v2)b 

-2o(l-a*b*)ab}-noa*(O)-nob*(O)-a(tf)-b(tf) ] (2.14) 

where the fields a, a*, b, b* originate from the complex variables z for each 
particle type. Time has been resealed by the average diffusion constant 
D= (DA +De)~2, and the coupling constant is given by 20 =2ha/D. The 
time derivatives above come from the overlap between time slices, and the 
rest of the curly brace terms result from the operator /~. The remaining 
terms are not integrated over time and represent the random initial state, 
with no-~o/h d, and the final projection state (2.8). 

Averages, as defined in (2.9), are given in terms of this action by 

(( A(t) )) - ~ ~(a, a*, b, b*) A[a(t), b(t)] e -s 
~(a, a*, b, b*) e -s (2.15) 

where the script ~ denotes functional integration. The functional A[a, b] 
is found by directly substituting the fields a, b for the annihilation 
operators ~,/~ in A. 

The time tf of the projection state is arbitrary as long t1> t, where t is the 
time argument of the observable. This follows directly from the condition 
( �9 [ ~ = 0 for probability conservation. The final terms can be eliminated by 
making the field shifts a* = 1 + d and b* = I +/~. Then the reaction terms are 

-20(1 - a'b*) ab ~ 2o(~ + b) ab + 2o~bab (2.16) 

Since the conserved mode a - b  plays an important role in the 
dynamics, it is useful to transform (2.14) into the fields ~b, ~, q~, ~ defined by 

a+b d+[~ a - b  d--[~ 
(2.17) 

The v/2 factors are included so that the derivative terms in (2.14) maintain 
a coefficient of unity. The subsequent action is 

S= ; dax [ f dt {~(0 , -  V2)~b + ~ ( 3 , -  VZ)~ - 6(kV2dp - 6~V2~, 

-- 2, ~(~b2- r - 22(~2- ~2)(~b2 - ~kz) } - n,~(0)] (2.18) 
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where ~=(DA-Ds)/(Da+DB), the couplings are 2 ] = 2 0 / x / ~  and 
,l 2 = 20/4, and the initial density is n§ = q /2  n o. This action is the starting 
point for our analysis. Note that, since we are considering only equal initial 
densities, ( a )  = ( b )  = (~b)/v/2. 

The mapping outlined above is a general technique, which may be 
applied to many different reactions, for example, the general two-species 
annihilation reaction mA +nB~ ~. However, in the present work we 
restrict ourselves to the case m = n = 1. 

2.2.  D i a g r a m s  a n d  P o w e r  C o u n t i n g  

A perturbation expansion for a given observable can be developed 
from (2.15) and (2.18) and expressed in the usual diagrammatic fashion. 
The propagators for ~b, r are given by the first two terms in (2.18), and are 
the diffusion equation Green's function: G~k, t)= G~d,(k, t)=exp(-k2t) 
when t > 0, and G,4 = G,r = 0 for t < 0. These propagators are represented 
by solid and dashed lines respectively. The three- and four-point vertices, 
which correspond to the annihilation reaction, are shown in Fig. 1. When 

~ 0 there are also two point vertices which connect a ~ propagator to ~k 
propagator, and vice versa. These vertices are wavenumber-dependent, 
with magnitude k 2. 

In addition there is a source term exp[n , r  = 0)]. By Taylor expanding 
the exponential, an expansion in powers of n~ is generated, where the 
diagrams giving the n~ coefficient have a source of i ~b propagators at t = 0. 
It is useful to introduce the classical density and the classical response func- 
tion, which both involve sums over all powers of n, .  These quantities are 
important because it is found that under renormalization n * flows to a 
strong coupling limit, and these sums are still meaningful in this limit. (~3~ 
The term "classical" refers to absence of loops in the diagrams. 

The classical density is defined to be the sum of all tree diagrams which 
contribute to the average (~b), as shown in Fig. 2. Note that these diagrams 

- -  e - - - - -  

. . . . . .  _ _ <  . . . .  

X ?< ?-( 
-~2 ~'2 2L2 -~2 

Fig. 1. Propagators and vertices for the full theory, given by the action (2.18 ). 
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(a) 
-- + < + < 

+ ~ + -.. 

Fig. 2. 

(b) 
m -I" % 

The classical density, represented by a wavy line, is given by (a) the sum over tree 
diagrams and (b) an integral equation. 

contain only ~b propagators ,  because of  the three-point vertices in (2.18). This 
sum obeys an integral equation which can be solved exactly, giving 

(~b)r n~ (2.19) 
1 + n ~ 2 ] t  

The classical response function is defined to be the ~b propagator  with 
all possible tree diagrams branching off to t = 0, as shown in Fig. 3. Again 
this can be solved exactly, giving 

, \  _ _~.2,,.._,,)fl + n , ; , t l ~  2 (2.20) 
( ~b(k, t2) & - k, t ~ , / c t - ,  \ 1 + n021 t2 /  

In order to renormalize the field theory we must first determine the 
primitive divergences, for which we consider the following dimensional 
analysis. There is a rigid constraint that  [ ~b ] = [ ~ k  ] = k d, where k has the 
dimensions of  wave number. If  we take the dimensions of  the conjugate 
fields to be [~ ]  = [ ~ ]  = k  ~ as was done for the one-species reaction tz3) 
then a general vertex ~i~kk~bt is found to be relevant only for k + l ~  2 and 
d~< 2. Next, we observe that it is not  possible to generate any vertices with 
k = 1 or l =  1 from the vertices in (2.18). Therefore all relevant vertices are 
exactly those present in (2.18), with an upper critical dimension d,. = 2. We 
will discuss the renormalization of the theory in Section 3.3 and for now 
focus on the case for d > 2. 

Fig. 3. 

k 
-- + + 

t 2 t] 
. / / / §  . . .  

The classical response function, shown as a heavy line, is given by the sum of all 
possible tree diagrams connected to a single propagator. 
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To elucidate the crossover which occurs for d >  2 it is useful to con- 
sider rescaling the fields by dimensional parameters, which is consistent 
as long as the conjugate fields are rescaled accordingly. Under such a 
rescaling the couplings )lq and 22 behave differently, although originally 
they are both proportional to 20. In particular, we can take 

~--+ ~b/2,, ~-+ 2 , 4  , ~, --+ ~/2,,  ~ -+2 1 ~  (2.21) 

which has the result of setting the ~(~2_~2)  coupling to unity, while 
leaving 22 unchanged. The rescaling (2.21) also results in n~--+ ;qn~. This 
is the proper quantity to study when addressing issues of relevance and 
irrelevance, which can be seen by studying the diagrams generated by the 
action (2.18): whenever an additional t = 0  line is added with weight n~, 
there is an additional 21 required to connect it. In this system of units, 
then, one finds that 

['22] =k z-a, [21n~] = k  2, [ a ]  = k  ~ (2.22) 

Therefore there exists a critical dimension dc = 2, above which 2 2 flows to 
zero. Doing the complete power counting method with the resealed fields 
yields the same result. The initial density is a strongly relevant parameter 
for all d. The diffusion constant difference a is always marginal whenever 
it is not zero. 

Before turning to the consequences of the power counting for the case 
d > 2, we mention another approach to this problem, which is to integrate 
out the conjugate fields ~ and ~ in (2.18). This leads to the equations of 
motion (for 6 = 0) 

a 
cot ~b = V2~b - 2t 4-' + 2~ 0 2 + r/~ (2.23) 

3 
~ = V2~ + qr (2.24) 

where r/~, r/~ are multiplicative, complex noise terms. ~19) It is important to 
note that the physical density is not the field ~b, but rather the average of 
~b over the noise terms. These equations, without the noise terms included, 
are often taken as the starting point for analysis, but this approach is not 
generally valid. ,/~s we will show in the next section, one can neglect the 
noise terms only for d >  2 and for asymptotically large times. 

Equation (2.24) can be simplified in any dimension, since it is a linear 
equation, by averaging over the noise. This is an average over the stochastic 
process of diffusion, and not over the initial conditions. Then the averaged field 
( ~ )  obeys the simple diffusion equation for any given initial configuration. 
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2.3. Ef fect ive  Field Theory  for  d > 2  

From the dimensional analysis and power counting above it follows 
that for d >  2 the full theory given by (2.18) can be replaced by an effective 
theory in which 2 z = 0  and 21 ~ 2c~(2~, 22, A), where A is a wavenumber 
cutoff, of the order of the inverse lattice spacing. However, in constructing 
such an effective theory one has to consider all possible relevant terms, 
consistent with the symmetry of the theory, which might be generated 
under renormalization. In order to identify these terms we note that this 
problem is analogous to that of a semiinfinite system in equilibrium statisti- 
cal mechanics in d +  1 dimensions, the analog of the boundary being the 
hyperplane t = 0. While one finds in the semiinfinite equilibrium case that 
the bulk critical properties do not depend on the surface terms, nonetheless 
one expects surface terms to contribute to correlation functions which 
involve fields on the boundary. 12~ All observables in our problem are given 
by such correlation functions, since all diagrams originate with the n ~ ( 0 )  
term. Therefore we must check for all relevant initial terms, the t = 0 analog 
of the surface terms, which might be generated, as well as those of the bulk. 
As mentioned above, the only relevant bulk term is that of 2~. 

The proper framework for determining which terms are relevant is via 
the rescaled fields (2.21). Therefore, for an initial term of the type 
(A ( ..... )/m! n!)~b'~9"[,= o added to (2.18) we consider the dimensions of the 
coupling [2'1" +"A t ...... )] = U" +,,)12-d) +d. This power of 21 also follows from 
calculating the number of vertices required to attach a t = 0 vertex of A t ..... 
to a given diagram. These terms are relevant when 

2(n + m) 
d <  (2.25) 

n + m -  I 

If m + n = 1, then the initial term is relevant for all d. The case m = 1 
corresponds to the initial density, which has already been demonstrated to 
be relevant. For the case n = 1 we first address a symmetry of the theory. 
When starting with equal initial densities the system is invariant under 
exchanging A ~ B and D A *-* D B. Therefore the action must be invariant 
under the transformation (~b, ~, ~0, ~, 6) --* (~b, ~, -~0, - ~ ,  - 6 ) .  For what 
follows we will consider only the case 6 = 0, or DA = Dn, in which case the 
symmetry forbids the generation of an initial term z] t~ ~)~. In Section 4 the 
case 6 # 0 will be discussed, and it will be demonstrated that again no n -- 1 
initial term is generated. 

For r e + n = 2 ,  symmetry allows only the generation of z] I'-'~ and 
#o.2). Below we will address the calculation of these quantities, and 
demonstrate that z](~ --A (2'~ These terms are relevant whenever 
d < 4, as can be seen by Eq. (2.25), and therefore must be considered when 
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constructing an effective theory for 2 < d~< 4. In fact, it will be shown that  
the term ( / I /2 )~2  is solely responsible for determining the asymptot ic  
decay of the density. This is an impor tant  point. This system is dominated  
by initial terms, as opposed to the one-species reaction. Therefore techni- 
ques which utilize homogeneous  source terms and look for a bulk steady 
state will not  work  for this problem. Since this initial term dominates  the 
asymptot ic  behavior  of  the density, we identify d*  = 4 as a second critical 
dimension of the system. 

Higher order initial terms will also be relevant in the range 2 < d ~< 3. 
In fact, as d ~ 2 one finds that  all initial terms become relevant. While this 
seems to be an extreme complicat ion,  it is in fact possible to calculate 
exactly the asymptot ic  density for 2 < d ~< 4 and demonstra te  that  it is inde- 
pendent of  such terms. This will be presented in the next section. We now 
turn to the calculation of the parameter /1 .  

The diagrams which must  be considered in calculating an effective 
initial term (/1/2)~2 are all those in which two ~k lines exit to the left, 
as shown in Fig. 4(a). The sum of these diagrams gives rise to an effective 
term f ( t )  ~(t)  2 in the action. If  the function f ( t )  goes to zero for large t and 
is sharply peaked enough that  ~ dtf(t) is finite, then a coarse graining in 
time gives f(t)(J(t)2~(/1/2)8(t)~(0) 2, where both quantities are under- 
s tood to be integrated over t, and /1=2~dt' f(t ') .  To calculate this 
parameter  A we consider first the subset of  diagrams given by the tree 
diagrams, as shown in Fig. 4(b). These diagrams sum to give f o ( t ) =  
--22/(1 +n~,21t) 2, and so 

f o  1 22 (2.26) A0= --222 dt (1 +nr 2=2nr 2~ 

Therefore we conclude that  this set of  diagrams generates an effective initial 
term/1o = 2n#22/21, or, in terms of the parameters  in the master  equat ion 
(2.1), A o = n o ,  the initial density of  each species. This will be shown to be 
the leading-order term for a small-no expansion of/1. The width of the func- 
tion fo(t)  is given by ( n # 2 t ) -  1, and therefore we expect this coarse-grained 
picture to be valid for times t >> (nr -~. 

(a) (b) (c) 

Fig. 4. The initial term ~ is generated by diagrams of the form (a). The tree diagrams in (b) 
give the leading-order contribution for small no. The leading-order corrections come from the 
diagrams (c). For d (2'~ the same diagrams would be used, but with the opposite sign for the 
22 vertex on the left. 
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We can group all the diagrams in the full theory (2.18) which are of 
the form specified in Fig. 4(a) in the following way. There is a vertex 22 
which is the leftmost vertex in the diagram. The lines coming into this 
vertex from the right can come from either mutually distinct or connected 
diagrams. The tree diagrams are a subset of the former group, and we 
argue that by letting 21 go to some bulk effective coupling 2~r all diagrams 
of the former group are included. The connected diagrams can be grouped 
by the number of times they are connected, and Fig. 4(c) shows a set of 
diagrams which are connected exactly once. Again we argue that by taking 
2x ---, 2~fr the diagrams of Fig. 4(c) give the entire contribution of the set 
which are connected exactly once. The sum of these diagrams is evaluated 
in the appendix, and is found to contribute to A term which is higher order 
in no than that given by the tree diagrams. It can be shown in general that 
the groups with more connections will contribute correspondingly higher 
order terms, and therefore this classification scheme gives rise to an 
expansion for A. 

Of course, an almost identical mechanism will also generate a term 
A{2"~ and it is straightforward to show on the grounds of symmetry 
that A(2'~ --A. Although this initial term is equally relevant from the 
renormalization group point of view, nevertheless it does not affect the late- 
time behavior of the density. This is because it acts as a source for late-time 
fluctuations only through the response function (2.20), and this is strongly 
damped for t2>> t~. In contrast, the response function of the ~k field is 
simply the diffusion propagator, which has no such damping. 

In summary of the discussion above, for 2 < d ~< 4 and for large times 
one can replace the full theory with a simplified action 

- nr - d ~(0)2 + other initial terms] (2.27) 

where A is given by (1.6). Since the bulk theory, the terms within curly 
braces, is linear in ~ and ~, these fields can be integrated out to yield the 
equations of motion 

0 
r = V2~b - 2~rr~b 2 + ;t~rr~ 2 (2.28) 

0 
Ot ~ = v2$ (2.29) 
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These are equations for classical fields with fluctuations in the initial 
conditions. They are often taken to be the continuum limit of the master 
equation (2.1), but we stress that only for d >  2 and large times are these 
equations valid. In addition, since 2err< 2, it is never correct to say that 
<ab > ~ < a> <b>, but only that they are effectively proportional. 

3. D E N S I T Y  C A L C U L A T I O N  FOR E Q U A L  
D I F F U S I O N  C O N S T A N T S  

3.1. E f fec t ive  Act ion:  2 < d < 4  

Starting with the action (2.27), one can calculate exactly the leading 
time dependence of the density, as well as correlation functions. We begin 
with a comment about notation. For this section and the next, where we 
deal with only the effective field theory, averages over the initial conditions 
will be denoted by angular brackets. The classical fields r ~k themselves 
represent bulk averages, or equivalently, averages over reaction and diffu- 
sion, of the same fields as written in (2.18). Also, the effective coupling is 
abbreviated to be 2=2err. With this notation, then, the average of 
Eq. (2.28) over the translationally invariant initial conditions is 

d 
< ~> = -2<  ~b 2) + 2< 02)  (3.1) 

since V2< ~b > = 0. 
A diagrammatic expansion for <~b > is shown in Fig. 5. Operating on 

both sides of this expansion with (O, -  V2), the inverse of the Green's func- 
tion propagator, gives Eq. (3.1). At this point, knowing that A is relevant 
for d < 4, one might attempt to apply the renormalization group to try to 
find a nontrivial fixed point of order 4 - d .  However, no such fixed point 
exists. This is because there are no corrections to a correlation function 
(0(X 1, /I)0(X2, t2)~(0)2>, SO that A is not renormalized. It therefore 
flows, for d <  4, to infinity under renormalization. This would appear to 
make it very difficult to sum the diagrams in Fig. 5 explicitly. However, it 
turns out to be possible to solve (3.1) exactly for late times. There is only 
one diagram contributing to the value of <~2> in Eq. (3.1), which is the 
single ~ loop. Evaluating this loop gives < ~2> = d/(8zrt)d/2. It is important 
to note that this result holds even when all possible higher order initial 
terms are included. 

Next, consider a related problem in which <~2> in (3.1) is replaced 
by <~>2, which is equivalent to including only the diagrams in Fig. 5 
which are disconnected to the right of the leftmost vertex. This partial sum 
satisfies a differential equation known as Ricatti's equation, which, though 
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< ~ >  = 

+ ----C , + + 

§ - - s  § * . . .  

+ . . .  

Fig. 5. Diagrammatic expansion for (~). Diagrams which contain initial terms other than 
n~ and A are not shown, but are included in the sum. The only diagram in which the leftmost 
vertex is connected to ~b fields is that of the single ~b loop. 

nonlinear, can be solved. 4 Let f denote the function which satisfies this 
equation, that is, 

d 
at~ f = _2f2 + 2 ~ t -a/2 (3.2) 

It will be shown below that this function f p r o v i d e s  an upper bound  for the 
actual density, but first we will discuss the solution of  this equation. It is 
integrable for certain values of d, specifically d = 4  and d = 4 + 4 / ( 2 s +  1), 
where s is a nonnegative integer. For  general values of  d a solution can be 
obtained by transforming the equation via the substitution f=f t / (2u) ,  
which gives 

22A 
f i -  (8~z)a/---------~_ t-a/2u (3.3) 

which is linear, second-order equation whose solution can be expressed in 
terms of  confluent hypergeometric functions. Therefore the asymptotic 
behavior o f f  is rigorously obtained, and is in fact what one naively obtains 
by assuming f ~  At -~ and inserting it into (3.2): 

f zj l/2(8/tt) -d/4, d< 4 

f ..~ ~A~t -~, d = 4  

((2t) -1, d > ' 4  

(3.4) 

When d < 4 the asymptotic behavior comes from balancing the two terms 
on the right-hand side of  (3.2), whereas for d > 4  it comes from balancing 

4 For an interesting presentation of the properties and history of this equation, see ref. 21. 
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the f2  and the J~ terms. For d = 4  all three terms contribute, and the 
amplitude is 

+ (3.5) 

The case of d = 4 will be discussed in more detail in Section 3.2. Notice that 
the asymptotic behavior of the solution f is independent of the initial 
conditions. In fact, the initial conditions must be specified at some to > 0, 
since the equation is singular at t = 0. A natural choice for this initial time 
is that given by the coarse-graining time scale of the effective initial condi- 
tions, that is, to = (n~2) -~. 

Now we show that f provides an upper bound for the actual density 
( ~ ) .  Our method is to derive an equation for x = f  - ( ~ )  and show that 
asymptotically X/> 0. Since ~b is a real field in the effective theory, then 
h(t) - ( ~2 ) -- ( ~ ) 2 ~ O. Equation (3.1) can be rewritten 

d 
dt (qj) = -2h(t) - 2(~b) 2 + 2( ~k 2) (3.6) 

and then substituting (~b) = f - x  gives 

d 
~ X  =2h  + 2 ( x - 2 f )  x (3.7) 

Assume that X(to)= 0, that is, we choose the initial condition for f such 
that f( to) = ( ~(t 0) ). As mentioned above, the asymptotic value o f f  is inde- 
pendent of the choice of initial conditions. Since f is known to be positive 
for all t >  to, then from Eq. (3.7) we know that ,~>0 whenever X<0.  Now 
suppose that there exists some t~ > to for which X(t l )<0.  Since X(t) is a 
continuous function, it follows that there must be some intermediate time 
to<t<t~ for which X( t )<0  and )?(t)<0. This is in contradiction with 
Eq. (3.7), and therefore our assumption that there exists X(t~)< 0 for t~ > to 
is false. 

We can also find a lower bound for ( ~ )  by noting that ~(x, t)>~ 
[~(x, t)l at all points (x, t). This is equivalent to the statement that a(x, t) 
and b(x, t) are at all points nonnegative when starting from any initial 
condition in which a and b are everywhere non-negative. While this result 
is somewhat intuitive, it can be made more rigorous by considering the 
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field equations (2.28) and (2.29) expressed in terms of a = (~b + ~O)/x//2 and 
b = (~b - @ )/x/~: 

3 = V2a - x/2 2ab, 0 - - a  Ot -~b=VZb-v /22ab  (3.8) 

Given that the fields a, b are initially everywhere nonnegative, then for the 
fields to have a negative value at a later time t l there must be an inter- 
mediate time 0 < to < tl for which both a(to)= 0 and 3,a(to)< 0. However, 
in the case where a = 0 at a single point in space, then a > 0 locally around 
the point, implying that it is a local minimum and 0,a > 0. For a region of 
a = 0  Eq. (3.8) gives 0 , a = 0  in the region and O,a>O on the boundary. 
Therefore the fields cannot pass through zero, and will remain nonnegative. 

Since ~b>~ I~1 it follows that (~b)>/(  101 ). At late times ~ has a 
normal distribution, independent of the initial distribution, which follows 
from the fact that ~ obeys the simple diffusion equation (2.29). Therefore 
the asymptotic value of ( [ ~ l )  can be computed directly. The asymptotic 
distribution of ~ is given by 

~b(t)2 } (3.9) 
P [~ ( t ) ]  oc exp 2( i f ( t )2)  

from which it follows that 

( I tk ( t ) l )=[2 (qj(t)2)] 1/2 (2d)U-' t -a/4 (3.10) 1/2( 8~)d/4 

Given the upper bound (~b)<~f~O(t-a /4) ,  it can be shown that 
(~b) ~ ( I~1 ), that is, that the lower bound gives exactly the density. Since 
(g2 )  t> ( g ) Z  for any real g, then 

< ~ -  Iq, l>2~< < ( ~ -  1~1)2> = <r + < ~ 2 > - 2 < ~  Iq/ l> (3.11) 

Using again ~b >/[~'l, we obtain 

1 (~b-I~1 >24 (~2> _ (~_~) = - ~  ( ~ )  = O(t-'--d/4) (3.12) 

Therefore ( ~b ) = ( I~Ol > + O(t- 1/2 - a/s), which gives (~b) ~ ( [ ~O I ) for d < 4. 
This is actually a statement about segregation in the system, implying that 
to leading order the density of a + b is the same as l a -  bl, or equivalently, 
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that the minority species in each region decays faster than the majority. 
For 2 < d < 4, then, we find 

A 1/2 
,~, t --d/4 

( a >  7~1/2(8~)d/4 (3.13) 

as stated in Section 1, with A given by (1.6). Substituting the leading-order 
term in the expansion A = no + O(ndo/a) then gives the result of Toussaint 
and Wilczek/4~ In fact, our method is very similar to theirs, with two 
exceptions. First, they use a central limit argument to calculate A, whereas 
we can compute it directly from the full field theory. It is reassuring that 
the answers agree, to leading order in no. The other difference is that they 
calculate (1~15 and then hypothesize the asymptotic segregation, saying 
<~5 ~ <1~1>. Starting from the effective theory (2.27), we have shown 
rigorously that these quantities are asymptotically the same. 

3.2.  E f f e c t i v e  A c t i o n :  d / > 4  

When d = 4 the upper and lower bounds for the density from Section 3.1 
still hold: (1~15 ~< (~5 ~<f. However, it is no longer necessarily true that 
<~> ~ (l~'l>, since the bound on the corrections, which is O(t-l/2-d/8), 
is the same order as the density. The upper bound (~b) <~f~A~/ t  is given 
by (3.4) and (3.5). Notice that for small 2 or small A, A~ ~ I/2. Also, 
when 2 is large or A is large, then A] ~ A ~/2/(8n). However, in the inter- 
mediate region there is a smooth crossover in the upper bound from the 
2-dependent asymptote to the g-dependent asymptote. 

The lower bound is given by (~b) >/( 1~15 =AI4/t with A~ = A I/2/893/2. 
For large D, then, the upper and lower bounds differ by a factor of v/'~. 
The lower bound continues to decrease with A, and therefore is not very 
useful in the small-A limit. However, since the parameter A is dimensionless 
in d =  4 one can do a perturbative expansion for small A, which results in 
a better lower bound. It follows from Eq. (3.1) that the zeroth-order term 
in this expansion is a constant, and is in fact equal to the small-A limit of 
the upper bound, 2-1. To the next order one has 

1 2A 
( a )  = ~ + T + O(A 2) (3.14) 

and it is plausible to conjecture that the amplitude is monotonically 
increasing with A. 
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The amplitude given by Bramson and Lebowitz, t6~ has the form 

' c o n s t ,  A < zl c 
A 4 o c  ~,d 1/2 ' zJ > z~c (3.15) 

that is, the amplitude is independent of A for small A. Their result seems 
to be at odds with our small-A calculation. However, as discussed in 
Section 2, there are differences between our model and the one they study. 
Since the corrections to the small-no or A limit are nonuniversal, this is a 
possible explanation of the discrepancy. 

When d >  4 then it follows from the power counting of Section 2.3 that 
the (A/2)~2 initial term is irrelevant. In this case the density is given 
asymptotically by ( a ) ~ ( 2 t )  -~. The power law of the density decay is 
independent of the dimension of space. The amplitude 2 -  t will depend on 
the dimension and the microscopic details, but it is independent of initial 
terms, or equivalently initial conditions. 

3.3. Renormal izat ion for d~<2 

When d~< 2 one has to consider the full theory as given by the action 
(2.18) and the subsequent renormalization. Eq. (3.1) is still valid formally, 
since the noise in (2.23) averages to zero, however we can no longer apply 
the upper and lower bounds of the previous section since, in the presence 
of the imaginary noise term, ~b is no longer real. 

Much of the content of this section is directly related to the one- 
species calculation of ref. 13, in which more details can be found. The 
primitively divergent vertex functions were identified by power counting 
in Section 2.2, and were found to be those with two lines coming in and 
two or fewer lines going out. These primitive divergences are used to 
define a renormalized coupling, following conventional RG methods (e.g., 
ref. 22). It is found that all the vertices in the action (2.18) renormalize 

X(k,t) 

'~+t 

Fig. 6. The sum of diagrams which contribute to the primitively divergent vertex function 
2Ak, t). Shown here is the case i= 1, with the ~b propagators for the incoming external legs. 
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identically, with the primitive divergences given by the bubble sums shown 
in Fig. 6. 

In this sum all diagrams of a given number of loops come in with the 
same sign, since replacing a ~ loop with a ~b loop, for example, introduces 
always two negative signs (see Fig. 1). At the order of n loops there are 2" 
diagrams, so these form a geometric sum, with the ratio given by two times 
the value of a single loop. Denoting this sum by 2~(k, t), where i =  1, 2, 
labels the number of outgoing lines, then the Laplace transform, 2~(k, s) = 
~ dt e-S'2~(k, t), is given by 

2i 
2~(k, s ) -  1 + [4/(8n) d/z] 22F(e/2)(s + k2/2) (3.16) 

where e=2-d .  The renormalized coupling is defined in terms of an 
arbitrary normalization scale x, which has dimensions of wave number: 
gn = x- '22(k  = 0, s = x2). Then the fl function is 

8 4e /e'~ 
fl(gn)=x~xgn= - - e g n + ~ r ~ - ~ ) g  ~ (3.17) 

which gives a fixed point g* = O(e). 
Let the density n ( t )=  ( a ( t ) )  = (b ( t ) ) .  Since the density is independent 

of the normalization scale, then dn/dx=O, which leads to the Callan- 
Symanzik equation 

[ 0  0 0 
2t~t-dno-~n -dA-~+fl(gR) +d n(t, gg, no, A)=O (3.18) 

The solution is found by the method of characteristics to be 

n(t, gR, no, A) = (1r -u/2 n(~c-2, gR, n0, A) (3.19) 

where in the asymptotic limit of large x2t the running coupling has the 
limit gR ~ g*. However, the running initial couplings go as ~, = no(x2t) J/z 
and z~ = A(K2t) u/2, that is, they flow to a strong coupling limit. 

The solution (3.19) is used to calculate the asymptotic density in the 
following way: the density is calculated as an expansion in gR and no, and 
this expansion is put into the right-hand side of (3.19). Then, in the limit 
of large /r the coupling expansion will yield an e expansion, but only if 
the behavior at large g0 and z~ is controlled. This may be done if the 
diagrams may be grouped into sums over all powers of ~0 and z~, which, 
when summed, yield a well-defined limit. In the one-species case this 
grouping was relatively simple. The series may be put in the form of a sum 
of terms g"Rgof,,(gR~o), where n counts the number of loops in a given 
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diagram. The term n = 0 corresponds to the sum of tree diagrams, given by 
the solution of the simple rate equation, so that fo(gR~) oz (gR~) -1 as 
~ ~ c~. By explicit calculation, it is then possible to show that the f,, for 
n > 0 behave in a similar manner. Since gR ~ g *  = O(e), this leads to the 
result that n(t)~ A/t d/2, where the amplitude A is in principle calculable to 
any order in e. In the present case, the series may similarly be organized as 
a sum of terms of the form . . . .  2 ~ g,~nr162 gRA), where now the n = 0 term 
is given by the sum of diagrams in Fig. 5. This is given by the solution of 
(3.1), which, by the analysis of the previous section, implies that 
fo(gRgr ' g2~) oc (g2gA)I/2/(gR~tr in this limit. However, unlike the single- 
species case, n does not simply count the loops, since already at n = 0 there 
are arbitrarily many ~k loops. In addition, while it is possible to identify 
those diagrams appearing at n = 1, for example, it is difficult to see how to 
express their sum in terms of a suitable generalization of (3.1), and thereby 
evaluate it. Assuming that their asymptotic behavior is independent of n o 
and thus of ~§ there are three conceivable ways in which these higher 
order terms could affect the result. They either diverge less slowly than 3~/2 
as A ~ ~ ,  in which case the n = 0 result gives the leading behavior, which 
would then yield the same result as for d >  2; or they all behave like 3~/2, 
in which case the density behaves as t-d/4 but with an amplitude which has 
a nontrivial expansion in powers of e; or they diverge more strongly, in 
which case the density no longer behaves as  t -d /4  for d < 2 .  Since this last 
possibility is in conflict with numerical experiments and rigorous results 
(albeit for slightly different models), it is unlikely to be correct. 

When d = 2  the running coupling goes to zero as (ln t) -~ for t ~  ~ ,  
rather than to an order-e fixed point. Therefore the leading-order terms for 
an e expansion of the amplitude become the exact asymptotic amplitude, 
with correction terms which go as (ln t) -~. Therefore, if our conjecture is 
correct, then density should be given exactly by (3.13) in the large-t limit. 

4. DENSITY CALCULATION FOR UNEQUAL 
DIFFUSION CONSTANTS 

When the two species of particles no longer have equal diffusion con- 
stants, then the vertices which depend on fi must be included in the full 
theory. Then for d > 2 an effective theory can be developed, just as before, 
with the resulting action 

+ 

--~fiV2~0 + 2~(~2-  ~02)}- n , ~ ( 0 ) -  A ~(0)2 + . . . ]  (4.1) 
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The effective theory describes classical fields which evolve via the deter- 
ministic equations of motion 

0 
0t ~b = V2~b + 6 V2~/J -- 2~ 2 + 2~ 2 (4.2) 

0 
~ = V2~k + 6VZc, b (4.3) 

which follows from integrating out the ~b, r degrees of freedom in the bulk 
component of (4.1). From these equations the density can be calculated 
exactly by using the same methods as before. First, Eq. (4.2) is averaged 
over the initial conditions to yield Eq. (3.1), just as in the 6 = 0  case. 
The solution to Ricatti's equation again provides an upper bound (~b) ~< 
f ~  (@(t)2)1/2, although the value of (l~(t) 2) is changed. It will be shown 
that (~k 2) oct  -d/2, so the upper bound decays with the same exponent 
as before. Since the fields are real and ~b t> [r it then follows that 
(~b) ~ ( [ r  for d > 4 ,  as shown in (3.12). Furthermore, it will be shown 
that asymptotically ~k(t) has a normal distribution, so the density is given 
exactly by ( a )  = ( ~b ) /x /~  ~ ( ( ~/2 >/n)1/2 Therefore the only change in the 
asymptotic density from the 6 = 0 case is due to the change in the value of 
(O(t)2). 

4.1.  C a l c u l a t i o n  of  ( q J ( t ) 2 >  

The initial terms in the effective theory are in general changed by the 
presence of 6 in the full theory, and therefore must be computed again. 
One can show that, as before, no At~ initial term is generated. For any 
diagram which ends with a single ~k line, the last vertex (first from the 
left) must be a 6k 2 vertex. However, this external line has k = 0, and so all 
of these diagrams have no contribution. To leading order, A = n  o is 
unchanged, as can be seen from the diagrams in Fig. 4: the leading-order 
contribution to A comes from diagrams composed of no loops, and so all 
lines carry wave number k - - 0  and are unaffected by the 6k 2 vertex. The 
correction terms to the small-n0 limit of A will likely be of the same order 
as before, O(ng/22d/2), but with a different amplitude. This amplitude could 
be calculated, although it would require a generalization of the response 
functions discussed below. It will be shown the asymptotic value of ( r  
depends only on A, and so the other surface terms can be neglected. 

There are new response functions generated in the bulk theory. With 6 = 0 
there was just a bare ~ propagator and a qb response function_. In_ this theory there 
are instead four response functions, which connect ~b, ~ to ~b, ~ in each possible 

822/80/5-6-5 
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way, as shown in Fig. 7. Each of these response functions, represented by double 
lines, is an infinite sum over all possible numbers ofgk 2 vertices inserted. 

These response functions can be found exactly via coupled integral 
equations, also shown in Fig. 7. For our purposes, since just the leading 
term for small no is being calculated, we need only the form of the response 
functions when the earlier time argument is set to zero. To calculate the 
higher order terms in the expansion A = n o + ... one needs to derive these 
response functions with tl #0 .  Setting t2=t ,  t l = 0  in the equations 
represented by diagrams (a) gives 

t 2 

G(k, t) = e -k2' + tSk 2 Io dt' e -k  t'-"~F(k, t') (4.4) 

F( k, t ) = ~kE I~ dt, ek2, , - ,', ( l + n ~ 2t' ~ 2 
\-1 + ~ 2 t J  G(k, t') (4.5) 

or, in terms of f ,  g defined by 

G(k, t) = e-k2'g(k, t) and F(k, t) = e-k2'f(k, t) 

we have 

g(k, t )=  I +~k  2 dt ' f (k ,  t') 

f ( k , t ) = ~ k 2 I o d t ' ( ~ + n r  2 - + ~ 2 t , /  g(k, t') 

Differentiating Eqs. (4.6) and (4.7) with respect to t gives 

(4.6) 

(4.7) 

1 
f ( k ,  t )=  77-~ g(k, t) (4.8) 

O K -  

0 
0t [(1 +n~2t)Zf(k ,  t)] = Jk2(1 +n~,2t)2g(k, t) (4.9) 

Substituting for f into the lower equation and manipulating the expression 
gives a remarkably simple equation for g, 

a 2 
Ot---- 5 [(1 + nr g] = ~2k4[(1 + n~,2t) g] (4.10) 

which has the general solution 

g(k, t) = - -  [A cosh(Jk~t) + B sinh(Ok2t) ] (4.11 ) 
1 + nr 
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The response functions for the case g # 0, and the coupled equations they satisfy. 

From the integral equation (4.6) one finds the conditions g(k, 0) = 1, which 
implies A = 1, and g(0, t ) =  1, which then implies B=no2/(6k2). Therefore 
the explicit form of G(k, t), and from (4.8), F(k, t), is calculated: 

nr 2 e-k2' [cosh(cSk2t)+-~sinh(6k t)l (4.12) G(k, t) = 1 +nc,2t 

e - k 2 t  

F(k,t) (1 +n,2t)2 I(1 + / ' 1 2 1 2 "  / ' / 2 / ~ 2 t  

(4.13) 

The other response functions, H(k, t) and J(k, t), defined in Fig. 7, can 
be found via similar methods. The coupled integral equations shown in 
Fig. 7(b), written in terms of  

h = ek2'H and j = ek2'J 

are 

' / 1 +  r  . 1 ~s dt' n , 2 
h(k, t) = (1 + n,2t) 2 + 6k2 ~-1 +--~2t) j(k, t') (4.14) 

](k, t) = 3k 2 h(k, t') tit' (4.15) 
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Fig. 8. 

+ irrelevant terms 

The generalization of the simple ~b loop of Fig. 5 to the case of ~ r 0. 

Differentiating both equations with respect to t and substituting to 
eliminate h gives the equation 

9 2 

Ot---- I [(1 +nq~2t)j] = ~2k4[(1 +n#2t)j] (4.16) 

which has the general solution 

1 
j(k, t)= - -  

1 + n~2t 
[A cosh(~k2t) + B sinh(~k2t)] (4.17) 

The condition that j(k, 0 ) =  0 implies A = 0. The general solution of h can 
be found from (4.17), and then the condition that h(k, 0) = 1 implies B = 1. 
Therefore H and J are given by 

e-k2' [ n~2 1 
H(k, t ) = ( 1  +n,2t) 2 (1 +n~2t)cosh(~k2t)--~Tsinh(~k2t) (4.18) 

- -  k 2 t 
e 

J(k, t ) =  sinh(~k2t) (4.19) 
(1 +n~2t) 

In Section 3.1 the value of (@2) w a s  calculated from the simple loop 
shown in Fig. 5. The generalization of this calculation is given by the 
diagrams shown in Fig. 8, which are composed of the G(k, t) and J(k, t) 
response functions. The surface couplings A t ~  t2,~ beyond the 
leading small-no terms, and so the couplings are labeled A and A', respec- 
tively. It should be noted that unlike the fi = 0 case, these are not the only 
diagrams which contribute to (~b2). Examples of other diagrams, and 
arguments for why they are irrelevant, will be given below. First, we 
compute those of Fig. 8, which give 

(~k(t)2) = f dak (--2n)d [AG(k, t) 2 -- d'J(k, t) 2 ] (4.20) 
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Substituting (4.12) and (4.19) into the equation above and rewriting the 
integral in terms of the variable u = k2t gives 

t --d/2 

(~'(t)2) - (4re) a/2 F(d/2)( 1 + n~,2t) 2 

E X du u d/2-  l e -Zu  A c0shE(~t/) - .4' sinhZ(3u) 

+ - ~  sinh(26u) + A \ 6u J sinh(~u)2 (4.21) 

Each term in the square brackets gives a convergent integral for d >  O. 
Therefore we can take the large-t limit before integrating, and only 
calculate the leading term in t, which is found to be that on the far right 
in the brackets. Consequently, the value of A' is unimportant. 

Evaluating this integral gives 

where 

A 
( ~ 2 )  _ (8g) a/2 Q(d, 6) t -a/2 (4.22) 

4[ (1  + 6)2-d/2 + (1 - -~)2- -d /2 - -  2 ]  

Q(d, 6 ) -  O2(d_ 2 ) ( d _  4) (4.23) 

From (4.22) it follows that Q ~  ( ~ 2 ) ~ / ( ~ / 2 ) 0  in the small-no limit. This 
function Q is nonsingular at 3 = 0 ,  and satisfies Q(d, 0 ) =  1. While Q 
appears to be divergent at d = 2 , 4 ,  it is actually finite everywhere 
except d i> 4 and 6 = _+ 1. It is likely that the limits of t--* oo and 6 ~ _+ 1 
do not commute, and that a separate treatment for the case of an 

1.5 

d=~ - _. 

-1 0 
8 

Fig. 9. A plot of Ql/2. = <a>J<a)o for integer values ofd. 
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immobile species, at least in this singular case, would be required. For d < 4 
this function has finite values as 6 ~ _+ 1, but the slope at 6 = _+ 1 is infinite 
for d>~2. 

While the calculation of Q(d, 6) is only strictly valid for 2 < d < 4 ,  it 
is nonetheless interesting to consider its limits for the integer dimensions 
from d =  1 to d = 4 ,  motivated by Section 3.3 on d~<2, in which it was 
conjectured that the "classical" amplitude is also the leading term in an e 
expansion for d = 2 - e .  From (4.23) 

4 [(1 + 6) 3/2 + ( 1 - O )  3/2 - 2], d =  1 

1 +6)  ln(1 +6) ( 1 - 6 )  l n (1 -6 )6+(  , d = 2  

Q(d, 6) = 4 
[ 2 - ( 1  +6 )  ~ / 2 - ( 1 - 6 ) m ] ,  d = 3  

- ln (1  - 6  2) 
62 , d = 4  

(4.24) 

Since the density goes as (ff]2)1/2 the function [Q(d, 6)']  1/2 is plotted in 
Fig. 9 for integer values of d. The density amplitude increases monotoni- 
cally with 161, but is not changed remarkably for modest values of 6. 

There are other diagrams which give contributions to ( r  unlike the 
6 = 0 case. Some of these are shown in Fig. 10(a). All of these diagrams 
have the similar feature that they contain one of the two subdiagrams in 
Fig. 10(b). These subdiagrams give rise to effective vertices of the form 
2'~V2~b 2 and ,~'@V2~ 2 in the bulk theory. However, such vertices are irrele- 
vant, which follows from power counting, and so the diagrams which arise 
from them must be subleading in time. Therefore we conclude that 
asymptotically the value of (~k 2) is given by (4.22) and (4.23). 

(a) <,(~ :,( (b) 

i _ 2 ;~k2ff~ , s "  

- - - 4 ~  

Fig. 10. (a) An example of one of the diagrams besides those of Fig. 8 which contribute to 
(~2) ,  and (b) the effective bulk vertices that all such diagrams contain. 
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4.2. D e m o n s t r a t i o n  T h a t  ~ ( t )  Has a N o r m a l  D i s t r i b u t i o n  

In order for the calculation of (~k 2) to give the amplitude of the 
density it is necessary that r  have a normal distribution. When 6 = 0  
this follows directly from the simple diffusion equation satisfied by ~k, or 
equivalently, from central limit arguments. However, ff evolves via 
Eq.(4.3) for 6 4 0 ,  and so it needs to be shown that it still flows to a 
normal distribution. What we will show is that the random variable td/4r 
flOWS to a static normal distribution, the width of which was calculated 
above. 

Consider (~b"), where n is even. There is one diagram in which n 
response functions G(k, t) are connected in pairs to n/2 initial terms 
(A/2) 22. This diagram contains n/2 loops, and is therefore of order t-"a/4. 
It was shown above that replacing any of the G(k, t) loops with J(k, t) 
response functions connected to (A'/2) ~2 gives a lower order contribution. 
Similarly, any other diagrams, which would originate from considering 
higher order surface terms, will involve more than n/2 loops, and will 
therefore decay faster in time. For n odd one finds that there are no 
diagrams for (~k") which decay as slowly a s  t -ha~4. That is, for n odd, 
l im,_~((ta/4~) ") =0.  Since the distribution of the variable td/4~k has only 
even moments as t ~  oo, and these moments are just multiples of 
((ta/4~ll)2), generated by all possible pair contractions, then the distribu- 
tion is normal. 

5. C O R R E L A T I O N  F U N C T I O N S  FOR 2 < d < 4  

When d > 2, one can use the classical action to calculate the correla- 
tion functions. Consider the distribution of the random variable td/4q~(x, t) 
with 2 < d < 4 .  From Section3.1 we know that ( td/a(9--t  d/4 I~1>--'0 as 
t ~  ~ .  Furthermore, from Eq. (3.12) it follows that, as t--* oo, 
((ta/4~ -ta/4 I~1)'-> ~ 0 .  This suggests that the distributions p[ta/4~]~ 
P'[t d/4 Ir as t ~  ~ .  The latter distribution is known exactly, as ta/4tp is 
at late times given by a static normal distribution. 

It is not correct to say that asymptotically ~b and I~1 are everywhere 
equal, since this would imply that there are no regions in which the densities 
a and b are both nonzero. However, the reaction regions, those in which both 
densities are nonzero, become negligibly small for large t, and the corrections 
to setting ~b equal to Ir in calculating correlation functions will be subleading 
in time. Stated another way, the leading term in both (~1~2) and 
([~kl[ 1~1 [)is of order t -d/2. To this order the two random variables ~b and 1~1 
have identical distributions. This is in contrast to a quantity such as q~2 _ ~k2, 
which is measuring a subleading term relative to t -d/2. 
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Fig. 11. 

(~(k)qJ(-k) > = 

k 

s 

-k 

The diagram for <r  when ~=0. 

We can use the property that td/4~ is given by the absolute value of a 
Gaussian random field to calculate correlation functions. This is similar to 
what is done in the dynamics of phase ordering, where the order parameter 
field can be mapped to an auxiliary field which is assumed to be a 
Gaussian random field. This analogy will be discussed further below. 

Since ~ and I~1 are given by the same distribution, we conclude 
< ~, ~2> ~ < I~,1 1~21 >, where the labels indicate the positions x t and x2 at 
time t. The correlation function < [~[  [~k2[ > can be calculated exactly by 
using the fact that, asymptotically, r  has a normal distribution. The 
joint probability distribution P[ r  if2] is then also normal, so 

(4~2 _ f12)I/2 
P[r r -- 

2n 
exp( -- a~k~ - aff~ -- fl~k, r (5.1) 

where we have used translational invariance to set <~b~)=<~,~_>. The 
constants ~ and fl are determined by the values of < ~z> and < ~b, ~k2>, which 
are evaluated from the diagrams. The latter we have only calculated for 
6 = 0, or equal diffusion constants, so we consider that case first. For nota- 
tional convenience we define < ~,2> = C( t )=  d/(8nt)  d/2. The diagram shown 
in Fig. l l(a) is used to calculate the correlation function < ~ ( k ) ~ , ( - k > ,  
from which one finds 

dak eik 
(r  = j (-~)d " (* ' -* : ) ( r  $ ( - k ) >  (5.2) 

When 6 = 0 then 

(~b(k) r  --- Ae -2k2' 

and 

( ~k 1 ~b2> = C(t) exp( - r2 /8 t )  - C(t) f(r2/t)  (5.3) 

where r =  Ix l -x21 .  In terms of (5.3) we find for c(, fl 

1 f 
2C(1 _ f z ) ,  f l=  C(1 _ f 2 )  

(5.4) 
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With these values substituted into (5.1), one can calculate 

( ~ 2 >  ~ <l~'~1 1021>-- d~,, d02 I~',1 1~'21P[O~, 02] 

=~-~[  ( l - - f2 ) t /2+farc tan( ( l_ f2) l /2 )  ] (5.5) 

This correlation function can be used to find the correlation functions 
(a l  a_,)and ( a l  b,_). Specifically 

(a~a2)  = � 8 9 1 6 2  + ~k~ 02) (5.6) 

which gives for the connected part ( a l a 2 ) c =  (ala2) - ( a )  2, 

(aja,_)c=n(8zct)a/~ f -  1 +(1  - f2) ' /2+farctan (5.7) 

For large r, f =  exp ( - r2 /8 t )  is small, giving 

A e_;/s, (5.8) ( ala2) c 2(8~zt)a/2 

Similarly, (a l  b2) = ( ~bj ~b 2 - • ~ 42) /2  so that 

(a~b2)c=r~(8rU)d/2 -- ~ f - - 1  + ( l - - f ' - ) u 2 + f a r c t a n  ( l_ f2 )u_ ,  (5.9) 

which for large r goes as 

A e - r2/8, 
(alb2),. 4(8rct)a/z (5.10) 

A plot of these connected correlation functions is shown in Fig. 12. The 
signs (a~a,_) > 0 and (a~ b_,) < 0 can be understood for short distances to 
be a consequence of the segregation. Given an A particle at a particular 
point, there is an increased probability that a nearby particle is also an A, 
and a decreased probability that it is a B. 

For the case a 6 5 0  one has (~,'-) = C(t) Q(d, 6), as given by (4.22). 
The generalization of (~k(k )~ , ( -k ) ) ,  shown in Fig. 11, behaves for 
small k the same as when 6 =  0. Therefore, for large r one still has 
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Fig. 12. 

0.8 

0.4 

-0.4 
0 2 4 6 

r / t  v2 

The correlation functions (a(r, t) a(O, t))c and (a(r, t) b(O, t))c plotted as functions 
of r/t ~/'-. The vertical axis is given in units of A(8nt) -a/2. 

(@l ~ 2 ) =  Cf  When this is put in the expressions for ( a l a 2 )  and ( a l b 2 )  
one finds that the large-r behavior as given by (5.8) and (5.10) is unaffected 
by ~ 0 .  

While these correlation functions and other quantities can be 
calculated, they ultimately rely on the stronger statement that ~k is a 
Gaussian random field, and that ~b ~ [~O]. The topology of the domains is 
determined by the random field, with the boundaries between a regions and 
b regions given by the zeros of ~,. This topology is completely equivalent 
to an analogous situation in phase ordering. It has been suggested that in 
the phase ordering of a scalar order parameter an invertible, nonlinear 
mapping from the order parameter field to an auxiIiary field results in the 
latter being a Gaussian random field, t231 Usually this mapping is chosen to 
be the solution of a single kink, for example, the hyperbolic tangent profile. 
While this method is no longer believed to be quantitatively correct, ~24) it 
does provide a useful picture of the structure of the domains. Again, the 
zeros of this Gaussian random field determine the boundaries between the 
equilibrated phases. 

The difference between these systems lies in how correlation functions 
are calculated from the random field. In the reaction-diffusion case one is 
interested in the correlation functions of the field itself and the absolute 
value of the field. Neither of these quantities exhibits remarkable behavior. 
In the phase ordering one argues that at late times the mapping between 
the order parameter field and the Gaussian field goes to a step function, 
and therefore order parameter correlations are given by the correlations of 
the sign of the random field. These sharp boundaries give rise to more 
interesting features, such as nonanalytic terms in the small-r limit of the 
correlation function, or correspondingly power-law tails for large wave 
number in the Fourier transform. 
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6. REACTION ZONES 

It was shown in Section 3.1 that for d < 4  the particles segregate 
asymptotically into regions of purely A or B particles. As a result of this 
segregation there exist interfaces between the two species, and all reactions 
occur in the interfacial regions. These reaction zones have interesting 
scaling properties. For example, the width of the interface goes as t = with 
the exponent 0~ < 1/2. Also, the nearest neighbor distance distribution of the 
particles in the reaction zone is found to have a characteristic length IN that 
goes as a power of t, with an exponent which differs from that of the bulk 
system, where ( a ) - ~ / d  tl/4. TO derive these properties we begin with a 
related steady-state problem. 

Consider a system with a source of A particles located at the boundary 
x = - L  which maintains a fixed current J~,  and a similar source - J i  of 
B particles positioned at x = L. These opposing currents will establish a 
steady-state profile, in which the average densities will be functions of the 
transverse coordinate x. For a given current J one can choose L to be large 
enough that the reactions are localized to an interfacial region of width 
w ,~ L. In this case, it is found that the densities in the reaction zone, where 
Ixl < w, have universal scaling forms. Also of interest is the reaction rate 
R(x) = 2 0 ( a ( x ) b ( x ) ) ,  which exhibits scaling, and which is used to define 
the width of the reaction zone. 

The power counting of Section 2.2 showed that the four-point vertices 
were irrelevant for d > 2 .  Therefore R(x)~2err(a)(b)  in the asymptotic 
limit--which will be shown to be the small-J l imit--and the problem 
reduces to the differential equations of the effective theory: 

a 
( a )  = V2(a )  - 2err(a) ( b )  (6.1) 

0 
( b )  = VZ(b)  - 2 r  (6.2) 

From these equations it has been shown that 

R ~ J3 /4 f ( xJ I /3 ) ,  d >  2 (6.3) 

implicitly by G~lfi and R~cz r and later explicitly by Ben-Naim and 
Redner. 115) From (6.3) one identifies the width w ~ J  -~/3 and the charac- 
teristic length .of  the particle distribution within the reaction zone 
l= -  (a (x= 0))-l /a~j-2/3a. The latter quantity is derived in ref. 16. 

For d ~< 2 one does not have simply differential equations, and the full 
field theory must be taken into account. We begin by observing that the 
current JA is given by a*Oxa in the notation of Section 2.2 and similarly for 
Js. From dimensional analysis [ J ]  = k u+ 1. 
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We proceed with the renormalization of the theory, as was sketched in 
Section 3.3. A normalization scale x is introduced and used to define the 
renormalized coupling gR. Since physical quantities such as the width 
cannot depend on x, then 

x ~ w = x or  fl(gR) w(J, gR, 6, x) = 0 (6.4) 

Note that, since there are no diagrams which can dress the two-point ver- 
tices in (2.18), 6 does not get renormalized, and therefore does not appear 
in equation above. From dimensional analysis one has 

Ix  a-~+ (d+ 1 ) J O +  1] w(J, gR, J , K ) = 0  (6.5) 

Combining these equations gives the Callan-Symanzik equation 

with the solution 

(a+ l) J~s-/~(g,,) o___a_+ OgR 1] w=O (6.6) 

w(J, gR, J) = K J-flea+ i)w(xa+ l, gR, J) (6.7) 

In the small-J limit then gR --' g*, and the right-hand side is given by 

W~J-l /~d+l) f (6 ,  e), d < 2  (6.8) 

Following the same procedure for any dimensional quantity results in the 
scaling behavior being given by dimensional analysis. That is, l= ~ w, 

and 

( a ) ,  ( b )  ~ jaaa+ l)Fo.b(xjlaa+ 1)) 

R(x)  ~, j(d+ 2)/(d+ l~G(xJ I/(d+ 1)) 

(6.9) 

(6.10) 

Note that these results imply that R ~ J t 2 - - d ) / ( d +  l)<a> ( b ) .  This can be 
shown explicitly by calculating R oc ( a b ) = 2 ( J ) ( a ) ( b ) ,  where 2(J) is 
given by the bubble sum shown in Fig. 6, with s = J  2ad+~), k=0 .  In the 
small-J limit then 2(J)~jt2-d)/td+ ~) 

Since the current J may be thought of as being due to localized sour- 
ces of A and B particles at x = +L, respectively, the coupling-constant 
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power counting arguments are formally the same as those of ref. 13 (see 
Section 3.3), in which the sources are localized at t = 0. c26) Thus the various 
scaling functions above may, in principle, be calculated as an expansion in 
g* = O(e), in which the leading term is given by the solution of the rate 
equations (6.1). The next-order corrections to the reaction profile were 
computed in ref. 26, where it was shown that the fluctuation corrections 
lead to a universal power-law tail in this function. 

For d = 2 one has gR ~ 1/lln JI for small J, and the leading-order result 
is therefore found by substituting this behavior into the solution of the rate 
equation (6.1). This leads to the results 5 

w oc (6.11) 

R(x)  ~ 2(J)<a><b> ~j4/3  Iln J1-1/3 G(xJ,/3 Iln J1-1/3) (6.12) 

l= oc j-l~3 Iln JI- i /6 (6.13) 

As was discussed in ref. 16, the corresponding results for the time- 
dependent cases of segregated initial conditions or of randomly 
homogeneous initial conditions are given by substituting J oct  -~/2 or 
J oc t -(d+2)/4 (with d = 2 )  respectively, in the above formulas. These 
results, for the case of segregated initial conditions, have been obtained 
recently via heuristic arguments by KrapivskyJ 27) 

APPENDIX.  CALCULATION OF THE LEADING 
CORRECTION TERM FOR A 

In order to calculate the first-order correction term to the expansion 
zI = A o + ... we must first comment on the bulk diagrams which generate 
2err. The effective coupling can be calculated as an expansion in the bare 
coupling via the diagrams shown in Fig. 13. The loop integrals in this 
expansion require the cutoff A, and one finds 

2Ad-2 
2eft = 22 - 22 z (8n)a/2 ( d -  2) + 0(23) (A1) 

If the respense functions in the loop of Fig. 4(c) were instead just 
propagators, then this set of diagrams would be included into those of 
Fig. 4(b) when the substitution 2 2 ~  2,~r is made via (A1). Therefore, the 
terms which are new and constitute a correction to zl 0 are those in Fig. 4(c) 

5 These logarithms were incorrectly omitted from ref. 16. 
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Fig. 13. 

? , <  -- " ' <  § ? < S X  § " ' , : . - > <  § ... 

k--0 
The expansion for the effective coupling constant. The wavenumber integrals are 

regulated by a cutoff A. 

with the propagator loop subtracted out. We define the large-t limit of 
these diagrams to be zt~, that is, 

fo  fo~ dUk Al=42~n~ dt2 dtli2n)d 

I e-2kh(1 +n~21tl)  2 A d-2 ] 
x (1 + nr t2)4 (87z)d/2(d_2)(l+nc~Jqt2) ~ (A2) 

Performing the wavenumber integral with the A cutoff imposed in the same 
manner as in (A1) gives 

__42~ ~'~~ dt 2 zl l 
- - (8n)d /2J0  (1 + n # J q t 2 )  4 

f 0 2 (  (1-Fnq~)qtl)2Ad-2 1 x dtl (t2--tl--A-2) d/2 d----~ (1 +n~21t2) 2 (A3) 

The tl to integral can be evaluated as a Laplace convolution integral, and 
the cutoff-dependent terms cancel. The remaining t 2 integral is 

--82~n~ ~ dt2t~-a/2 [ 4no, t2 8n~t~ ] 
&ll = (87 t ' )  d/2 ( d -  2) J's (1 + ne21/2) 4 1 + ~ + ( 4 -  d)(6 - d)J 

(A4) 

This integral can be done exactly, giving 

~2 At =.~x(n~21)a/2 (d+  2) (d+ 4) 
48(8zc)a/2-i sin(rid/2) 

(A5) 

In terms of the initial density no and the effective coupling then one finds 
the result (1.6) for A. Evaluating the diagrams such as those in Fig. 4(c) but 
containing more loops will then give the higher order terms in this small-no 
expansion of A. 
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