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A recent argument of Oerding shows that our calculation of the quantity A, 
which determines the amplitude of the asymptotic decay of the particle density 
in 2 < d < 4, was in error. Instead it is simply given by A = nt), the initial density, 
for uncorrelated initial conditions. 
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In recent years much progress has been made in applying field-theoretic 
renormalization-group methods to models of diffusion-limited chemical 
reactions. One such example was a study by the present authors of the 
A + B--* ~ annihilation reaction with random initial conditions and equal 
particle densities. III Our purpose here is to correct a mistake contained in 
this worked and to revise the conclusions accordingly. In particular, we 
now find for spatial dimensions 2 < d <  4 that the A, B particle densities 
decay in time with the universal form 

(Dt) -,t4 ( a( t) ) = ( b( t) ) ~ rcl/_,(8n),v 4 (1) 

where ( a ( 0 ) ) =  ( b ( 0 ) ) = n o ,  and D is the diffusion constant. This 
amplitude is exactly that obtained in the approximate calculation of 

i This paper originally appeared in J. Stat. Phys. 80:971 (1995). 
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Toussaint and Wilczek, ~2~ and the initial density dependence is the same as 
found by Bramson and Lebowitz in the limit of an instantaneous reac- 
tion. ~ In our previous study we identified nonuniversal corrections to the 
amplitude in ( 1 ) of order n'/('-', cj~ However, in analogy with an argument of 
Oerding c4~ for the same reaction in a random shear flow, it can be shown 
quite generally that the sum of all such corrections in fact vanishes. We 
now briefly paraphrase his arguments in the context of the present 
problem. 

In general one begins with a master equation description of the dif- 
fusive and reactive particle dynamics. This is mapped to a field theory 
using by now standard techniques. ~'56~ It is convenient to replace the 
fields a(x, t) and b(x, t) with their sum (~) and difference (4'), resulting in 
the action 4 

S=f  d"xdt{6(3,-V 2) ~b + ~(O, - V-') 4' + , i ,  47($~ - 4' 2) 

+ 22(472 - ~-')(4~ 2 - 4, 2 ) - n  e, a( 047} (2) 

The relation between the couplings in (2) and the original master equation 
parameters is given in Ref. 1. Note that the diffusion constant is absorbed 
into a resealing of time, and the conjugate fields 47 and ~ are introduced in 
the mapping. 

The renormalization group (RG) analysis reveals that the critical 
dimension for the coupling 22 is d,.=2, i.e., 2 2 is irrelevant for d >  2. Since 
the dynamic RG relates evolution in time to renormalization group flows, 
one finds that the asymptotic behavior of the theory is given for d >  2 by 
an effective action of the form 

St,r= f d'(x- dt {47(0, -- V 2 ) ~b + ~ ( a , -  V 2) 4' + 2~,,.47(~b 2 - 4'2) 

- 6 ( t )  [ , , ,~ ,6+ �89 + . . .  ]} (3) 

Under the renormalization flows for d > 2  one has 2~ --+ 2~n., and, more 
importantly, new initial terms are generated, such as �89 A~ 2. While many 
such terms may appear and be relevant for d < 4 ,  it was shown in Ref. 1 
that for 2 < d <  4 the asymptotic behavior of the density and correlation 
functions is determined solely by A. Hence we now focus on the generation 
of this coupling. [Fo r  d > 4  one obtains the rate equation result 
(a(t))~l/2~n-t.] 

Note the sign error in tile couplings 2, in Eqs. (2.18) and (2.27) or Rel: I. 
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Denote the sum of all diagrams in an expansion of (2) which terminate 
at time t with two external ~b lines by ~(t) 2 H(t). This is illustrated schemati- 
cally in Fig. 4a of Ref. 1. Since H(t) is damped for times t>> 1/n,t,2 ~ , the 
replacement 

~(t)2H(t)~-~(O)'-5(t) dt'II(t')-�89 
) 

(4) 

is valid for calculating asymptotic quantities, and serves to define A. 
The sum of all such diagrams containing no loops is given below in 

Fig. la and yields a contribution A"'~= no, the initial density. Here, follow- 
ing the notation of Ref. 1, the dashed line represents the ~, propagator, the 
heavy solid line is the ~b classical (tree-level) response function, which is the 
~b propagator dressed by the initial density, and the wavy line is the classi- 
cal density. Three- and four-point vertices have coupling constants 2~ and 
22, respectively, with signs which can be determined from (2). In Ref. 1 we 
assumed that all other diagrams in H(t), except those which dressed the 
22 vertex, could be accounted for by taking 2~ ~2~n-in  the tree-level 
diagrams. This left A (''1 unchanged, and the corrections were found to yield 
an expansion in powers of #7o of the form A = no- - t.'-" noa,2 +- . " ,  with C' 
nonuniversal I-see Eq. (1.5) in Ref. I ]. However, Oerding has shown that A 
can be calculated exactly from the full action (2), with the resuW 41 

A = n~ (5) 

Since A itself is not renormalized, ~ this must be the correct value for the 
effective action (3), in contradiction with the previous result. 

Oerding's result follows from observing that all diagrams in H(t) 
belong to one of the three groups in Fig. 1. The shaded area represents the 
same set of diagrams in Fig. Ib as in Fig. lc. These may be attached to the 
highlighted vertex (represented by a dot) by either two ~b or two ~b lines: 

(a) (b) (c) 
Fig. 1. Diagrams which contribute to H(t), hence to/J .  The symbols are defined in the next 

and in Ref. I. 
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in either case, the sign of the 22 vertex in Fig. lb is the opposite of the 2~ 
vertex in Fig. lc, as can be confirmed by S in (2). Therefore, writing the 
contribution from Fig. lb as 

f( 
,~r 

zl~"~ = 2 2 dt f ( t )  (6) 
I 

implies that the contribution from Fig. lc is 

A'~= J dt(222) l + n ~ 2 t  t ~ \ l + n , h 2 1 t /  ( - -21) f ( t ' )  

f( 
r~_ 

= --2 2 d t ' f ( t ' )  ( 7 )  
) 

Hence A =A "'1, which leads to (5). 
Using the correct and universal result for A in the analysis of Ref. 1 

yields the asymptotic density (1). In Ref. 1 we also derived the correlation 
functions and the density in the case of unequal diffusion constants 
DA # D e .  Since these results are expressed in terms of A, they may be 
regarded as correct and universal once the substitution (5) is made. 
However, we stress that these results are universal only for truly random 
initial conditions. Correlations initially present are expected to modify zl in 
a nonuniversal way. 
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