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Abstract

Critical Behavior in Non-Equilibrium Systems

by

Benjamin Philip Lee

This thesis concerns itself with the critical behavior found in the late stages of relaxation

towards equilibrium. The two examples considered here are phase ordering and reaction-diffusion

processes.

We study the dynamics of phase ordering of a non-conserved, scalar order parameter in one

dimension, with long-range interactions characterized by a power law r−d−σ. It is found that,

at least for σ > 1, the model exhibits evolution to a self-similar state characterized by a length

scale which grows with time as t1/(1+σ), and that the late time dynamics is independent of the

initial length scale. The insensitivity of the dynamics to the initial conditions is consistent with

the scenario of an attractive, non-trivial renormalization group fixed point which governs the late

time behavior. For σ ≤ 1 indications are found in both the simulations and an analytic method

that this behavior may be system size dependent.

The kA → ∅ and A + B → ∅ reaction-diffusion systems are known to have upper critical

dimensions dc. We derive a field-theoretic description of the dynamics, in order to study via

the renormalization group the effect of fluctuations for d < dc. These field theories can be

renormalized exactly. For the one-species reaction an expansion scheme is developed which allows

explicit calculation of the density and correlation function, both of which are universal, in powers

of ε = dc −d. The density exponent is exact to all orders in ε, whereas the amplitude is calculated

perturbatively to second order. The formalism is generalized to the reaction kA→ `A, ` < k.

The physics of the A + B → ∅ system is quite different, due to a conserved mode in the

dynamics, and as a result there is no analogous ε expansion. Nonetheless, for d > 2 an effective

field theory is developed, from which the density and correlation functions can be calculated

exactly, although they are not universal. These calculations are generalized to the case where the

two species have unequal diffusion constants. Also, the exact renormalization of the field theory,

combined with scaling arguments, leads to new exponents characterizing the reaction zones, for

both homogeneous and inhomogeneous initial conditions.
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Chapter 1. Introduction

The behavior of equilibrium systems close to a second order critical point is now quite

well understood. An explanation of the features which are generally observed in the critical

region, specifically universality and scale invariance, has been found in the framework of

the renormalization group. In contrast, there are relatively few well established results for

non-equilibrium systems. Nonetheless, nature indicates that the features of scale invari-

ance and universality can also arise from non-equilibrium dynamics in the late stages of

evolution. This presents a challenge in theoretical physics to develop some fundamental

of understanding these phenomena. Given the success of the renormalization group in

describing the equilibrium critical behavior, it seems appropriate to seek to apply similar

methods to non-equilibrium systems.

There are two main classes into which non-equilibrium systems can be divided: those

which are driven, and so evolve to a steady state, but never approach equilibrium, and

those which are relaxing to an equilibrium final state. There are many examples of the

former class which exhibit critical behavior. These include all driven systems which can

be tuned to a non-equilibrium phase transition, and also sandpiles and other models of

self-organized criticality. However, the primary concern of this thesis is the latter class,

those systems which are relaxing to equilibrium.
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In general, relaxation to equilibrium occurs exponentially in time, with the rate de-

termined by a characteristic scale of the equilibrium end state. However, in some cases

the final state will have no characteristic scale. An example of this is critical dynamics,

which is the dynamics of relaxation to a second order critical point. There it is found that

the system relaxes as a power law in time, and also exhibits other critical features such

as universality. We consider in this thesis two examples of systems which evolve toward

an equilibrium end state with no length scale: phase ordering and reaction-diffusion. For

these processes the final state is one where all the phase boundaries, in the case of phase

ordering, or all the particles, in the case of reaction-diffusion, have left the system. While

these scale-invariant end states are trivial, nonetheless they have the consequence that

these systems exhibit power law-decay in time, as well as other features associated with

critical behavior.

The general theme of this thesis is the application of renormalization group methods

to the problems of phase ordering and reaction-diffusion processes. An introduction to

these systems is presented later in this chapter. Chapter two is concerned with the phase

ordering of a one-dimensional system with long-range interactions, a problem which, at

the time the research was conducted, had not been previously studied. The results of this

study are published in reference [1]. The remainder of the thesis involves reaction-diffusion

systems, in which a field-theoretic approach is used. This is motivated by the fact that most

successful analytic applications of the renormalization group are based on field theories.

In chapter three is reviewed the derivation of the field theory for these models. In chapter

four we consider the general one-species reaction kA → ∅ and present the first complete

renormalization group calculation for this system. This work is published in reference [2].

Finally, in chapter five we study the two-species reaction A+B → ∅ with the field theory

formalism, and present results which are to be published.
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1.1. The Renormalization Group and Non-Equilibrium Systems

The relative underdevelopment of theoretical non-equilibrium physics is largely due

to the absence of a formalism analogous to equilibrium statistical mechanics. Instead,

one must start with some phenomenological model, and such models often involve non-

linearities, making progress difficult. In recent years the addition of simulations, which

allow one to extract general features from a model even when a solution is not available,

has contributed much to our understanding. It is found that a variety of simple phe-

nomenological models contain the essential ingredients for demonstrating scale invariance

at asymptotically late times. This is analogous to the situation in equilibrium critical

phenomena, where it is known that the nearest neighbor Ising model captures the essence

of the phase transition.

In the latter case this is now understood to be a consequence of universality, the

concept that the behavior near a critical point depends only on a few general conditions.

In equilibrium phase transitions it is found that one can group various critical systems by

the universality classes to which they belong. For example, when the interactions of the

degrees of freedom are sufficiently short-ranged, then the critical behavior depends only

the dimension of space and the symmetries of the Hamiltonian. All other microscopic

details of the system are irrelevant. One of the goals, then, in the study of the dynamics

of non-equilibrium systems is to systematically determine the universality classes.

The universal quantities which characterize the behavior near a phase transition are

the critical exponents and certain amplitude ratios. The critical exponents describe how

various singular quantities, such as the order parameter and the specific heat, depend

on the temperature |T − Tc|. An analogous control parameter in non-equilibrium critical

behavior might be the time t, as it is found that observable quantities go as t to some

power for large t. Then the critical “point” would be the limit t→ ∞.

To discuss how renormalization group ideas can be applied to non-equilibrium systems

it is useful to build on the analogy with the equilibrium case. The basic idea of the

3



renormalization group (RG) is to remove systematically the short length scale degrees of

freedom. This is done via a two-step transformation. First one integrates out the degrees

of freedom for distances between a, the short distance cutoff manifest in the theory, and

ba, where b is some arbitrary scale factor. This creates an effective theory with a cutoff

ba. Next one rescales the system by the factor 1/b so that the cutoff is restored to its

original value. The net result is a transformation on the Hamiltonian of the system which

is parameterized by the factor b. Usually this is expressed as a transformation of the

coupling constants which couple the degrees of freedom to the Hamiltonian. There is a

correspondence between a fixed point of the RG transformation to which the couplings

flow for large b and a second order critical point, which can be understood by introducing

the correlation length.

For T 6= Tc there is an intrinsic length in the system known as the correlation length

ξ, which is defined to be the largest length to which the degrees of freedom are correlated.

In general ξ is of the order of a few atomic spacings, but near a critical point it becomes

quite large, and at the critical point it diverges as some negative power of |T − Tc|. This

is viewed as the physical origin of the singular behavior near the critical point, since a

diverging correlation length means that there are correlated fluctuations on all length

scales. If ξ is infinite then one can iterate the RG an infinite number of times, and the

result is that the couplings will flow to the fixed point of the transformation, if it exists.

Since a wide range of initial values for a given coupling will flow to the same fixed point,

then the behavior of the system will be universal. If the correlation length is finite, then

after a finite number of transformations the cutoff will be of order ξ, and then it is no

longer possible to integrate out the degrees of freedom. However, for large ξ the couplings

of the theory will be very near the fixed point values, which has the result that universality

is not observed just at the critical point, but in the vicinity of it as well.

This approach can be extended directly to dynamical systems. Instead of just inte-

grating out the degrees of freedom between a and ba, one also evolves the system from
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time t0 to bzt0, where z is some exponent which is to be determined. Then the sys-

tem is rescaled by the factor 1/b, restoring the time to t0. If there is an attractive fixed

point to this transformation, then it will describe the asymptotically late time evolution.

Since non-equilibrium systems exhibit features associated with critical phenomena, then

it seems plausible to conjecture that a renormalization group fixed point is describing the

asymptotic evolution of the system.

There is usually associated with critical phenomena an upper critical dimension, above

which one can neglect the effect of correlations. Typically the resultant mean-field theory

is simple enough that it can be solved and the mean-field critical exponents found. In

most cases these exponents are independent of the dimension of the system. From the

renormalization group viewpoint, the fixed point which represents the complete, correlated

system changes with dimension, and the critical dimension is where this fixed point joins

that of the mean-field theory. Generally there is a critical coupling which has a non-zero

value for d < dc, and which flows to zero when d ≥ dc. Exactly at the critical dimension

the coupling is marginally irrelevant and flows to zero slowly, which results in the system

exhibiting mean-field exponents, but with logarithmic corrections.

1.2. Phase Ordering

Phase ordering refers to the dynamics of a system following a rapid temperature

quench from an equilibrated state in the one-phase region of the phase diagram into the

two-phase region. The subject has been the focus of much theoretical, numerical, and

experimental work, and is reviewed in references [3–6]. A schematic representation of a

quench is shown in fig. 1.1.1 The temperature is plotted on the vertical axis and some

scalar order parameter, taken here to be a concentration, is plotted on the horizontal axis.

1 A temperature quench is used, for example, in binary alloys, where the associated rate

constants are quite slow. However, for fluid systems one usually performs a pressure quench,

which is much more effectively transmitted through the system.
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Figure 1.1. The schematic for a temperature quench into the

two-phase region. The order parameter is a concentration of one of

the species in a binary system. The equilibrium concentrations at

the post quench temperature Tf are given by cA and cB .

There are a variety of experimental systems in which phase ordering is observed, including

binary alloys [7], binary fluids, nematic liquid crystals [8,9].

The initial dynamics following the quench are generally non-universal, and roughly

speaking fall into two categories. Spinodal decomposition refers to the dynamics which

result from quenches deep into the coexistence region, where the system is then unstable

to long wavelength perturbations. For quenches closer to the coexistence curve the system

is metastable and evolves via the nucleation of droplets which are larger than some critical

radius.

In the late stages phase ordering is characterized by large domains of equilibrated

phase, regardless of whether the early time evolution for a given quench is described by

spinodal decomposition or nucleation. The typical size of these domains increases with

time, which is a process referred to as coarsening. The width of the interfaces separating

the domains is determined by Tf , at least for systems with short-range interactions, and

does not depend on time. At late times, then, the domain walls become sharp objects
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separating regions of equilibrated phase, and one can recast the dynamics as the evolution

of the domain walls themselves. This picture is more complicated with a vector order

parameter, but in general the dynamics can be expressed in terms of the appropriate

topological defects for the dimension of the order parameter and the dimension of space.

What is found is that asymptotically the domain wall morphology is characterized by

a single length scale which grows with time. This self-similar evolution is usually expressed

via the dynamic scaling hypothesis, which is the statement that the correlation function

has the form C(r, t) = f
(

r/L(t)
)

, where L(t) is the characteristic length scale of the

domains. Equivalently one has for the structure function S(k, t), the Fourier transform of

the correlation function,

S(k, t) = k−dg
(

kL(t)
)

. (1.1)

The structure function is directly measurable via scattering experiments, and therefore the

dynamic scaling hypothesis and the growth law for L(t) can be tested. It is found that

this length scale has a power law dependence on time, L ∼ t1/z, and that the exponent z

is universal.

The universality classes of phase ordering are fairly well established. It is believed that

the exponent z depends on the presence or absence of conservation laws, the dimension of

the order parameter, and the range of interactions. However, in contrast to equilibrium

critical phenomena, the dimension of the system appears not to matter. Also irrelevant

are the relative volume fractions of the equilibrated phases and the final temperature. The

accepted values for short-range interactions are z = 2 for a non-conserved order parameter,

z = 3 for a conserved, scalar order parameter, and z = 4 for conserved, vector order

parameters. The latter result is believed to hold for d > n, where n is the dimension of the

O(n) symmetric order parameter. Although the value of the growth exponent does not

depend on the dimension of space, it is believed that the critical behavior is not generally

given by a mean-field theory, and that to describe accurately the system one must take

into account correlated fluctuations.
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The first solid result in the study of phase ordering was the theoretical work of Lifshitz

and Slyozov [10], for the case of a conserved, scalar order parameter, which describes binary

alloys and fluids. They consider a quench to a concentration which is very close to one

of the equilibrium concentrations. In this case the minority phase will occupy a small

fraction of the volume, and the dynamics are given by isolated droplets of the minority

phase interacting with a mean-field background. With this approach they demonstrated

that the system evolved via self-similar coarsening and with dynamic exponent z = 3. It

is now generally agreed that the value z = 3 applies for all quenches with a conserved,

scalar order parameter, of which the Lifshitz-Slyozov theory is the small volume fraction

limit. However, apart from this original result, no fundamental theoretical derivation of the

dynamical scaling hypothesis and power law domain growth has been found.2 The goals

in applying the renormalization group to phase ordering, then, are to put the dynamic

scaling hypothesis on a firm, theoretical footing, and also to determine systematically the

universality classes and the corresponding value of the dynamic exponent z.

To begin one must select a phenomenological model of the system. The two most

common types are continuum Langevin equations, in which the noise strength is deter-

mined by Tf , and kinetic Ising models, with either spin-flip (Glauber) or spin-exchange

(Kawasaki) dynamics, depending on the conservation law for the order parameter. A rel-

atively new approach is that of cell dynamical systems [11], which was developed as a

means of improving the efficiency of simulations, but is also argued to be as fundamental

as other phenomenological models. Once a model has been selected one can proceed to

apply renormalization group methods. One approach is to use a Monte Carlo renormaliza-

tion group scheme [12,13]. This has been moderately successful in calculating the dynamic

exponent z, although it has proven to be difficult to reach the asymptotic regime. For

example, in [12] it was found that z = 4 for a conserved, scalar order parameter system

2 The Lifshitz-Slyozov result can be viewed as the limit of the volume fraction of the minority

species going to zero. As discussed in [6], it appears that a small volume fraction expansion about

this solution is a singular perturbation.
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rather than z = 3, although it is now agreed that the latter result will hold if the true

asymptotic limit is reached. There have also been analytic approaches to applying the

renormalization group, in which the idea is to renormalize the equations of motion. If a

T = 0 fixed point is assumed to exist, then one can renormalize the Langevin equations

describing a conserved, scalar order parameter system by making the argument that in-

tegrating out the short distance modes cannot introduce any singular dependence on the

long wavelength modes [14]. However, this approach is still less than fundamental, as it

assumes the existence of a fixed point rather than explicitly demonstrating it. At present

there has been no successful, systematic derivation of a renormalization group fixed point

which gives rise to the late time self-similar evolution.

Often it is useful for difficult problems to study first a one-dimensional version of the

model. In equilibrium critical phenomena it is known that onedimensional systems with

short-range interactions have no ordered phase. However, with power law interactions given

by V (r) ∼ −r−1−σ for 0 < σ ≤ 1 these systems do have have a non-trivial phase transition

[15]. Furthermore, it was shown that a renormalization group scheme can be implemented

in the case of σ = 1 [16,17]. Since these models exhibit non-trivial phase transitions, then

they contain a two-phase region of the phase diagram and are thus suitable for studying

phase ordering. The defects, or domain walls, are point objects in one dimension, which

allows for simpler analytical and numerical treatment.

In chapter two we consider such a one-dimensional model, with a non-conserved, scalar

order parameter and long-range interactions, and apply analytic and numerical techniques.

First, we show that for long-range interactions the kinetic Ising model with Glauber dy-

namics is equivalent to a Langevin equation without noise terms for the evolution of the

domain walls. Next we demonstrate that the dynamics of the domain walls is given by

that of charges on a line, moving via interactions with other charges, and annihilating on

contact. While this model is only strictly valid for σ ≤ 1, we consider larger values of σ

as well, in order to gain some insight towards the asymptotic evolution. From the simula-

tions we find that for σ = 1, 2 the behavior is consistent with the existence of an attractive
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renormalization group fixed point. In particular, the asymptotic density is independent of

the initial value of the density, and the density decays with a power t−1/(1+σ). This latter

result agrees with a study of long-range interacting systems in which the dynamic scaling

hypothesis was assumed, and resulting growth laws derived [18].3 However, for σ = 1/2

the simulations exhibit no convincing scaling regime from which to extract a power law

growth, and, surprisingly, the asymptotic density appears to depend on the system size.

There are also indications of anomalous behavior for σ ≤ 1 from an analytic approach.

A fugacity expansion of the initial conditions is developed which allows one to calculate

perturbatively the function f(x) defined by the scaling relation derived in §2.2

n(t) = n0f(n0t
1/(1+σ)). (1.2)

Here n(t) refers to the density and n0 is the initial density. The first order term in the

expansion comes from a two-body calculation and is found for all σ. The second order term

involves a three-body calculation, and while it cannot be computed for arbitrary σ, it is

calculable in the case σ = 1. It is found that the coefficient of the second order expansion

term diverges as the logarithm of the system size, L. It is also shown that for general σ ≤ 1

this coefficient will diverge as L → ∞. One possible interpretation of this result is that

the coefficients are simply system size dependent, and that the bulk limit L → ∞ cannot

be taken. Another possibility is that these terms are the consequence of a non-analyticity

in the function f(x), and that a sum to all orders might restore a finite limit for L→ ∞.

We also use the fugacity expansion to study the fixed point for σ > 1. In particular,

by taking the large σ limit we can calculate to third order the expansion of the scaling

function f(x), with the result

f(x) = 1 − 2x+ 3x2 − 34

9
x3 + O(x4). (1.3)

3 In one dimension the density of the domain walls is just the inverse of the characteristic

domain size L(t) studied in [18].
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We introduce a Callan-Symanzik-type β function for the “coupling” gR = τ1/(1+σ)n(τ),

which describes the approach to the renormalization group fixed point, and show that from

the result above that

β(gR) = σ−1

[

gR − 2g2
R − 2g3

R − 10

3
g4
R + O(g5

R)

]

. (1.4)

Truncating this expansion at order g4
R gives a zero of the β function g∗R ≈ 0.33. The

fixed point coupling is equivalent to the amplitude of the density decay, as can be seen

by the definition above. It turns out that the exact value of the fixed point coupling for

large σ is known [19], and is given by g∗R = e−γE/2 ≈ 0.28. From the fugacity expansion

approach one can argue that the expansion coefficients will exhibit only weak σ dependence

for σ > 1, which is confirmed by the simulations for σ = 1, 2 in which the amplitude is

found to be A = 0.31. The shortcoming of this approach is that it lacks a small expansion

parameter, the analog of the ε expansion in equilibrium critical phenomena, which enables

the calculation of the fixed point in a controlled way.

An alternate approach is also considered in chapter two, which is a truncation scheme

that exhibits naturally the attractive fixed point which describes asymptotic regime. The

small density, early time limit for the two-point distribution function n2(r, t) can be cal-

culated via the fugacity expansion. With a heuristic truncation scheme we find a form of

the two-point distribution function which is exact for small r and for r → ∞, and is of the

form

n2(r, t) = n(t)2rσg
(

(r1+σ + t)1/(1+σ)
)

. (1.5)

From the large r limit of (1.5) it follows that g(x) ∼ x−σ for large x, which then gives the

large t limit also. The asymptotic form of the distribution function can be used to derive

an equation for the density

dn

dt
= − 2

1 + σ
n2t−σ/(1+σ), (1.6)
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which is consistent with the scaling solution n ∼ t−1/(1+σ). Furthermore, by assuming the

truncation scheme is valid for all t the evolution of the density can be found in terms of

the initial correlations. That is,

dn(τ)

dτ1/(1+σ)
= 2n2

(

r = τ1/(1+σ), t = 0
)

. (1.7)

This is tested numerically by considering an initial distribution which contains zeros in the

distribution function n2(r, 0), with results in qualitative agreement with (1.7).

In §2.7 we discuss recent simulations of this model by Rutenberg and Bray, which

have been conducted in the time since the work presented in chapter two.

1.3. Reaction-Diffusion Systems

A number of chemical processes are known to be diffusion-controlled reactions, which

means that reaction is sufficiently short-ranged that the constituents rely on diffusion to be

brought together. Some examples include radiolysis in liquids, which produces electrons

and cations which then diffuse and recombine [20], solutions of fluorophores and quenchers

in inert solvents [21], and a large variety of chemical reactions in gels [22]. These reactions

exhibit in lower dimensions what is termed anomalous kinetics, where the time dependence

of the reactant densities cannot be derived from simple rate equations. This is now under-

stood to be the consequence of non-trivial fluctuations in the density. General reviews of

these phenomena are given in [23,24].

Recently there has been interest in studying systems where the reactants are com-

pletely segregated initially. The subsequent reactions are confined to a reaction zone,

which can be studied experimentally [25], and which has interesting scaling behavior with

new exponents. These reaction fronts also provide a starting point for studying pattern

forming systems. For example, it has been demonstrated in experiments that reaction-

diffusion processes are capable of producing Turing structures, which are stationary pat-

terns in the concentration fields [26,27]. Unlike hydrodynamic pattern forming systems,
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such Rayleigh-Bénard convection cells and Taylor-Couette flows, these patterns have a

characteristic wavelength which is not set by the geometry of the system.

The models for studying these systems are generally quite simple. The examples

mentioned above are two-species reactions, which are modeled with two types of particles,

A and B, moving via diffusion, and reacting upon contact to form an inert particle. There

are a number of variations: particles in a continuum which react within a certain capture

radius rc, or particles on a lattice, with or without multiple occupancy allowed, which

react when they meet on a single lattice site, and so on. One hopes to extract from these

models features which are universal, and can therefore be related to real systems.

The simplest possible reaction-diffusion system is the reaction kA → ∅. Here there

is just one species of particle, and the reaction occurs whenever k particles meet. This

model is has less general applicability than the two-species reaction, although it can be

related to other non-equilibrium systems. For example A + A → ∅ is equivalent to the

phase ordering of a non-conserved scalar order parameter in one dimension, and kA → ∅

is related to one-dimensional models of monolayer k-mer deposition. For our purposes the

one-species reaction provides a simplified starting point for developing the renormalization

group techniques.

The A+ B → ∅ and the kA → ∅ systems are similar in that for both there exists an

upper critical dimension dc. For d > dc one can argue that the fluctuations in the density

are irrelevant, in which case mean-field type rate equations are applicable. For d < dc

the fluctuations affect the decay rate of the density, producing slower dynamics than that

predicted by the rate equation. However, apart from the common feature of an upper

critical dimension, the one- and two-species reaction are quite different. For example, it is

found from scaling arguments that the upper critical dimension of the kA→ ∅ reaction is

dc = 2/(k − 1). For d < dc the asymptotic density goes as n ∼ Akt
−d/2 with an amplitude

which is independent of the details of the initial state. In contrast, scaling arguments

for the A + B → ∅ reaction predict fluctuation dependence for d < dc = 4 (as opposed
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to dc = 2 for A + A → ∅), with the density n ∼ At−d/4. In this case the amplitude is

determined entirely by the fluctuations present in the initial conditions. The origin of the

dissimilarity of these systems is the conserved mode present in the two-species reaction:

the number difference nA−nB is unaffected by A+B → ∅. As is usually the consequence

of a conserved mode, the two-species reaction has slower dynamics.

To apply RG techniques to these systems it is useful to work with a field theoretic

version of the problem. The dynamics are defined by a master equation, which can then

be mapped to a field theory, as will be shown in chapter three. The mapping is a two-

step process, where the master equation is first recast in terms of a second quantized

representation, which is in turn mapped to a field theory by use of the coherent state

representation. This procedure involves no coarse-graining, unlike more phenomenological

approaches, and so the coupling constants of the field theory are directly related to the rate

constants of the microscopic system defined by the master equation. There exists a general

review article on this procedure [28], but we present a full derivation for completeness and

to establish our notation.

One-Species Reaction

In chapter four we study the problem of the one-species reaction with homogeneous

random initial conditions. The first observation which can be made from the correspond-

ing field theory is that there is no dressing of the propagator, and therefore no anomalous

dimension. This is due to the property of the interaction vertices that the number of

propagators never increases with time. The lack of anomalous dimension has the conse-

quence that simple scaling arguments are probably sufficient for deriving the exponent of

the density decay. Secondly, from power counting it is found that the coupling λ0, which

is directly related to the reaction rate constant in the master equation, is relevant for

dimensions d < dc = 2/(k − 1). Furthermore, it is shown that that the coupling can be
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renormalized exactly to all orders and that it flows to an order ε = dc − d fixed point for

large times.

From the field theory it is possible to calculate the density and other quantities as

expansions in powers of the initial density n0, and the coupling λ0. Under renormalization

group flows the coupling goes to an order ε fixed point for d < dc, but the initial density is a

relevant parameter for all d, and flows to infinity for large t. Therefore a valid perturbation

theory must include sums over all powers of n0, grouped in such a way as to give a finite

expansion in powers of λ0. In chapter four we show how identify and to evaluate these

groups of sums. The result is a formalism which enables us to calculate perturbatively the

density and correlation functions of the system for general k. For example, we find that

the density for d < dc is given by n ∼ Ak(Dt)
−d/2 with

A2 =
1

4πε
+

2 ln 8π − 5

16π
+ O(ε) (1.8)

A3 =

( √
3

12πε

)1/2

+
9
√

2π

64
+O(ε1/2), (1.9)

and for d = dc

n(t) ∼
(

(k − 2)!

4πk1/(k−1)

)1/(k−1) (
ln t

Dt

)1/(k−1)

, (1.10)

where D is the usual diffusion constant. We are also able to calculate various universal

quantities for this system. These include the connected correlation function, the fluctua-

tions in total particle number, and the fluctuations in particle number in a small volume

v.

The density amplitude for k = 2 can be compared to an exact solution for a particular

model in d = 1 of A2 = (8π)−1/2 ≈ 0.20 [29]. Putting ε = 1 in our expansion yields

A2 = 0.08 + 0.03 + . . .. The agreement is less than satisfactory, indicating that the ε

expansion will not be quantitatively accurate to ε = 1. However, the ε expansion provides

the only systematic derivation of universality and scaling.
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Two-Species Reaction

The field theory for the reaction A+B → ∅ is developed in chapter three. In chapter

five we use this field theory to study the two-species system with an initial state of randomly

distributed A and B particles with equal densities. As in the one-species case, we find that

there is no anomalous dimension, and so the usual scaling arguments are likely to give the

correct exponents.

By performing the same power counting as before, one finds the couplings are relevant

for d < 2, which is the same critical dimension as the one-species reaction for k = 2.

Furthermore, the coupling can still be renormalized exactly, differing from the previous

case only by a factor of two. However, the two-species reaction exhibits anomalous kinetics

for d < 4. This can be understood from the field theory to be the consequence of initial

terms which are generated by the irrelevant bulk couplings. These initial terms are relevant

for d < 4. Due to the irrelevance of the coupling, we can construct for 2 < d < 4 an effective

field theory which is valid for large times, in which only the relevant bulk and surface terms

remain. This effective field theory is equivalent to the classical equations of motion

∂ta = ∇2a− λeffab

∂tb = ∇2b− λeffab,
(1.11)

where λeff is some effective coupling constant. These equations are often assumed, in-

correctly, to be the continuum limit of the master equation for all values of the spatial

dimension.

The densities 〈a〉 = 〈b〉 can be calculated exactly from the effective theory, with the

result

〈a〉 =
∆1/2

π1/2(8π)d/4
(Dt)−d/4. (1.12)

The parameter ∆ is a measure of the strength of the initial fluctuations in the field ψ, due

to the randomness in the initial state. From central limit arguments one finds ∆ = n0, the

initial density of A, B particles. However, these arguments are based on the assumption
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that the equations (1.11) apply from t = 0, rather than just at late times. Using the field

theory for 2 < d < 4 we can show that there are corrections to this result, and that instead

∆ = n0 + Cn
d/2
0 + higher order terms. These correction terms could become quite large

for an initial state of a nearly full lattice in which only single occupancy is allowed, as is

often used in simulations. This would explain why a recent numerical study found that

the amplitude was not proportional to
√
n0 [30], as they expected it would be. In other

simulations, where it was attempted to keep to the low initial density limit, it was found

that the amplitude was proportional to
√
n0 [31].

The result (1.12) was previously derived by Toussaint and Wilczek [31], with ∆ =

n0. However, in their calculation they made the assumption that the particles become

completely segregated at late times. That is, they assume that asymptotically there will

only be either A or B particles present in a given region. Rather than just assuming

segregation, we are able to demonstrate that it occurs for d < 4 by using the field theory

approach. It should be noted, though, that these amplitudes are not universal. The

strength of the initial fluctuations in ψ will depend, for example, on whether one considers

a lattice model with single occupancy or multiple occupancy, and so on.

When d ≤ 2 the coupling flows to an order ε fixed point, as was found for the one-

species reaction. However, the field theory for A+B → ∅ is sufficiently more complicated

that we are unable to derive a systematic expansion in powers of the coupling, as we could

in the one-species case. We present an argument that the amplitude found for d > 2 is the

leading order term in an ε expansion for d < 2.

Also studied in chapter five are the reaction zones formed in two-species reactions.

The regions where the reactions occur, which are the interfaces between domains of A

particles and B particles, have a finite width. This width w grows in time, but more

slowly than do the domains themselves, which is consistent with the earlier statements

about asymptotic segregation. What is found is that this width grows as a power law in

time with a non-trivial exponent, that is, an exponent which is not determined by the
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bulk-density, 〈a〉−1/d ∼ (length) ∼ t1/4 for d < 4. Another non-trivial length scale in these

reaction zones can be found from the characteristic nearest neighbor distance `rz. This

latter quantity can be measured directly in simulations, utilizing the fact that if a particle

has as its nearest neighbor an unlike particle, then they are in the reaction zone.

When d > 2 then the irrelevance of the coupling implies that the rate of reaction is

proportional to the product of the densities ab, which is essentially the content of equations

(1.11). From this result the exponents for w and `rz can be derived, but when d ≤ 2 one

can no longer use this method. For d ≤ 2 the renormalization of the coupling implies that

these lengths cannot depend on λ0, since it flows to an order ε fixed point. This, it can be

shown, is sufficient for determining the exponents. The results for the width are

w ∼
{

t(d+2)/4(d+1) d ≤ 2

t(d+2)/12 2 < d < 4

(1.13)

and for the nearest neighbor distance

`rz ∼
{

t(d+2)/4(d+1) d ≤ 2

t(d+2)/6d 2 < d < 4.

(1.14)

The exponents for `rz are consistent with numerical results for d = 1, 2, 3 [30,32].4 The

general technique for deriving these exponents is by comparison to the reaction zone formed

in the steady state by currents of A and B particles directed towards each other. A

similar analogy can be constructed for a system with a single reaction zone, created by

inhomogeneous initial conditions. That is, if in some direction x onlyA particles are present

for x < 0 and only B for x > 0, then a time-dependent reaction zone is established. The

same quantities w and `rz can be studied, with the results

w ∼
{

t1/2(d+1) d ≤ 2

t1/6 d > 2

`rz ∼
{

t1/2(d+1) d ≤ 2

t2/3d d > 2.

(1.15)

The exponents for d ≤ 2 are in reasonable agreement with numerical studies [33].

4 We disagree with the analysis of the d = 3 case in these references.
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It is usually assumed, for two-species reactions, that the diffusion constants for A and

B particles are the same. This has the result, as can be seen in equations (1.11), that the

field a − b satisfies the diffusion equation. When DA 6= DB then this is no longer true,

which complicates the analysis. We consider the case of unequal diffusion constants, and

find from the field theory that for 2 < d < 4 the density is given by

〈a〉 =

√

∆Q(d, δ)

π1/2(8π)d/4
(D̄t)−d/4, (1.16)

where D̄ = (DA +DB)/2 and δ = (DA −DB)/(DA +DB). The function Q(d, δ) has the

form

Q(d, δ) = 4
(1 + δ)2−d/2 + (1 − δ)2−d/2 − 2

δ2(d− 2)(d− 4)
, (1.17)

and is finite for all −1 ≤ δ ≤ 1, d < 4. As argued before, it is plausible that the answer

for d > 2 gives the leading order term for an ε expansion when d ≤ 2. However, this

amplitude, just as in the equal diffusion constant case, is not universal.
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Chapter 2. Phase Ordering of One-Dimensional

Systems with Long-Range Interactions

In this chapter we consider the dynamics of phase ordering for a one-dimensional

system with power law interactions V (r) ∼ r−1−σ. Recently interest has been directed to-

wards the problem of long-range interactions in phase ordering [18,19,34]. By assuming the

dynamic scaling hypothesis and using energy dissipation arguments, Bray and Rutenberg

find the growth law exponent to depend on the value of σ [18,19]. In particular, they argue

that, in the case of a non-conserved scalar order parameter system, the dynamic exponent

z = 1 + σ for σ < 1, and that z = 2 with logarithmic corrections for σ = 1. For σ > 1 they

recover the traditionally accepted exponent z = 2 for systems with short-range interactions

[35–37]. We begin our treatment of the problem by a discussion of the phenomenological

model for the system.

2.1. The Model

In the following section we present a low-temperature mapping from the long-ranged

Ising Hamiltonian with spin degrees of freedom to a Hamiltonian with domain wall degrees

of freedom. The dynamics are introduced to the system via Langevin equations without a

20



noise term. This is shown to be equivalent to Glauber dynamics when σ ≤ 1. Finally, we

discuss related models which are motivated by the simplifications they offer.

Consider the one-dimensional Ising Hamiltonian

H = −J
∑

i<j

sisjV (xi − xj) (2.1)

where

V (xi − xj) = |xi − xj |−(1+σ). (2.2)

and the lattice spacing a = 1. It is known [15] that this system has a phase transition

with some non-zero Tc when 0 < σ ≤ 1, and so there is a two-phase equilibrium region

for T < Tc. Since we are interested in the dynamics of the domain walls, which are points

objects in this one-dimensional case, it is convenient to map this Hamiltonian with spin

degrees of freedom to one with domain wall degrees of freedom via a lattice equivalent of

integration by parts. The resultant Hamiltonian is (apart from surface terms)

H = J
∑

i<j

s′is
′
jU(xi − xj) (2.3)

where the lattice derivatives are defined as s′i = si+1 − si, and the function U(xi−xj), the

lattice equivalent of the second anti-derivative of V (xi − xj), is defined by

V (r) = U(r + 1) − 2U(r) + U(r − 1). (2.4)

The boundary conditions are chosen so that U(r) contains no constant or linear pieces,

with the solution for r � 1

U(r) =















|r|1−σ
σ(1 − σ)

+ O(1/r) σ 6= 1

− log |r| +O(1/r) σ = 1.

(2.5)

Since the limit of zero lattice spacing is well-behaved, and the important contributions

from the long-ranged interactions should be arising at large r, the late time dynamics of

the theory should be unaffected by taking the continuum limit.
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The s′i are zero everywhere neighboring spins are aligned, and equal to ±2 at the

domain boundaries. Therefore the sum over spins can be replaced by a sum over the

positions of the domain walls. The sign, or charge, of the domain walls will be alternating,

with the consequence that nearest neighbors will attract, next-nearest neighbors will repel,

and so on. Absorbing the coupling constant J into a rescaling of the spin results in the

Hamiltonian

H =
∑

i<j

(−1)i+jU(xi − xj). (2.6)

To add dynamics to this Hamiltonian we use Langevin-type equations of motion,

introducing a kinetic coefficient Γ.

dxi
dt

= −Γ
∂H

∂xi
. (2.7)

We neglect any possible noise term, for reasons which are explained below. There is an

additional rule to the dynamics. When two charges meet each other they annihilate, and

are both removed from the system. In the original spin picture this corresponds to an

island of up spins shrinking to zero in a background of down spins, or vice versa.

These equations of motion for the domain walls are equivalent, for σ ≤ 1 and low

temperatures, to using Glauber dynamics for the spins [38]. To see this, consider a Glauber

dynamical Ising model with temperature β, lattice spacing a, and characteristic free spin

flip rate α. The flip rates for interacting spins are found via detailed balance:

w(+)

w(−)
= exp(−β∆E) (2.8)

where w(−) and w(+) are the rates for flips down and up, respectively, and ∆E = E+−E−

is the energy difference of the spin positions. The parameter range of interest is where

w(−) and w(+) are nearly equal to α, or β∆E is small.

Consider an isolated pair of domain walls separated by distance ` as shown in fig. 2.1.

The domain wall on the left can move through either a spin A flip up or spin B flip down.

If it is assumed that the w(+) in the neighborhood of the domain wall are equal to w(A+),
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l

BA

Figure 2.1. An isolated pair of domain walls separated by a

distance `. The domain wall on the left can move via a flip of spin

A or spin B. The difference in the up and down flip rates gives rise

to a drift velocity.

and the w(−) are equal to w(B−), then the motion of the wall will be a random walk

superimposed over a slight drift with velocity

vd = a
[

w(−) − w(+)
]

= aw(−)
[

1 − e−β∆E
]

= aαβ∆E +O
(

(β∆E)2
)

.

(2.9)

The energy difference ∆E = J [U(`+ a)− U(`)] ' aJ(dU/d`) if `� a. If the domain wall

position is labeled by x (so d`/dx = −1), then the drift velocity equation is

dx

dt
= −a2αβJ

∂U

∂x
. (2.10)

This can be generalized to systems of multiple domain walls by considering U(x− y) to be

a pairwise interaction energy which carries with it the appropriate sign for attractive and

repulsive interactions. By comparison to the original Langevin equations one can identify

the kinetic coefficient Γ = a2αβJ .

Thus far the possibility of domain wall pair creation has been neglected. The energy

for pair creation at distances of order a is small, and even at low temperatures will occur

frequently. However, the energy required to create a pair separated at a macroscopic

distance `′ is quite large relative to the energy required to move a domain wall a distance
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a in the presence of another domain wall at `. That is, for large β it is possible to satisfy

simultaneously βJU(`′) � 1 and aβJ(dU/d`) � 1 for finite U, dU/d`. The next question

to address is which process, the random walk or the deterministic drift, dominates the

dynamics at late times.

The characteristic length of a random walk at time t is

`rw =(number of steps × a)
1

2

=(aαt)
1

2 .
(2.11)

Since α ∝ ΓT then

`rw ∼ T
1

2 t
1

2 . (2.12)

There is also a length scale determined by the drift velocity which grows with time as

`d ∼ t1/(1+σ), (2.13)

which is found from the equations of motion (see §2.2). The time dependence of these

length scales determines which process controls the dynamics. When σ > 1 then `rw > `d

for large t, so a pair of charges can escape annihilation via a random walk. This is the

dynamical picture of the disordered phase, as was found in the nearest neighbor Ising

model [39]. When σ = 1 and T < Tc then `d > `rw, which means that a pair of charges

can no longer escape annihilation. For σ < 1 also the drift dominates the dynamics at low

temperatures. While this argument for σ < 1 would suggest that the drift dominates for

all T , it ignores higher order screening effects which renormalize J , causing the random

walk effects to dominate above the critical point. When the drift does dominate, the

presence of the random walk should cause at most a finite renormalization of the kinetic

coefficient Γ. To summarize, the Glauber model of dynamics is equivalent to the Langevin

equations without noise for σ ≤ 1 and T < Tc, and otherwise is equivalent to domain walls

undergoing random walks.
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Related Models

While σ ≤ 1 is the physically interesting range, the model, without noise, can be

extended to values of σ > 1. If the late time dynamics is described by some renormalization

group fixed point, then this fixed point might be qualitatively similar for all σ. For example,

we find in simulations that, to within our accuracy, the length scale given by the density

grows with power law t1/(1+σ) for both σ = 1 and σ = 2. In §2.4 we show that the

dynamical equations simplify in the large σ limit of this model. From this limit one can

then work back to study the behavior of models with smaller values of σ.

A similar but more simple system than the Ising model is the Q-state Potts model

in the limit of Q → ∞. This model can be mapped to an interacting defect Hamiltonian

which has the same power law interactions as the Ising model, but only between nearest

neighbors. All other pairs are non-interacting, which makes this system much easier to

simulate on the computer. The annihilation rules are modified as well, in that a pair of

defects annihilate to leave behind a single defect. A derivation of the properties of this

model is given in appendix 2.A.

2.2. Scaling Arguments and Numerical Results

The initial conditions for the dynamical system are drawn from some distribution.

Measurements of the system, such as the density n(t), or the two-particle distribution

function n2(r, t), are defined to be averaged over this distribution. One could use a thermal

distribution corresponding to T0, the pre-quench temperature of the system. Instead we

use an initial distribution where charges are placed randomly with some initial density

n0, which for n0 = (2a)−1 corresponds to the system being prepared at T = ∞ prior to

quenching. For values of n0 < (2a)−1 the random distribution is no longer representative

of a thermal distribution, but this approach enables us to explore the sensitivity to initial

conditions without the complication of initial correlations.
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To write scaling functions for the quantities such as the density n(t), we consider all

the dimensionful parameters in the model. The initial density n0 gives a length scale, as

does the system size L for finite systems. The lattice spacing has been taken to zero. There

is one other length scale, given by time. One way to define this length is by the range over

which an isolated pair of charges will annihilate in time t. For a pair of charges separated

by some distance ` the equations of motion can be written as a single differential equation

d`

dt
= −2Γ`−σ (2.14)

which has the solution

`(t)1+σ = `(0)1+σ − 2(1 + σ)Γt. (2.15)

By setting `(t) = 0 one finds the time to annihilation as a function of the initial distance

` is

t =
1

2(1 + σ)Γ
`1+σ. (2.16)

We rescale the time

2(1 + σ)Γt→ t (2.17)

so that the length scale associated with time is

`t = tζ (2.18)

where

ζ =
1

1 + σ
(2.19)

is introduced for notational convenience. This length scale given by tζ , as well as those of

L and n−1
0 are the only dimensionful quantities in the system. Therefore

n(t) = n0 Φ(n0t
ζ , Lt−ζ). (2.20)

Generally it is assumed that the density does not depend on the system size, in which case

we get the stronger scaling law

n(t) = n0 f(n0t
ζ). (2.21)
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Simulations for σ ≥ 1

To determine which of these scaling functions apply, we first turn to numerical sim-

ulations (for details, see §2.6). By varying the initial number of charges N0 and system

size L such that the initial density n0 is unchanged, the system size dependence of the

model can be directly probed. For σ = 2 these plots superpose, shown in fig. 2.2, implying

no system size dependence. For σ = 1 we find a slight system size dependence (fig. 2.3)

wherein the smaller systems drop below the scaling curve at late t.
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-8 -4 0 4

ln
 n
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)
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L
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Figure 2.2. Simulations for σ = 2, shown on a log-log plot. The

system sizes used are L = 100, 200, 400, and 800, and the initial

density is fixed at n0 = 1. The data shows no system size depen-

dence. The power law n ∼ t−1/3 is plotted as a visual reference,

and is in good agreement with the data. The error bars for the data

are smaller than the points plotted.

We also measure the time dependence of the density for σ = 2, and find that it is

consistent with the σ < 1 prediction of n(t) ∼ t−ζ for large t [18]. This result and the
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Figure 2.3. Simulations for σ = 1. The same range of system

sizes are used as in fig. 2.2. The data for smaller L values exhibits

slight system size dependence. The power law n ∼ t−1/2 is plotted

as a visual reference. The statistical error bars are smaller than the

points plotted.

scaling form of the density (2.21) have the corollary that n(t) is independent of n0. That

is, since f(x) = Ax−1 for large x, then

n(t) ∼ n0
A

n0tζ
= At−ζ . (2.22)

We can plot the same data shown in fig. 2.2, but rescaled so all the runs have the same

system size, but different initial densities. In fig. 2.4 we see that the plots converge to

the same function asymptotically. We propose that the lack of dependence on the initial

length scale may be a general feature of the late time dynamics. This is suggestive of T0

independence for initial conditions corresponding to thermal distributions.
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Figure 2.4. The same data for σ = 2 as shown in fig. 2.2, but

rescaled so that L = 100 and the initial density n0 = 1, 2, 4, and

8. The curves collapse to a single function, implying the system is

independent of the initial density at late times.

Anomalous Behavior for σ = 1/2

For the case of σ = 1/2 we find that the expected power law behavior of n(t) ∼ t−ζ is

not observed. The simulations, shown in fig. 2.5, exhibit less than convincing power law

behavior, and the density decays with an exponent of at least −1/z = −0.75. From the

scaling forms (2.20) and (2.21) it follows that this implies either a dependence on n0 at

late times, or dependence the system size L, or both. The data indicates a fairly strong L

dependence.

These simulations are quite difficult. We attempted to reproduce periodic boundary

conditions by including interactions wrapped around the system, up to some long range

cutoff. For σ = 1/2 the system is more sensitive to the cutoff than in the previous cases,

and requires inclusion of many more replicas to simulate periodic boundary conditions (for
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Figure 2.5. Simulations for σ = 1/2. The initial density is fixed

at n0 = 1, and the system size varies from L = 100 to 800. On the

vertical axis is plotted ln t2/3n, which should be a constant in the

scaling regime. The data shows strong system size dependence, and

no range over which the density has the expected t−2/3 power law

dependence. The line drawn represents n ∼ t−0.75. The error bars

for the L = 800 data are smaller than the size of the points plotted

up to ln t = 4.

a discussion of our methods see §2.6). We were unable to average over as many realizations

of the system, and as a consequence the statistical error bars in the numerical results are

appreciable toward the later times. The data is too imprecise to determine whether the

system is independent of the initial density, as was shown for σ = 2 in fig. 2.2.

Q→ ∞ Potts Model

We have also simulated the Q→ ∞ Potts model for values of σ = 1/2 and 2, and found

that the naive result n ∼ t−ζ is consistent with the data for both values of σ. The data is
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shown in fig. 2.6. One might expect to see different behavior from the Ising system, since

in the Potts case there is no need to include multiple wrappings in the interactions. For

periodic boundary conditions the only requirement is to include the interaction between

the first and last charge.

-4

-3

-2

-1

0

-4 0 4 8

ln
 n

(t
)

ln t

Potts Model

σ=1/2
σ=2

Figure 2.6. Simulations of the Q → ∞ Potts model for σ = 1/2

and σ = 2. The lines for both data sets correspond to the n ∼ t−ζ

curves. For both values of σ the initial density n0 = 1 and the

system sizes L = 100, 300, and 1000 are used. The data superposes

very well for the different system sizes.

Heuristic Argument for Asymptotic Density

We now present a heuristic argument for the lack of dependence on the initial density,

which holds even when the system shows L dependence. Consider a system which has
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evolved some very short time δt. Then

n(δt) =n0Φ(n0δt
ζ , δtζ/L)

=n0 − 2n2
0δt

ζ +O(δt2ζ)
(2.23)

where x = n0t
ζ , y = tζ/L, and the coefficient of the δtζ term, ∂Φ(0, 0)/∂x = 2, is found

in §2.4. Also in §2.4 we show that there can be no L dependence until at least order n3
0,

so ∂Φ(0, 0)/∂y is zero. In this short time δt the system will build up correlations, but

primarily at short distances. This short distance information is quickly leaving the system

via annihilation. We assume that although there are long-distance correlations building

up, they, nevertheless, depend on only one length scale, given by n(t). This assumption is

expressed in terms of (2.20) by taking n0 → n(δt) and t→ t− δt, so that

n0Φ(n0t
ζ , tζ/L) = n(δt)Φ

(

n(δt)(t− δt)ζ , (t− δt)ζ/L
)

. (2.24)

If we expand the right hand side of the equation to order δtζ (ζ < 1) then

n(t) = n0Φ − 2δtζn2
0Φ − 2δtζn2

0x
∂Φ

∂x
. (2.25)

Setting the O(δtζ) term to zero gives the differential equation

x
∂Φ

∂x
= −Φ (2.26)

which has the solution

Φ(x, y) ∼ g(y)x−1. (2.27)

This argument predicts that the late time behavior will exhibit lack of dependence on n0,

even though it may depend on L through g(y). The form of the function g(y) is unspecified,

and may play a direct role in the asymptotic time dependence.

The original argument which led to equation (2.24) is difficult to make rigorous. The

result of the calculation can only be true for asymptotically late times. The short dis-

tance correlations take some time to leave the system before the long-distance correlations

dominate the dynamics.

32



2.3. Renormalization Group Approach

The dynamics of the system, for σ = 2 at least, appears to be scale invariant at late

times. That is, evolving the system from time t1 to t2, where both times are chosen from

the late time regime, is the same as rescaling the system at t1 by a factor of

b =

(

t2
t1

)ζ

. (2.28)

Stated another way, the time dependent domain wall probability distribution is invariant

under a rescaling of the system that includes the length scale of time (but not the initial

length scale). The numerical data for the density is consistent with this presumed scale

invariance, since n(t) = At−ζ is preserved under rescaling n→ n/b and t→ tb1/ζ .

This scale invariance motivates an analogy to a second order critical point in equi-

librium statistical mechanics, as discussed in chapter one, where renormalization group

methods are applicable [40]. To describe the flow of the theory to its fixed point we define

a Callan-Symanzik β function [41]. First we define the renormalized coupling as the den-

sity at an arbitrary but fixed late time τ . This is the analog of the normalization point.

The dimensionless coupling constant, which will be invariant under rescaling, is then

gR = (ΓRτ)
ζn(τ). (2.29)

We have restored the time constant Γ in the problem, since it is possible that renormal-

ization effects may cause an effective time dependence in ΓR. This will be discussed at

the end of §2.4. For the purposes of the present argument we will assume that Γ is a

constant and can be absorbed into a rescaling of time. A late time correlation function of

the system can be expressed either in terms of the random initial state evolved in time,

or from the normalization point where the initial state information has been lost. That is,

for some correlation function G(r, t) we have

G(r, t, n0) = GR(r, t, gR, τ). (2.30)
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The value of G is independent of the normalization scale, so

τ
∂

∂τ
G

∣

∣

∣

∣

r,t,n0

= 0 (2.31)

which implies a Callan-Symanzik equation

[

τ
∂

∂τ
+ β(gR)

∂

∂gR

]

r,t,n0

GR = 0 (2.32)

where

β(gR) = τ
∂gR
∂τ

∣

∣

∣

∣

r,t,n0

. (2.33)

If GR has dimensions (length)n, then dimensional analysis gives

[

−n+
τ

ζ

∂

∂τ
+
t

ζ

∂

∂t
+ r

∂

∂r

]

gR

GR(r, t, gR, τ) = 0. (2.34)

Combining (2.32) and (2.34) to eliminate the explicit τ dependence gives

[

n− t

ζ

∂

∂t
− r

∂

∂r
+ β(g)

∂

∂g

]

GR = 0. (2.35)

If β(g∗R) = 0 for some value of the dimensionless coupling g∗R, then

GR = rnh(rt−ζ) (2.36)

which is the self-similar fixed point. Also, for gR(τ) = g∗R we find

n(t) = g∗Rt
−ζ , (2.37)

the asymptotic form of the density predicted in the energy dissipation arguments. The

flow into this fixed point for a given set of initial conditions is determined by the β func-

tion. We stress that in this formalism the assumption of a zero of β is mathematically

completely equivalent to the statement that n(t)tζ → constant, but it gives a conceptually

different approach to the problem, and from an approximation standpoint, a method for

extrapolating from the early to the late time regime. In §2.4 we will discuss a method for

finding the β function in the large σ limit.
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2.4. Fugacity Expansion

A technique for calculating the density n(t) and other correlation functions as expan-

sions in powers of the initial density n0 is developed in this section. This result is used

to calculate the β function defined in §2.3 to order g4
R, from which we estimate the fixed

point coupling g∗R.

Machinery

We can use the ideas of equilibrium statistical mechanics to calculate quantities which

are averages over the distribution of initial conditions. In doing so it is necessary to use

finite systems, although at the end of the calculation the L→ ∞ limit may be taken, if it

exists. The canonical ensemble, with a fixed initial density, is too difficult to work with, so

instead we use the fixed fugacity or grand canonical ensemble. One can check afterwards

that the fluctuations in the grand canonical ensemble are of order 1/
√
L. The average

of some quantity is calculated by expanding in powers of the fugacity y. The coefficient

of the yk term is given by the integral of this quantity over all the initial conditions for

the k-body system. To normalize these averages we use the analog of the grand canonical

partition function

Ξ =
∑

k

ykVk (2.38)

where Vk is just the volume of configuration space for the k-body system. We will work

with ordered charges, so this volume is Vk = Lk/k!. From this it follows that

Ξ = eyL. (2.39)

The initial number of charges can be found in terms of the fugacity, since the value of N0

for a k-body system is just k.

N(0) = Ξ−1
∑

k

ykk
Lk

k!

= yLe−yL
∑

k

(yL)k−1

(k − 1)!

= yL

(2.40)
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Therefore the fugacity is equal to the initial density n0.

The calculations are actually simpler for a non-periodic system. It is then important

to comment on the boundary conditions, that is the values of the spins at x = 0 and

x = L. The spin degeneracy factor of two can be ignored, leaving as the possible boundary

conditions either the spins at each end being equal, or being opposite. These correspond

respectively to there being an even or odd number of charges in the system. For conve-

nience, we sum over both cases, corresponding to free boundary conditions on the Ising

spins.

We can use the fugacity expansion to calculate the time-dependent number of charges

N(t). First we define Nk(x1, . . . , xk, t) to be the number of charges that remain at time t,

given k charges at t = 0 with initial positions x1, x2, . . . , xk. For regions of the configuration

space of initial conditions where no annihilation has occurred by time t, Nk(t) = k. For

regions where exactly one annihilation has occurred by time t, Nk(t) = k − 2. This

continues down to regions where Nk(t) = 0 or 1, after which no more annihilation is

possible. Integrating Nk(t) over the distribution of initial conditions gives the coefficient

of the yk term in the fugacity expansion, which we define to be Qk(t). That is

Qk(t) =

∫

0<x1<...<xk<L

k
∏

i=1

dxi Nk(x1, . . . , xk, t). (2.41)

Calculating Qk(t) for the random distribution is then a process of partitioning the volume

in configuration space by the number of charges at time t, and then summing these regions

weighted by their respective charge numbers.

In general the division of configuration space at time t into regions of k, k − 2, etc.

charges requires solving the k-body problem given by our equations of motion. The two-

body problem can be solved for all σ, and was found in §2.2 and used to rescale time t.

We can use this result to calculate Q2(t) for general σ (note that Q1(t) = L for all t). As

defined

Q2(t) =

∫

0<x1<x2<L

dx1dx2 2 θ(x2 − x1 − tζ), (2.42)
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that is, there is a contribution of two from regions of the integral where x2(0) − x1(0) is

greater than the annihilation distance given by t, and a contribution of zero from the rest.

The integration variables are the initial positions of the particles. The time dependence is

explicit in the integrand. Integrating gives

Q2(t) = L2 − 2Ltζ + t2ζ . (2.43)

This allows us to calculate n(t) to order y2. Expanding Ξ−1 = e−yL to order y gives

N(t) = (1 − yL)(0 + yL+ y2L2 − 2y2Ltζ + y2t2ζ) + O(y3)

= Ly(1 − 2ytζ) + O(L0, y3).
(2.44)

Dividing both sides by L and taking the L→ ∞ limit (or just considering L� tζ) gives

n(t) = n0

[

1 − 2n0t
ζ
]

+ O(n3
0t

2ζ) (2.45)

or, from (2.21),

f(x) = 1 − 2x+ O(x2). (2.46)

Large σ Calculation

The higher order terms become quite difficult. We can solve the three-body system

for σ = 1 (see appendix 2.B), but in general some simplification is needed to proceed. By

taking the large σ limit the equations of motion effectively decouple, and we can solve for

the higher order terms. As stated earlier, this limit merits consideration since the value

of σ seems to play only a minor role in the nature of the fixed point which characterizes

the late times, at least for σ > 1. For the three body case the equations of motion can be

reduced to two equations by introducing the variables ri = xi+1 − xi. In terms of r1, r2

the equations of motion are

2(1 + σ)ṙ1 = −2r−σ1 + r−σ2 + (r1 + r2)
−σ

2(1 + σ)ṙ2 = −2r−σ2 + r−σ1 + (r1 + r2)
−σ.

(2.47)
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Now suppose r1 < r2. In the large σ limit the equation of motion for r1 becomes

2(1 + σ)ṙ1 = −2r−σ1 (2.48)

and the charges have decoupled. More exactly, the closest pair moves together and anni-

hilates in a time that is infinitely smaller than the time scales of the rest of the charges.

With these simplified dynamics we are able to calculate higher order terms.

For the k = 3 case we divide our configuration space into two regions corresponding

to the order in which the charges annihilate: r1 < r2 so x1, x2 annihilates first, or r1 > r2

so x2, x3 annihilates first. The equations of motion are symmetric with respect to r1 and

r2, so we can consider just one of these conditions, say r2 > r1, and double the resulting

calculation. We have

Q3(t) =

2

∫

0<x1<x2<x3<L

d3x θ(r2 − r1)
[

3θ(x2 − x1 − tζ) + θ(tζ − x2 + x1)
]

. (2.49)

We can rewrite the square bracket piece as 3 − 2θ(tζ − x2 + x1). To evaluate this integral

it is convenient to take the derivative with respect to tζ , which turns the θ-function into a

δ-function.

∂Q3(t)

∂tζ
= 2

∫ L

0

dx3

∫ x3

0

dx2

∫ x2

0

dx1 θ(x3 − 2x2 + x1)(−2)

× δ(tζ − x2 − x1)

= −2L2 + 8Ltζ − 8t2ζ

(2.50)

Integrating this we get

Q3(t) =
L3

2
− 2L2tζ + 4Lt2ζ − 8

3
t3ζ (2.51)

where the constant of integration is given by the t = 0 value, Qk = kLk/k!.

To calculate the k = 4 integral we divide the configuration space into three regions,

distinguishable by which pair annihilates first: (1, 2), (2, 3), or (3, 4). By symmetry the first
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and last cases give identical contributions to the integral. The next step in evaluating the

integral is to take the derivative ∂Q4/∂L. The L dependence of the integral is contained

in the θ(L− xk) term implicit in the limits of integration. The L derivative replaces this

θ-function with a δ(L − xk), against which we can integrate xk. The remaining k − 1

integrals over the xi are changed to integrals over ri with the constraints
∑k−1
i=1 ri < L and

ri > 0. Then

∂Q4(t)

∂L
=

∫

r1+r2+r3<L

d3r

[

2θ(r3 − r1)θ(r2 − r1){2θ(r1 − tζ) + 2θ(r3 − tζ)}

+ θ(r3 − r2)θ(r1 − r2){2θ(r2 − tζ) + 2θ(r1 + r2 + r3 − tζ)}
]

.

(2.52)

By taking the tζ derivative as before, the integral can be done fairly straightforwardly,

with the result

∂2Q4(t)

∂tζ∂L
= −3L2 + 14Ltζ − 58

3
t2ζ . (2.53)

Integrating this we get

Q4(t) =
L4

6
− L3tζ +

7

2
L2t2ζ − 58

9
Lt3ζ + const. t4ζ (2.54)

where again the initial value of Q4 is used to find the constant of integration. The un-

known function of t is proportional to t4ζ , with a proportionality constant which could be

calculated by evaluating the integral without the L derivative.

On the basis of the scaling relation (2.21) one might think that the only piece of the yk

integral that is of interest is the t(k−1)ζ term. In this case we could take k − 1 derivatives

with respect to tζ and then evaluate the remaining integral for t = 0, a considerable

simplification. However, it turns out that all the pieces from lower order terms, and

not just the t(k−1)ζ piece, feed back into the calculation of higher order terms. This is

a consequence of boundary effects introduced by working with a non-periodic system.

Writing a more careful scaling form for N(t) where both t and L are finite we get

N(t) = Lyf(ytζ) + g(ytζ) (2.55)
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where f is the original scaling function, and g some function which corresponds to our

choice of boundary conditions. Writing f(x) =
∑

i fix
i and g(x) =

∑

i gix
i, we find

∑

k

ykQk(t) =N(t)eyL

=Ly(1 + f1yt
ζ + f2y

2t2ζ + f3y
3t3ζ)eyL +

(

g0 + g1yt
ζ

+ g2y
2t2ζ + g3y

3t3ζ + g4y
4t4ζ

)

eyL +O(y5t4ζ).

(2.56)

The coefficients for f and g can be determined by comparing powers of y on each side of

the equation. In general, extracting the coefficient fk from the k+1-body integral requires

knowing all the gi for i ≤ k. To order y4 we find that g(x) = x2 − (8/3)x3 + O(x4) and

f(x) = 1 − 2x+ 3x2 − 34

9
x3 + O(x4). (2.57)

This density expansion is the main result of this calculation.

With a systematic expansion for the scaling function (2.21) we have equivalently

an expansion for the β function defined by (2.29) and (2.33) in powers of gR. Since

gR(x) = xf(x),

σβ = x
d

dx
gR(x)

= x− 4x2 + 9x3 − 136

9
x4 + O(x5).

(2.58)

To find β(gR) we invert the series gR(x), which gives

σβ(gR) = gR − 2g2
R − 2g3

R − 10

3
g4
R + O(g5

R). (2.59)

The fixed point value of gR if β is truncated at the fourth order is g∗R = 0.33. Truncating

to third order would give g∗R = 0.37, a ten percent difference. The value of g∗R is the

amplitude A in the asymptotic form of the density

n(t) ∼ At−ζ . (2.60)

This number should be universal in that all systems with the same value of σ (but different

n0) will have the same amplitude. We suspect only a weak σ dependence of this number
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for values of σ > 1. The amplitude found from the numerical data for both σ = 1 and

σ = 2 is A = 0.31.

Recently it has been pointed out by Rutenberg and Bray [19] that the fixed point g∗R

can be found exactly in the σ → ∞ limit, using a method developed by Kawasaki [42]. The

idea is basically that at all times the nearest neighbor distances remain uncorrelated. That

is, the intervals between nearest neighbors start out uncorrelated, and their distribution

evolves by the rule that the shortest interval is removed, and half of its length is added

to two randomly selected intervals. The asymptotic form of the distribution of nearest

neighbor distances can be found exactly, and consequently the coupling also, with

g∗R = e−γE/2 ≈ 0.28 (2.61)

where γE is Euler’s constant. This value is reasonably close to that obtained by the

expansion of the β function to order g4
R.

σ ≤ 1 Calculation

While this approach of calculating the large σ terms may give a description of the

fixed point, our real goal is to work with values of σ which lie in the range of physical

interest. The two-body solution is known for all values of σ. For the three-body term

the relevant calculation is the time to the first annihilation, T (r1, r2). In the large σ limit

this was just given by T = min(r1, r2)
1+σ. For finite σ the presence of the third charge

will affect the annihilation of the first and second charges, and always in the direction

of slowing down the process. This slowing down will be a maximum when r1 and r2 are

approximately equal. In fig. 2.7 curves of constant T are plotted in the plane of initial

conditions r1, r2. The curve for the large σ limit is given by vertical and horizontal lines,

while the σ = 1, constant T curve lies to the left and below. For any value of σ the area
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bounded by the corresponding constant T curve is proportional to ∂Q3(t)/∂L, as can be

seen by writing out the integral

∂Q3(t)

∂L
= −2

∫

r1+r2<L

dr1dr2θ
(

t− T (r1, r2)
)

. (2.62)

Finding Q3(t) for σ = 1 is then a matter of finding the area between the T (r1, r2) = t

curves for the large σ limit and σ = 1.

t    

L

t L
1

large σ

σ=1

∆ r1
r 2

r
1/2

1/2

Figure 2.7. Curves of constant time to annihilation, T (r1, r2) = t,

in the r1, r2 plane for σ = 1 and the large σ limit. The area bounded

by these curves, the axes, and the line r1 + r2 = L gives ∂Q3(t)/∂L,

as shown in the text. The contribution to the area between the

σ = 1 and large σ curves from the asymptotic region is divergent as

L→ ∞. This can be shown by integrating ∆r1(r2, t) out to r2 = L.

For σ = 1 an exact solution for T (r1, r2) can be found, the details of which are given

in appendix 2.B. The result, however, gives an area between the two curves which diverges

as L→ ∞. This is a general feature which occurs for all σ ≤ 1, which can be understood
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by examining the equations of motion. Consider a three charge configuration where one

separation distance, say r2, is much larger than the other. The equation of motion for the

closer pair is then

2(1 + σ)ṙ1 = −2r−σ1

[

1 − rσ1
rσ2

+O

(

r2σ1
r2σ2

)]

(2.63)

where the factor multiplying the left hand side is a consequence of our rescaling of time in

(2.17). We treat r2 as a constant in the equation, and integrate the dynamical variable r1

from its initial value to zero

− 1

(1 + σ)

∫ T

0

dt =

∫ 0

r1

dr

[

rσ +
r2σ

rσ2
+O

(

r3σ

r2σ2

)]

. (2.64)

This gives T (r1, r2) in the asymptotic region described. Performing the integral and in-

verting to find r1(T, r2) gives

r1(T, r2) = T ζ − T

(1 + 2σ)rσ2
+O

(

T ζ(1+2σ)

r2σ2

)

. (2.65)

The first term is just the large σ solution, so the second term gives the leading contribution

to ∆r1 = r
(∞)
1 − r

(σ)
1 . Integrating ∆r1(r2) out to r2 = L gives the area contained in the

asymptotic approach to the constant T line of the large σ limit. For σ = 1 this piece

gives logL, and for smaller values of σ it gives an L1−σ term. The significance of the

divergences is that they will not cancel when the fugacity expansion is summed, as all the

other L dependent terms do. For σ > 1 the area remains finite as L → ∞, and so the

calculation for σ > 1 should result in the same terms as in the case of the large σ limit,

but with modified coefficients.

It is possible that there may be an infinite set of logarithms (for σ = 1) which can

be summed to restore the intensive behavior of the density. Such a summation may then

be used, as in conventional critical dynamics [43], to renormalize the kinetic coefficient

Γ, effectively making ΓR a time dependent quantity. While this would imply no system

size dependence and the density scaling form (2.21), the time dependence of ΓR would

give rise to anomalous time dependence for the density, as can be seen by (2.29). This
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anomalous time dependence carries with it the implication that late time dynamics will

exhibit dependence on the initial density.

An alternate possibility is that these divergent terms are indicating that the asymp-

totic dynamics truly has system size dependence. If the system were still independent of

the initial density, as suggested by our heuristic argument in §2.2, then this system size

dependence would give rise to anomalous time dependence, as can be seen by the scaling

function (2.20). It is worth noting that if there is system size dependence, we can no longer

expect our calculations, which are performed with free boundaries, to correspond directly

to simulations with periodic boundary conditions.

It is possible that both of these effects, system size dependence and a time dependent

ΓR, occur. The simulations for σ = 1/2, as discussed in §2.2, are not decisive on this issue,

although they do seem to indicate at least the former.

By studying a related model we might hope to find more clues for the significance of

the divergences in the fugacity expansion. The Q → ∞ Potts model provides a contrast

which further confuses the problem. In the Ising case the divergences were caused by

a three body effect where the annihilation of a close pair, say (x1, x2), is slowed by a

distant charge, x3. In the Potts case the distant charge is still interacting with the nearest

neighbor, x2, but not with the charge at x1. This will give exactly half of the divergent

effect seen in the Ising case. However, the simulations show no system size dependence, to

within our accuracy.

There is a difference between the two models in the higher order divergent terms.

Presumably the four body term in the Ising case will have divergent pieces when one of

the end charges, say x4, is distant, and is affecting both of the possible annihilations:

(x1, x2) and (x2, x3). In the Q → ∞ Potts case, the distant charge can only affect the

annihilation of the pair which contains the nearest neighbor of the distant charge, in this

case (x2, x3). However, a quantitative analysis of this effect at higher orders is difficult.
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2.5. Truncation Scheme for the Two-Particle Distribution Func-

tion

The fugacity expansion provides an exact scheme for calculating time dependent quan-

tities in the system via the deterministic equations of motion. A simpler scheme can be

developed which gives a qualitative description of the scaling regime, and of other features

of the model. In this section we will present this method, and discuss the applicability for

some different initial conditions.

The two-particle distribution function for the system, n2(r, t), can be used to find

a dynamical equation for n(t). Integrating the distribution function from r = 0 to r =

δr gives the density of charge pairs which are within δr of each other. For very small

separations the charge pairs will become isolated from the rest of the system, and annihilate

in a time δt = δr1/ζ . Therefore the rate of change of the density is given exactly by

dn

dt
= lim
δt→0

− 2

δt

∫ δtζ

0

n2(r, t)dr. (2.66)

The distribution function can be calculated by the fugacity expansion described in

the last section. The leading order term is the two-body term, which can be written

n2(r, t) ∝ y2

∫

r(0)<L

dr(0)δ(r(t)− r). (2.67)

A change of integration variables from r(0) to r(t) will introduce the Jacobian

J(r, t) =
dr(0)

dr(t)

∣

∣

∣

∣

r(t)=r

=
rσ

(r1+σ + t)σ/(1+σ)
(2.68)

which has the limit J = 1 for r → ∞ or t = 0. Therefore the distribution function is

n2(r, t) = n2
0J(r, t) + O(n3

0). (2.69)

Notice that the dynamics produces a ‘hole’ in the two-particle distribution function at

short distances.
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This expansion is only useful for low densities or early times. However, we can extend

the range via a heuristic argument similar to that of §2.2. For an isolated pair of charges

separated by a distance r at time t+ δt, the separation at time t is given by (r1+σ + δt)ζ .

Therefore, for small r we expect the two-particle distribution functions of the arguments

above to be related. The relation should also include the Jacobian, for the same reason it

enters into the t = 0 calculation. Therefore

n2(r, t+ δt) = J(r, δt) n2

(

(r1+σ + δt)ζ , t
)

+ higher order terms. (2.70)

This equation should be exact in the small r limit, and the higher order terms are correc-

tions for large r. The contributions from the higher order terms can be approximated by

replacing n2(r, t) with n̄2(r, t) = n2(r, t)/n(t)2, so that n̄2(r → ∞, t) = 1. This results in a

truncation scheme for n̄2 which is correct both for small r and in the r → ∞ limit. Making

this substitution and equating the order δt terms in (2.70) gives the differential equation

∂n̄2

∂t
= −

(

σ

1 + σ

)

n̄2

r1+σ
+

(

1

1 + σ

)

1

rσ
∂n̄2

∂r
(2.71)

whose general solution is

n̄2(r, t) = rσg
(

(r1+σ + t)ζ
)

. (2.72)

For large x, we must have g(x) ∼ x−σ as determined by the r → ∞ limit of n̄2, corre-

sponding to a scaling solution for the distribution function

n̄2(r, t) ∼ J(r, t). (2.73)

From (2.72) we see that this scaling form of n̄2(r, t) will also be the solution for large t.

This is consistent with the RG picture of an attractive fixed point which describes the

asymptotically late time dynamics for all initial distributions.

The solution for n̄2 and equation (2.66) give two relations between the density and the

distribution function. Using the small r limit of the distribution function, n̄2(r, t) = rσt−ζ ,

we get the equation

dn

dt
= −2ζn2tζ−1, (2.74)
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which is consistent with the scaling solution n ∼ t−ζ . The amplitude is not correct, but the

argument captures the qualitative features at least. Note that no system size dependence

can appear in this approximation. For uncorrelated initial conditions the scaling solution

for n̄2 is valid at t = 0. Further qualitatively correct results may be obtained if we assume

(2.73) holds for all t. Then the solution to (2.74) is

n(t) =
n0

1 + 2n0tζ
, (2.75)

which exhibits the asymptotic time dependence, and also the lack of n0 dependence, we

see in the simulations for σ ≥ 1. In fact, under the same assumptions we can find g(x) for

all values of x for correlated initial conditions. Setting t = 0 in (2.72) gives

g(x) = x−σn̄2(x, 0) (2.76)

from which it follows that

n̄2(r, t) = J(r, t) n̄2

(

(r1+σ + t)ζ , 0
)

. (2.77)

Combining this with (2.66) gives

dn

dt
= −2ζn2tζ−1n̄2(t

ζ , 0) (2.78)

which can be rewritten as

dn−1

dtζ
= 2n̄2(t

ζ , 0). (2.79)

Thus the late time behavior of the density is completely determined by the initial two-

particle distribution function in this approximation. We can test (2.79) by introducing

correlations into the initial conditions. In particular, if we generate a system via the

nearest neighbor distribution

P (x) =







1
2n0∆

n−1
0 (1 − ∆) < x < n−1

0 (1 + ∆)

0 otherwise

(2.80)
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Figure 2.8. Simulations for the correlated initial conditions dis-

cussed in the text, for σ = 2, ∆ = 0.05, and N0 = 100. The data is

plotted as n−1 versus t1/3, which should give a staircase pattern as

discussed in the text. The first three zeros of the slope are clearly

visible. The data for the random initial conditions is plotted for

reference.

then n̄2(r, 0) will be sharply peaked around r = n−1
0 , less sharply peaked around r = 2n−1

0 ,

and so on out to infinity where it is equal to 1. The first k = (1 + ∆)/(2∆) peaks will have

zeroes between them, which implies dn−1/dtζ = 0. Therefore we expect a plot of n−1

versus tζ to have flat areas separated by sharp jumps, like a staircase, with the jumps

smoothing to a straight line at late times.

The simulation results for these initial conditions (shown in fig. 2.8) verify the the

staircase pattern. Both the truncation method developed here and the property of lack of

dependence on initial conditions are reinforced by this result.

48



2.6. Simulations

To simulate these systems we simply directly integrated the equations of motion

ẋi =
∑

j 6=i

(−1)i+j |xj − xi|−σsgn(xi − xj). (2.81)

Whenever two charges pass each other they were removed from the system. We began

with some number of charges N0 distributed randomly along a length L. To reproduce

periodic boundary conditions exact replicas of the charge configuration were made, and

added to the left and the right of the original system. Then the forces were calculated on

the original charges, the positions updated, and the replicas replaced with updated copies.

While this emulates a periodic system, it also adds a long-range cutoff to the interactions.

It is important to separate the effect of the cutoff from possible system size dependence

effects.

We parameterized the cutoff in the following way. If k replicas are added to the left

and to the right of the original system, there are Ne = (2k+1)N(t) effective charges in the

system. We imposed a minimum number of effective charges Nmin, and then determined

the number of replicas needed so that Ne ≥ Nmin. By comparing simulations with different

values of Nmin, we could determine at what point the results are independent of the cutoff

to our desired accuracy. We chose this method of introducing a cutoff, rather than a more

obvious choice of including interactions out to a certain length, because otherwise small

number effects entered into the simulations at late times. By keeping the effective number

of charges at some minimum level we hoped to model more accurately the truly periodic

system. The values we used for Nmin are given in the table 2.1.

The numbers for Nmin are large enough, particularly for σ = 1/2, to significantly slow

the simulations. Some speed can be regained by exploiting the insensitivity of the system

to the time step. For σ = 1/2 and n0 = 1 we used an initial time step of ∆t = 10−3, which

we stepped up to ∆t = 1 over the time interval t = (0, 20) (for other values of σ see table

1). Although these values for the time step seem large, the results of the simulation are
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Nr Nmin ∆t t0

σ = 1/2 300 400 1 20

σ = 1 1000 30 .1 2

σ = 2 1000 20 .03 .6

Table 2.1. Values of the simulation parameters used. For all

simulations n0 = 1 and N0 = 100, 200, 400, 800. The time step is

ramped from 10−3∆t to ∆t in the range 0 < t < t0, and is equal to

∆t for t > t0.

quite insensitive to the size. Simulations performed with ten times this step size showed no

appreciable change. This is somewhat expected, since the primary consequence of a large

time step is to cause the annihilating pairs to stay around longer, but the force exerted on

the system by a very close pair of charges is nearly zero. It is probable that an even larger

time step than the one used here would be adequate.

We used the second order Runge-Kutta integration technique, which involves initially

taking a half-step, reevaluating the forces at this midpoint, then going back and taking

a full step with the modified forces. To use this method it is necessary to check for

annihilation at the midpoint, or else the forces calculated at the midpoint for a pair which

has just passed each other will be quite inaccurate. It seems likely that using the Euler

integration method instead of Runge-Kutta would give the same results.

The third parameter in the simulations is the number of runs over which the quantities

are averaged. That is, since the quantities are supposed to be averaged over the distribution

of initial conditions, we average over multiple runs. To determine the number of runs Nr

over which to average, we calculated the standard deviation of n(t) via the central limit

theorem. For σ = 1/2 we used Nr = 300, for which the one-sigma error bars were smaller

than the point size of the plots for much of the scaling regime.
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These simulations were performed on a DECstation 5000. Our goal was to use as

simple an algorithm as possible, and to keep simulations at the level of a workstation

problem. There are ways in which our techniques could be expanded or improved upon,

for example by using a controlled time step which maximally exploits the insensitivity of

the system, or of course, by using faster computers. It would be preferable to push the

σ = 1/2 system to larger values of N0, but this was where we were reaching our limits.

2.7. Discussion

The first of the principal results of this chapter is the appearance of system size

dependence in simulations for σ = 1/2. We believe that this result also holds for all

0 < σ ≤ 1 on the basis of our fugacity expansion, which demonstrates anomalous L

dependence in the expansion coefficients for this range. The data for σ = 1 exhibits only

slight L dependence. However, the effect may be very small at the marginal value.

The other principal result is the possibly more general dynamical feature of lack of

dependence on the initial length scale. From a renormalization group perspective this is

an intuitive result: once the system has reached the fixed point, and is thus evolving in

time via a rescaling of the domain length only, then the information about the path to the

fixed point is lost. For the distributions we used, the information lost is the initial density

and correlations. A variety of distributions may flow to this same fixed point, which can

then be interpreted as a loss of information about the initial distribution itself, and not

just its length scale. This is suggestive of a dynamical feature of lack of dependence on

pre-quench temperature, if thermal distributions flow to the same fixed point. The RG

picture is complicated by the presence of system size dependence, since the notion of a

scale invariant fixed point will need modification. In the simulations we find a convincing

lack of n0 dependence for σ = 1, 2, and a possible lack of n0 dependence for σ = 1/2. We

also find, via an heuristic argument (2.24), that the presence of L dependence should not

affect the lack of dependence on the initial length scale.
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Our theoretical approaches include the fugacity expansion and the truncation method

of §2.5. The latter approach is useful in providing a qualitative description of the dynamics,

and includes quite naturally the dynamics at late times. In the former case, the original

intent was to find results for the infinite system while calculating with finite L. We can find

all the expansion coefficients for σ = 0, and thus the exact answer for n(t) (see appendix

2.C), but we find that the density decays exponentially. This indicates that σ = 0 is

singular in some sense, and that trying to expand about this solution is not likely to be

fruitful. We can calculate the expansion coefficients to order y4 by taking the large σ

limit. This calculation can be carried to higher orders, the problem becoming an exercise

in bookkeeping. When we attempt to extrapolate the large σ result to lower values of σ

we find divergences appearing in our expansion coefficients. This is a general feature for

σ ≤ 1, the physical range of interest. These divergences are of the form of L dependent

expansion coefficients, whose presence may just be indicating system size dependence in

the density n(t).

Motivated by the results of this work, Bray and Rutenberg have recently performed

simulations on substantially larger sized systems [19]. They conclude that no system size

dependence is apparent. However, for most of their simulations they considered open rather

than periodic boundary conditions. This introduces a cutoff in the range of interactions,

given by the system size, which will cause boundary effects to enter into the asymptotic

regime much earlier. These are distinguished from finite size effects, in that the latter would

describe the system size dependence for a perfectly periodic system. Boundary effects, on

the other hand, are the results of having a surface in the system. In our simulations it was

found that the asymptotic regime was highly sensitive to boundary effects. It appears that

the issue of whether or not these systems exhibit system size dependence for s ≤ 1 is still

unsettled, particularly in view of the singularities encountered in the fugacity expansion

for σ < 1.

Our expression for the density in the large σ limit can be used to calculate a Callan-

Symanzik β function to order g4
R. To this order the β function has a zero with the value
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g∗R = 0.33 which compares well with the exact value for σ → ∞ of g∗R = 0.28. Unfor-

tunately, we have not been able to find any analog of the ε expansion of the equilibrium

critical behavior, which would allow a systematic truncation of the series for the β function.

The one-dimensional system with long-ranged interactions appears to have compli-

cated behavior for σ ≤ 1. These interactions appear to be relevant in higher dimensional

systems as well [18], suggesting that system size dependence may be a more general feature

of long-ranged interacting systems. Simulations of these systems in higher dimensions, al-

though difficult, could yield interesting results. More can be done with the one-dimensional

simulations in the way of measuring correlation functions as well. A theoretical approach

which treats the system size dependence in a controlled way, perhaps some modification of

our density expansion, would be a possible next step in trying to understand these systems.

Appendix 2.A. Q State Potts Model

We can generalize the Ising model Hamiltonian (2.1), which is the Q = 2 Potts model,

to the case of general Q. At each lattice site there is a variable si, which can be in one of

Q states. The Hamiltonian is defined by

H = −
∑

i<j

V (xi − xj)J(si, sj) (2.A.1)

where V (r) is the same as before, and

J(si, sj) = 1 − δsisj
(2.A.2)

We can rewrite the Hamiltonian as

H =
∑

i<j

U(xi − xj)[J(si+1, sj+1) + J(si, sj) − J(si+1, sj)

− J(si, sj+1)] + surface terms.

(2.A.3)

where the function U(r) is defined by (2.4) [17]. Notice the expression in the square

brackets is zero for si = si+1 or sj = sj+1. Therefore this term only contributes to the
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energy when xi and xj are both locations of defects. A defect can be labeled by (α, β),

meaning it is the boundary between a region of state α and a region of state β. The

interaction for a pair of defects of type (α, β) and (γ, δ) separated by a distance r is then

Hpair = U(r) [δαγ + δβδ − δαδ − δβγ ] . (2.A.4)

Consider a nearest neighbor pair of defects. This implies β = γ, and we assume α 6= δ.

The interaction energy is then

Hpair = −U(r). (2.A.5)

Also note that if all four states α, β, γ, δ are distinct then there is no interaction between

the defects. Now we take the Q → ∞ limit of this model. Every domain in the system

will find a unique state, and so all defect pairs will have α, β, γ, δ not equal, with the

exception of nearest neighbors. These rules allow us to drop the designation of the states,

and simply consider the model to be one where only nearest neighbors interact. The defect

Hamiltonian can be written as

H = −
∑

i

U(xi − xi+1). (2.A.6)

We introduce the same equations of motion as before, with the consequence that now only

the nearest neighbor on either side is included in calculating the force. There is another

modification to the dynamics. When a nearest neighbor pair annihilate, a single defect

remains. That is,

(α, β) + (β, γ) → (α, γ). (2.A.7)

Appendix 2.B. 3-Body Problem for σ = 1

We start by taking the L derivative of Q3(t), leading to the calculation in the r1, r2

plane as shown in fig. 2.7. We want to solve for the function which gives the time to first

annihilation, T (r1, r2). From this we can find Q3(t) via

∂Q3(t)

∂L
= −2

∫

r1+r2<L

dr1dr2 θ
(

t− T (r1, r2)
)

. (2.B.1)
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The time to annihilation has the scaling form

T (r1, r2) = r22f

(

r1
r2

)

. (2.B.2)

If r1 and r2 are evolved by a time δt, then T will change by −δt. That is, for r = r1/r2

T − δt = (r2 + ṙ2δt)
2f(r + ṙδt), (2.B.3)

so to order δt we get the equation

2r2ṙ2f(r) + r22 ṙf
′(r) = −1. (2.B.4)

The three-charge equations of motion given by (2.47) and the rescaling of time (2.17) give

1

4
r2ṙ2 = −2 +

r2
r1

+
r2

r1 + r2

= −2 +
1

r
+

1

r + 1

(2.B.5)

and
1

4
r22 ṙ = r2ṙ1 − r1ṙ2

= −2

r
+ 2r +

1

r + 1
− r

r + 1
.

(2.B.6)

Therefore r2 can be eliminated from equation (2.B.4), giving the differential equation for

f(r)

2(1 − 2r2)

(r − 1)(2r2 + 3r + 2)
f(r) + f ′(r) =

−4r(r + 1)

(r − 1)(2r2 + 3r + 2)
. (2.B.7)

Notice that the coefficients are singular at r = 1.

This equation can be integrated in closed form, which is somewhat surprising, with

the result

f(r) =
4

3
(1 + r + r2) + C(r − 1)2/7(2r2 + 3r + 2)6/7 (2.B.8)

where C is a constant of integration. To determine C we consider the large r limit of f(r).

If r1 � r2 then the time to annihilation is given by the separation r2 only, and is T = r22.
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This implies for large r, f(r) = 1. If we choose as our integration constant C = −28/7/3,

then the r2 and r parts of f(r) have coefficients of zero. Therefore, the exact solution is

f(r) =
4

3
(1 + r + r2) − 28/7

3
(r − 1)2/7(2r2 + 3r + 2)6/7. (2.B.9)

When we plot T (r1, r2) on the r1, r2 plane (see fig. 2.7) we see a cusp at r1 = r2. The

appearance of the exponent 1/7 is curious. When we use this solution to calculate the area

between the σ = 1 and the large σ curves, we find this area is divergent, as mentioned in

the text.

Appendix 2.C. σ = 0 Solution

For the σ → 0 limit of the model we have the equations of motion

ẋi = − ∂

∂xi

∑

j<k

(−1)j+k|xj − xk|

=
∑

k 6=i

(−1)ksign(i− k)
. (2.C.1)

The force on a given charge does not depend on the position of its neighbors, only on the

global excess of charge on either side. It is necessary to consider only systems with even

numbers of charges, since a system with an odd number of charges will have all forces

equal to zero. For an even charge system the charges will be attracted in isolated pairs.

That is, the leftmost charge, call it positive, will see a net negative charge to the right.

The second charge from the left will be negative and see only a net positive charge to the

left. This pair will then move toward each other an annihilate independent of the rest of

the system.

The time dependent density in this model is entirely determined by the probability

distribution for the location of the nearest neighbors. For the random initial conditions

we used, this is a Poisson distribution

P (x)dx = n0e
−n0xdx (2.C.2)
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where P (x)dx is the probability of the nearest neighbor being located between x and x+dx.

At a given time t all the paired charges which are located within a range ∆x(t) will have

annihilated. For the rescaled time given by (2.17)

∆x(t) = t. (2.C.3)

The fraction of initial charges which remain at time t is then

n(t)

n0
= 1 −

∫ t

0

dxn0e
n0x

= e−n0t

(2.C.4)

so the density scaling function (2.21) is

f(x) = e−x. (2.C.5)

This result can be found also by using the fugacity expansion for σ = 0.
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Chapter 3. Field Theory for Reaction-Diffusion

Systems

We are interested in describing the asymptotic regime of reaction-diffusion systems

via the renormalization group. Most successful analytic applications of RG have as their

basis field theory, and so it is useful to derive a field theory formulation the problem.

The starting point of our analysis is a microscopic theory of reaction-diffusion, given by

a probability master equation which describes the evolution of classical particles. This

can be mapped to a field theory by a quite general two-step procedure. First, the master

equation is recast in terms of second quantized operators in a procedure developed by Doi

[44]. Second, this second quantized formulation is mapped to a field theory via the coherent

state representation (see Schulman [45]). A comprehensive review of these techniques can

be found in [28], although the methods presented there differ from ours. It should be

noted that the result of this mapping is a quantum field theory, even though the original

microscopic system consists of classical particles. This is a consequence of the stochastic

processes inherent in the classical system.

There are various models used to describe reaction-diffusion. The model which we

consider is one of particles on a lattice which undergo continuous time random walks.

Whenever the appropriate particles necessary for a reaction are together on a single lattice
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site, then the reaction occurs at some given rate. For example, in the one-species reaction

kA → ∅ the particles can annihilate whenever k of them meet on a lattice site. For the

two-species reaction A+B → ∅ the reaction occurs whenever one of each species is present,

and the particles annihilate. These can be generalized to systems with arbitrary number

of species and with different possible end products, i.e. the reaction (k1A1 +k2A2 + . . .) →

(`1A1 + `2A2 + . . .). Multiple occupancy of all particle types on a lattice site is allowed.

The particles are taken to be initially randomly distributed, with a Poisson distribution of

occupation numbers at each lattice site.

It is worth mentioning two variations of this model. In the analysis of Bramson and

Lebowitz [46,47] they consider a model in which the reaction occurs immediately whenever

the appropriate particles meet on a lattice site. This has two results. First, it eliminates

from the model a rate constant associated with the strength of the reaction, at which point

one can no longer test the dependence of the system on such a parameter. Second, it has

the effect in two-species reactions (or higher numbers) of not allowing multiple occupancy.

That is, for the reaction A + B → ∅ one will never have A and B particles on the same

lattice site. A second variation which is common in numerical simulations is to assume

the instantaneous reaction and also to forbid any type of multiple occupancy. This allows

for more efficient algorithms, which are necessary because of the large amounts of memory

required by these simulations.

When constructing these models one hopes that the physical quantities, such as the

density and the correlation function, are universal. Then the model can be expected to

describe accurately real physical processes. One advantage of the renormalization group

is that it is possible to determine whether or not a particular quantity is universal. The

analysis of chapter four will show that for the one-species reaction the density and correla-

tion functions are universal, and therefore all the various models above will yield the same

results. However, in chapter five it is demonstrated that the amplitudes in the two-species

reaction are non-universal, and can vary from one model to the next.
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3.1. Master Equation and Second Quantized Representation

Consider first the one-species reaction, with the particles on a hypercubic lattice of size

a. The probability of particle configuration {n} occurring at time t is denoted by P ({n}, t).

Here {n} = (n1, n2, n3, . . .), where ni is the occupation number of the ith lattice site. The

appropriate master equation is

∂

∂t
P ({n}, t) =

D

a2

∑

i,e

{

(ne + 1)P (. . . , ni − 1, ne + 1 . . . , t) − niP ({n}, t)
}

+ λ
∑

i

{

(ni + k)(ni + k − 1) . . . (ni + 1)P (. . . , ni + k, . . . , t)

− ni(ni − 1) . . . (ni − k + 1)P ({n}, t)
}

,

(3.1)

where i is summed over lattice sites, and e is summed over nearest neighbors of i. The

first curly brackets piece describes diffusion with a diffusion constant D. This includes

two terms, the first of which represents the flow of the probability of occupation number

ni − 1 into that of occupation number ni on a given lattice site, due to a particle hopping

onto site i from a nearest neighbor. The second term gives the decrease of the probability

of occupation number ni due to a particle hopping away from site i. The second curly

brackets piece corresponds to the annihilation process, with rate constant λ. Again there

are two terms, with the first describing the increase in probability of there being ni particles

at a given site as a result of a reaction with ni + k particles. The second describes the

decrease in probability of ni particles (when ni ≥ k) due to a reaction occurring.

The initial values P ({n}, 0) are given by a Poisson distribution for random initial

conditions with average occupation number n̄0. That is, for a single lattice site P1(n) ∝

n̄n0/n!, so

P ({n}, 0) = C
∏

i

n̄ni

0

ni!
(3.2)

where C is a normalization constant which depends on the total number of lattice sites,

but not on the {n}.
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These dynamics can be rewritten in terms of quantum mechanical operators by making

a correspondence between the lattice site occupation number ni and a quantum harmonic

oscillator eigenstate, as shown by Doi [44]. Creation and annihilation operators are intro-

duced for each lattice site, and are defined to obey the bosonic commutation relations

[ai, a
†
j] = δij [ai, aj] = [a†i , a

†
j] = 0. (3.3)

The vacuum ket |0〉 is defined by the equations ai|0〉 = 0 for all i. These operators act as

raising and lower operators with respect to the state defined by |ni〉 ≡ (a†i )
ni |0〉, that is

ai|ni〉 = ni|ni − 1〉 a†i |ni〉 = |ni + 1〉. (3.4)

In terms of these quantities, the definition of the state of the system at time t is

|φ(t)〉 =
∑

{n}

P ({n}, t)
∏

i

(a†i )
ni |0〉. (3.5)

As a result, the master equation becomes

− ∂

∂t
|φ(t)〉 = Ĥ|φ(t)〉 (3.6)

with the non-Hermitian time evolution operator

Ĥ = −D

a2

∑

i

∑

e

a†i (ae − ai) − λ
∑

i

(

1 − (a†i )
k
)

aki . (3.7)

The equations of motion for the P ({n}, t) in this representation are identical to those of

the master equation. For example, the a†iae term in the diffusive part of the “Hamiltonian”

Ĥ corresponds to the probability of a particle hopping from lattice site e to i, just as the

first term in (3.1) does. The a†iai component of the diffusion is just the probability of a

particle hopping away from site i, which is proportional to ni, and so on.
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Equation (3.6) has the formal solution |φ(t)〉 = exp(−Ĥt)|φ(0)〉. From the definition

of |φ(t)〉 (3.5) and the initial conditions for P (3.2) we find

|φ(0)〉 = C
∑

{n}

∏

i

n̄ni

0 (a†i )
ni

ni!
|0〉

= C
∏

i

∞
∑

ni=0

n̄ni

0 (a†i )
ni

ni!
|0〉

= C
∏

i

en̄0a
†

i |0〉.

(3.8)

The average of some observable is given in terms of the classical microscopic theory

by

〈〈A(t)〉〉 ≡
∑

{n}

A({n})P ({n}, t). (3.9)

Notice that this averaging is linear in P . The state |φ(t)〉 of the second quantized represen-

tation is also linear in P , and so it is not possible reconstruct the usual quantum mechanical

expectation value, which goes as the square of |φ〉. Instead one uses the projection state

〈 | ≡ 〈0|
∏

i

eai . (3.10)

In terms of this state the average defined by (3.9) becomes

〈〈A(t)〉〉 = 〈 |Â|φ(t)〉, (3.11)

where Â is the second quantized operator analog of A({n}). Note that the projection state

has the property 〈 |a†i = 〈 |.

The operator Â is found from the Taylor expansion of the function A({n}) with respect

to all the variables ni. That is, Â can be defined to be given by the same expansion, but

with each classical variable ni replaced by the operator n̂i = a†iai. This procedure yields

exactly the same expectation values as are found from the classical master equation. Also,

since 〈 |a†i = 〈 |, then any operator Â corresponding to an observable can be expressed

entirely in terms of annihilation operators ai by commuting to the left all the creation
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operators a†i . Then the a†i act to the left, and are replaced with their eigenvalue of one. This

results in a new operator, but one which yields the same expectation value. For example,

the total density operator is found from the prescription above to be n̂ = V −1
∑

i a
†
iai,

but it can also be written as

n̂ = V −1
∑

i

ai. (3.12)

The connected correlation function is given by the expectation value of the operator Ĉ(r) =

V −1
∑

i a
†
i+rai+ra

†
iai, or equivalently,

Ĉ(r) = V −1
∑

i

(ai+r + δr,0)ai. (3.13)

The significance of the δ function term will be demonstrated in chapter four. It will be

convenient in the derivation of the field theory to consider all observables as given by

operators in this normal ordered form, with the a†i then formally set equal to one.

Since the master equation must conserve probability, then

∑

{n}

P ({n}, t) = 〈 |1|φ(t)〉 = 1, (3.14)

or equivalently,

∂

∂t
〈 |1|φ(t)〉 =

∂

∂t
〈 |e−Ĥt|φ(0)〉 = −〈 |Ĥ|φ(t)〉 = 0. (3.15)

In order for the last equality to be satisfied for a general state |φ(t)〉, then it follows that

〈 |Ĥ = 0. (3.16)

Therefore the equivalence of probability conservation in the second quantized representa-

tion is the property that the “Hamiltonian” acting to the left destroys the projection state.

One consequence of this property is that an observable measured at time t is independent

of the time tf of the projection state, as long as tf ≥ t. That is, from equations (3.11) and

(3.16) it follows that

〈〈A(t)〉〉 = 〈 |Âe−Ĥt|φ(0)〉 = 〈 |e−Ĥ(tf−t)Âe−Ĥt|φ(0)〉. (3.17)
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This property will be discussed below in the context of the field theory.

An analogous formalism with Pauli spin matrices is often used, instead of the bosonic

operators considered here. This corresponds to a master equation in which only single

occupancy is allowed per lattice site. These techniques can be useful in one-dimension,

where the resulting second quantized representation is a quantum spin-chain system, which

is often integrable. However, our primary motive in introducing the second quantized

representation is to map the problem to a field theory, and for this purpose the bosonic

formalism developed above is more suitable.

3.2. Coherent State Representation

From the second quantized representation one can develop a field theory through

the same path integral techniques as were developed for ordinary quantum mechanics.

A thorough discussion of these methods is given by Schulman [45]. We begin with the

expression for some observable

〈〈A(t)〉〉 = 〈 |Âe−Ĥt|φ(0)〉. (3.18)

The basic idea is to divide the evolution of the system from time t = 0 to t into a large

number of slices N . Then for ∆t = t/N we can use the Trotter formula

exp(−Ĥt) = lim
∆t→0

(1 − Ĥ∆t)t/∆t. (3.19)

Next a complete set of states is inserted at each time slice, before taking the limit N → ∞

or ∆t → 0. By finding the appropriate representation for the complete set of states, one

then derives the path integral.

Associated with quantum harmonic oscillators are the coherent states, which are a

continuous set of eigenstates of the annihilation operator a. It is possible to construct

from these states a useful form of the identity operator. Consider first a single harmonic

64



oscillator. A particular coherent state is denoted by the complex number z, and is given

by

|z〉 = N(z) exp(za†)|0〉 (3.20)

where N(z) is a normalization factor. Setting 〈z|z〉 = 1 gives N(z) = exp(−|z|2/2). From

(3.20) it follows that

a|z〉 = z|z〉, (3.21)

that is, z is the eigenvalue of the coherent state.

For the harmonic oscillator energy eigenstates, defined by

|n〉 = (a†)n|0〉, the properly weighted complete set of states is

1 =
∑

i

1

n!
|n〉〈n| =

∑

m,n

1

n!
|n〉〈m|δmn. (3.22)

Using the relation

δmn =
1

πm!

∫

d2ze−|z|2z∗mzn, (3.23)

where d2z = d(Re z)d(Im z), gives

1 =

∫

d2z

π

∑

m,n

(

e−|z|2/2zn

n!
|n〉
)(

〈m|e
−|z|2/2z∗m

m!

)

=

∫

d2z

π
|z〉〈z|.

(3.24)

The state |z〉 is constructed from the operators at a single lattice site. This representation

of the identity can be generalized by taking the vector product of these states for each

lattice site. For notational convenience we denote the vector product by

∣

∣{φ}
〉

= |φ1〉 ⊗ |φ2〉 ⊗ |φ3〉 ⊗ . . . (3.25)

where {φ} = (φ1, φ2, . . .). The generalization of (3.24) is then

1 =

∫

∏

i

(d2φi
π

)

∣

∣{φ}
〉〈

{φ}
∣

∣ (3.26)
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The Trotter formula (3.19) is used to divide exp(−Ĥt) into N = t/∆t slices, with the

limit N → ∞ taken at the end of the calculation. Each time slice is labeled by the index

j, so that tj = j∆t. Inserting N + 1 identity operators into the equation for observables

(3.18), and then taking the limit N → ∞ gives

〈〈A(t)〉〉 = N−1 lim
N→∞

∫ N
∏

j=1

[(

∏

i

d2φi,j

)

〈

{φ}j
∣

∣1 − Ĥ∆t
∣

∣{φ}j−1

〉

]

×
(

∏

i

d2φi,j=0

)

〈 ∣

∣Â
∣

∣{φ}j=N
〉〈

{φ}j=0

∣

∣

∏

i

en̄0a
†

i

∣

∣0
〉

(3.27)

The initial state is equivalent to a coherent state for each lattice site with z = n̄0, apart

from the normalization. Henceforth we will denote the initial state by the coherent state

|n̄0〉. The normalization factor and all the π’s are absorbed in the normalization constant

N . At the end of the calculation N can be determined by the value of 〈〈1〉〉−1.

We define Â by its expansion in terms of the ai, that is, all the a†i are commuted to

the left and set equal to one. Then the coherent states are eigenstates of Â, which implies

that
〈 ∣

∣Â
∣

∣{φ}N
〉

=
〈 ∣

∣{φ}N
〉

A({φ}N ) (3.28)

where the function A({x}) is found from Â by taking ai → xi. With this result and the

definition

H
(

{φ}j , {φ}j−1

)

≡
〈

{φ}j
∣

∣ Ĥ
∣

∣{φ}j−1

〉

〈

{φ}j
∣

∣{φ}j−1

〉 (3.29)

we can rewrite (3.27) as

〈〈A(t)〉〉 = N−1 lim
N→∞

∫ N
∏

j=1

[

(

∏

i

d2φi,j

)

〈

{φ}j
∣

∣{φ}j−1

〉

×
(

1−H
(

{φ}j , {φ}j−1

)

∆t
)

]

×
(

∏

i

d2φi,0

)

A({φ}N )
〈 ∣

∣{φ}N
〉 〈

{φ}0

∣

∣n̄0

〉

.

(3.30)

Next we compute the overlap between the time slices. The coherent states at different

lattice sites are orthogonal, and so the overlap is given by

〈

{φ}j
∣

∣{φ}j−1

〉

=
∏

i

〈φi,j |φi,j−1〉. (3.31)
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Therefore product in the integral of (3.30) can be written

lim
N→∞

N
∏

j=1

〈

{φ}j
∣

∣{φ}j−1

〉

=
∏

i

lim
N→∞

N
∏

j=1

〈φi,j |φi,j−1〉 (3.32)

Consider a single lattice site. For the next few steps we suppress the index i of the lattice

sites. From the definition (3.20) of the coherent state |z〉 it follows that

〈φj |φj−1〉 = exp

(

−|φj |2
2

− |φj−1|2
2

+ φ∗jφj−1

)

, (3.33)

or equivalently,

e−
1

2
|φj |

2〈φj |φj−1〉e
1

2
|φj−1|

2

= exp
(

−φ∗j (φj − φj−1)
)

. (3.34)

The difference term in (3.34) can be replaced by a derivative,

φj − φj−1 =
dφj
dt

∆t+ O(∆t2), (3.35)

since only terms to order ∆t are important in the Trotter formula. Apart from normaliza-

tion, the projection state is a coherent state with z = 1, which implies5

〈 |φN 〉 ∝ exp
(

−|φN |2
2

+ φN

)

. (3.36)

Similarly, the overlap with the initial state is given by

〈{φ}0|n̄0〉 ∝ exp
(

−|φ0|2
2

+ n̄0φ
∗
0

)

. (3.37)

Combining the last four equations gives

lim
N→∞

〈 |φN 〉〈φ0|n̄0〉
N
∏

j=1

〈φj |φj−1〉

∝ lim
N→∞

exp
(

φN + n̄0φ
∗
0 − |φ0|2 −

N
∑

j=1

∆tφ∗j∂tφj

)

∝ exp
(

φ(tf ) + n̄0φ
∗(0) − |φ(0)|2 −

∫ tf

0

dtφ∗(t)∂tφ(t)
)

(3.38)

5 Here we are referring to the projection state for a single lattice site
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In the limit N → ∞ the set of labels tj = j∆t become continuous, and the variables

φj are replaced with the continuous function φ(t). The time tf in the upper integration

limit is the same as the time t of the observable 〈〈A(t)〉〉 in the derivation presented above.

However, as shown in the previous section, the final time tf is arbitrary, provided tf > t.

The results would be the same for these terms if the operator Â would have been inserted

into an earlier time slice.

The final step in the overlap calculation is the generalization to all lattice sites. From

the relation (3.32) it follows directly that

lim
N→∞

〈 ∣

∣{φ}N
〉〈

{φ}0

∣

∣n̄0

〉

N
∏

j=1

〈

{φ}j
∣

∣{φ}j−1

〉

∝ exp

(

∑

i

[

φi(tf ) + n̄0φ
∗(0) − |φi(0)|2 −

∫ tf

0

dtφ∗i (t)∂tφi(t)
]

)

.

(3.39)

Next we calculate the function H({φ}j, {φ}j−1). The coherent states are eigenstates

of the annihilation operators acting to the right, that is a|z〉 = z|z〉, which implies that

〈z|a† = 〈z|z∗. With these properties and equations (3.9) and (3.29) it follows immediately

that

H
(

{φ}j, {φ}j−1

)

= − D

a2

∑

i,e

φ∗i,j(φe,j−1 − φi,j−1)

− λ
∑

i

(

1 − (φ∗i,j)
k
)

φki,j−1,
(3.40)

where e is summed over nearest neighbors of i. Replacing the φi,j−1 with φi,j introduces

corrections which are higher order in ∆t. Therefore we get the limit

lim
N→∞

N
∏

j=1

(

1 −H
(

{φ}j , {φ}j−1

)

∆t
)

=

exp

(

∑

i

∫ tf

0

dt

[

D

a2

∑

e

φ∗i (t)
(

φe(t) − φi(t)
)

+ λ
(

1 − φ∗i (t)
k
)

φ(t)k
])

.

(3.41)

The expectation value given by (3.30) can now be expressed in terms of a path integral

by combining equations (3.30), (3.39), and (3.41), with the result

〈〈A(t)〉〉 = N−1

∫

(

∏

i

Dφi(t)Dφ̂i(t)
)

A
(

{φ}(t)
)

e−S , (3.42)
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where

S =
∑

i

[
∫ tf

0

dt

{

φ̂i∂tφi −
D

a2
φ̂i
∑

e

(

φe − φi
)

− λ(1 − φ̂ki )φ
k
i

}

− φi(tf ) − n̄0φ̂i(0) + φ̂(0)φ(0)

]

(3.43)

with the normalization constant

N =

∫

(

∏

i

Dφi(t)Dφ̂i(t)
)

e−S . (3.44)

Here we have substituted φ̂ for φ∗, as we will treat the complex conjugate as an independent

field. The functional integration differentials, denoted by Dφi(t)Dφ̂i(t), are argued to be

the limit as N → ∞ of the N + 1 differentials dφi,jdφ̂i,j . This step, as always with the

derivation of path integrals, is not rigorous. Henceforth equations (3.42) and (3.44) are

implied in the calculation of observables, and we will focus our attention on the action S.

3.3. Action for the One-Species Reaction

Notice that the action (3.43) is a discrete sum over lattice sites, and contains the

same microscopic parameters as the master equation. We can take a continuum limit

without coarse graining simply by making the substitutions
∑

i →
∫

ddx/ad, φi → φ(x)/ad,

φ̂i → φ̂(x), n̄0 → n0a
d, and

∑

e(φe − φi) → a2∇2φ(x). The initial density now has

dimension, and is given by n0. The diffusion constant exhibits no singular behavior in the

renormalization of the theory, so it is absorbed into a rescaling of time, giving the action

S =

∫

ddx

[∫ tf

0

dt
{

φ̂(∂t −∇2)φ− λ0(1 − φ̂k)φk
}

− φ(tf ) − n0φ̂(0) + φ̂(0)φ(0)

] (3.45)

where the coupling λ0 = λD−1a(k−1)d.

We turn now to the initial conditions. One way to deal with the last two terms in

(3.45) is to integrate first over φ̂(0), which has the effect of creating a δ(φ(0)− n0) term.6

6 The integration over φ̂(0) can be done rigorously before taking the N → ∞ limit of the

Trotter formula, as the variable φ̂i,j=0 appears only in these two terms.
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Then integrating over φ(0) gives the net result that the two initial terms vanish from (3.45),

replaced with an understood constraint of φ(0) = n0. However, the path integral with a

constraint is not very useful for perturbation theory.

We would like to find an alternate way of including the initial conditions which is more

amenable to a perturbative calculation. To do so, we first address how such a calculation

is implemented. Averages are computed with respect to the non-interacting theory, which

is in this case given by the φ̂(∂t−∇2)φ term. These averages are carried out with standard

diagrammatic techniques, in which interactions are connected by a propagator derived from

the non-interacting theory. We present in appendix 3.A. the calculation of the propagator,

but mention now one of its properties. In wave number-time space, for example, we find

〈φ(p, t2)φ̂(−p, t1)〉 =

{

e−p
2(t2−t1) t2 > t1

0 t2 < t1,
(3.46)

That is, the propagator can only connect a φ with an earlier φ̂.

The interaction terms, labeled SI , are included perturbatively by the Taylor expan-

sion of exp(−SI). Since this expansion includes the initial terms, we consider calculating

averages of given powers of n0φ̂(0) and φ̂(0)φ(0). As there are no φ̂ present for t < 0, the

issue we must address is what to do with the φ(0). One idea would be point splitting, that

is, we replace last term in (3.45) with

φ̂(0)φ(0) → lim
δt→0

φ̂(t = δt)φ(t = −δt). (3.47)

However, it is arbitrary which way we split the fields, and so we should also consider the

effect of splitting the fields in the opposite direction

φ̂(0)φ(0) → lim
δt→0

φ(δt)φ̂(−δt). (3.48)

The results turn out to depend on the point splitting procedure. This must be an artifact

of taking the N → ∞ limit of the Trotter formula, since the interaction φi,j=0φ̂i,j=0 could

be integrated over before with no point splitting, and with finite results. Therefore we

need to take the N → ∞ limit in such a way that this t = 0 property is maintained.
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If we consider a finite number of time slices, using the notation of §3.2, we find for

the non-interacting (λ = 0) action

S =

N
∑

j=1

∑

i

{

φ̂i,j(φi,j − φi,j−1) −
D

a2

∑

e

φ̂i,j(φe,j−1 − φi,j−1)

}

. (3.49)

The first term is exact for finite ∆t, while the second term contains just the order ∆t

contribution. The exact expression for finite ∆t would involve an expansion with higher

powers of H({φ}j, {φ}j−1), but these have no effect on the subsequent analysis. We want

to calculate the interaction exp(φ̂i,0φi,0), evaluated with the above action. Since there are

no terms in S which are bilinear in φ̂i,0φi,0, then by Gaussian integration 〈φ̂i,0φi,0〉 = 0.

We conclude that in taking the N → ∞ limit that we must preserve the result that

〈φ̂(0)φ(0)〉 = 0. (3.50)

Therefore this interaction term can be dropped from (3.45), as the Taylor expansion of

〈exp(φ̂(0)φ(0))〉 contributes one plus terms which are some power of (3.50).

There is also present in (3.45) the term φ(tf ). This can be eliminated by performing

the field shift φ̂ = 1 + φ̄. Then

S =

∫

ddx

[
∫ tf

0

dt
{

(1 + φ̄)(∂t −∇2)φ− λ0

(

1 − (1 + φ̄)k
)

φk
}

− φ(tf ) − n0

(

1 + φ̄(0)
)

]

=

∫

ddx

[

∫ t

0

dt

{

φ̄(∂t −∇2)φ+
k
∑

i=1

λiφ̄
iφk

}

− n0φ̄(0)

]

+ const.,

(3.51)

where λi =
(

k
i

)

λ0. The integral of ∂tφ in the first line above generates the surface terms

φ(tf )− n0, which has the effect of canceling the −φ(tf ) term.7 This simplifies the pertur-

bative calculations, since one no longer has to consider summing over an expansion of this

7 The same result could be derived by making the shift a† = 1 + ā† in the second quantized

representation, which has the consequence that 〈 |ā† = 0.
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end state. The action (3.51) will be used in chapter four to calculate observables for the

one-species reaction.

We now address the calculation of observables. Given an observable A({n}), which is

in the original theory some function of the occupation numbers, it is shown in §3.1 how

to find the corresponding second quantized operator Â. This operator can be expressed

in terms of only the ai. Then from equation (3.28) the field theory analog A({φ}) can be

found, and is given by the substitution ai → φi. The expectation value A(t) is equivalent

in all three representations. The field theoretic version is given by equation (3.42), and

involves an average of A({φ}, t) over the action above. This is denoted by double brackets,

and single brackets are used for averages over the part of (3.51) which does not include

the initial term. That is,

〈〈A(x, t)〉〉 =
〈

A(x, t) en0

∫

ddx φ̄(x,0)
〉

. (3.52)

This average is already normalized, since

〈〈1〉〉 =
〈

en0

∫

ddx φ̄(x,0)
〉

= 1. (3.53)

That is, there are no later φ’s with which to contract the φ̄’s.

Finally, we consider two specific examples. For the density operator, given in the

second quantized representation by equation (3.12), we find

n(t) =
1

V

∫

ddx〈〈φ(x, t)〉〉 = 〈〈φ(x, t)〉〉. (3.54)

The last equality follows from translational invariance. Also, the correlation function (3.13)

is given by

C(x, t) = 〈〈
(

φ(x, t) + δ(x)
)

φ(0, t)〉〉. (3.55)
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3.4. Action for the Two-Species Reaction

For the two-species reaction we have a similar model of particles on a lattice of size

a, but now there are two sets of occupation numbers: {n} give the number of A particles

at each lattice site and {m} the number of B particles. The master equation for the

two-species reaction is

∂

∂t
P ({n}, {m}, t) =

DA
a2

∑

i,e

{

(ne + 1)P (. . . , ni − 1, ne + 1 . . . , {m}, t) − niP

}

+
DB
a2

∑

i,e

{

(me + 1)P ({n}, . . . ,mi − 1,me + 1 . . . , t) −miP

}

+λ
∑

i

{

(ni + 1)(mi + 1)P (. . . , ni + 1, . . . ,mi + 1, . . . , t)

− nimiP

}

.

(3.56)

As before, i is summed over lattice sites and e is summed over nearest neighbors of i. The

first two curly bracket terms describe the diffusion of the A and B particles, and the last

term the annihilation.

The second quantized representation involves a two sets of creation and annihilation

operators, a, a† and b, b†. These obey the same commutation relations as before, and the

two types of operators are mutually commuting. The state of the system at time t is

defined to be

|φ(t)〉 =
∑

{n},{m}

P ({n}, {m}, t)
∏

i

(a†i )
ni(b†i )

mi |0〉, (3.57)

which again obeys the equation of motion (3.6) with the time evolution operator

Ĥ = −
∑

i

∑

e

{

DA
a2

a†i (ae − ai) +
DB
a2

b†i (be − bi)

}

− λ
∑

i

(1 − a†i b
†
i )aibi. (3.58)

The initial state is given by a Poisson distribution of occupation numbers, with averages

ā0 and b̄0. In this thesis we study only the case in which the initial densities are equal, so
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that ā0 = b̄0 = n̄0, and

|φ(0)〉 = C
∑

{n},{m}

∏

i

n̄ni+mi

0

ni!mi!
(a†i )

ni(b†i )
mi |0〉

= C
∏

i

(

∑

ni

(n̄0a
†
i )
ni

ni!

)(

∑

mi

(n̄0b
†
i )
mi

mi!

)

|0〉

= C
∏

i

en̄0(a
†

i
+b†

i
)|0〉.

(3.59)

Similarly, the projection state is given by 〈0|∏i exp(ai + bi).

The derivation of the field theory follows identically, with the coherent states gener-

alized to two fields, a and b. The action is

S =

∫

ddx

[
∫ tf

0

dt

{

â
(

∂t −
DA
D̄

∇2
)

a+ b̂
(

∂t −
DB
D̄

∇2
)

b

− λ0(1 − âb̂)ab

}

− n0â(0) − n0b̂(0) − a(tf ) − b(tf )

]

.

(3.60)

This result includes a rescaling of time by the average diffusion constant D̄ = (DA +DB)/2.

The coupling constant is given by λ0 = λD̄ad. As before, we can eliminate the final terms

by making the field shifts â = 1 + ā and b̂ = 1 + b̄. This also has the consequence

−λ0(1 − âb̂)ab → λ0(ā+ b̄)ab+ λ0āb̄ab. (3.61)

Since we know the conserved mode of a − b is important in the dynamics, it is useful to

make the transformation to the fields φ, φ̄, ψ, ψ̄ defined by

φ =
a+ b√

2
φ̄ =

ā+ b̄√
2

ψ =
a− b√

2
ψ̄ =

ā− b̄√
2
. (3.62)

The
√

2 factors are included so that the non-interacting action maintains a coefficient of

unity. The subsequent action is

S =

∫

ddx

[
∫ tf

0

dt

{

φ̄(∂t −∇2)φ+ ψ̄(∂t −∇2)ψ − δψ̄∇2φ− δφ̄∇2ψ

− λ1φ̄(φ2 − ψ2) − λ2(φ̄
2 − ψ̄2)(φ2 − ψ2)

}

− nφφ̄(0)

]

,

(3.63)

where δ = (DA − DB)/(DA + DB), the couplings are λ1 = λ0/
√

2 and λ2 = λ0/4, and

the initial density is nφ =
√

2n0. The action (3.63) is the starting point of the analysis in

chapter five.
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Appendix 3.A. Derivation of the Propagator

We show in this appendix how the propagator is derived from the non-interacting

action

S0 =

∫

ddx

∫ tf

0

dt φ̄(∂t −∇2)φ. (3.A.1)

In the derivation of the path integral in §3.2 we considered inserting time slices into the

operator exp(−Ĥt) between times t = 0 and t = tf . However, we could add time slices

from −∞ < t <∞ with no consequence. Therefore we consider letting the time integral in

(3.A.1) run from −∞ to ∞. Taking the Fourier transform with respect to time and space

gives

S0 =

∫

ddp dω φ̄(−p,−ω)
(

−iω + p2
)

φ(p, ω), (3.A.2)

where the transforms are defined by

φ(p, ω) =

∫

ddp

(2π)d
dω

2π
e−i(p·x−ωt)φ(x, t) (3.A.3)

With this form of the action the propagator can be derived by Gaussian integration, with

the result

G(p, ω) =
1

−iω + p2
. (3.A.4)

Most of the integrals in the following chapter are evaluated using the propagator G(p, t),

which is defined by the integral

G(p, t) =

∫ ∞

−∞

dω

2π

e−iωt

−iω + p2
. (3.A.5)

This can be evaluated by contour integration, with a contour which runs along the real

axis and is closed at infinity in either the upper or lower half-plane. The only pole is at

ω = −ip2. For t < 0 the integral can be closed in the upper half-plane, and therefore gets

no contribution from the pole. For t > 0 one finds from the residue theorem

G(p, t) = −2πi lim
ω→−ip2

ie−iωt

2π
= e−p

2t (3.A.6)
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Therefore, when evaluating the diagrammatic perturbation expansion one can only connect

later φ̄ fields with earlier φ fields.

The position space version of the propagator can be evaluated by completing the

square in the exponential. That is, for t > 0

G(x, t) =

∫

ddp

(2π)d
e−ip·xe−p

2t

=

∫

ddp

(2π)d
e−t(p+ix/2t)

2

e−x
2/4t

=
( 1

4πt

)d/2

e−x
2/4t.

(3.A.7)
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Chapter 4. One-Species Reaction kA→ ∅

We consider a system described by identical particles moving with diffusion constant

D, and annihilating whenever k particles meet within a certain capture range rc. This is

known as the kA → ∅ reaction-diffusion system. A first approach to this problem is to

write the rate equation for the density

∂

∂t
n = −Γnk, (4.1)

where Γ is some rate constant which depends on D and rc. Making the assumption that the

diffusion constant acts only to set the scale of time leads to the result that Γ = Dr
(k−1)d−2
c ,

and the asymptotic density

n(t) ∼ r−d+2/(k−1)
c (Dt)−1/(k−1). (4.2)

While this result is plausible for d > 2/(k−1), it can be rejected for the case of d < 2/(k−1)

as the annihilation rate should not decrease with increasing rc.

This effect was first noted by Toussaint and Wilczek [31] in the case k = 2. They

identify d = 2 as a critical dimension, below which the the random walks of the diffusing

particles are reentrant. For d < 2 they argue that the random walk of a single particle

which is still present at time t will have covered a region of linear dimension (Dt)1/2, and
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that no other particles can remain in this region. Therefore the average volume per particle

goes as (Dt)d/2, or equivalently the density

n(t) ∼ (Dt)−d/2. (4.3)

While the generalization of this approach to larger values of k is not obvious, these

arguments do suggest the existence of an upper critical dimension and a mean-field solution.

It has been conjectured that the critical dimension for general k is given by dc = 2/(k−1),

and that the density decays as n ∼ t−d/2 for d < dc [48,49]. The mean field decay of

equation (4.2) has been confirmed numerically for d = 1, k = 3, 4 [48], as has the d < dc

result for k = 2, d = 1, 2 [31]. When the system is at the critical dimension then it

is expected that density will decay with the mean-field exponent, but with logarithmic

corrections. There are also exact solutions of these models for k = 2 and d = 1 which are

consistent with the predictions above [50–53].

With the field theoretic formulation of the problem developed in chapter three we can

apply traditional renormalization group methods to this problem. The existence of the

upper critical dimension allows us to calculate an expansion in ε = dc − d. The model we

consider for this reaction is one of particles on a lattice undergoing continuous-time random

walks. Whenever k particles meet on a lattice site they will react with some rate λ to form

an inert particle. In this version of the system, then, the capture radius is replaced with a

rate constant. However, since the resulting calculation will demonstrate the universality of

the results, the differences between these versions of the system is shown to be irrelevant.

Previous work in applying RG to this system was carried out by Peliti for the case

k = 2 [54]. Using the same field theory formulation of this system as is presented in chapter

three, Peliti was able to confirm the conjectured decay exponent, and also demonstrate

that the reactions A + A → ∅ and A + A → A are in the same universality class with

regard to the decay exponent and the upper critical dimension. However, his results rely

on the assumption that the asymptotic density does not depend on the initial conditions.
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This assumption turns out to be valid in the one-species reactions, but would not be cor-

rect for the reaction A+ B → ∅, for example. Peliti also made the observations that the

coupling constants can be exactly renormalized to all orders and that there is no wave-

function renormalization in the theory. The latter has the consequence that simple scaling

arguments can be used to extract the decay exponent and the upper critical dimension.

However, these scaling arguments are not capable of giving other universal quantities in

the system, such as amplitudes or the asymptotic form of the correlation function. For

these one must do the complete RG calculation.

Recent work in applying RG to this system includes that of Ohtsuki [55], in which

the density is calculated, although with dramatically different results than those presented

here. First, Ohtsuki predicts that the amplitude for the asymptotic form of the density

has the same reaction rate constant dependence as the mean-field solution, n ∼ Γ−1 for

k = 2, whereas we find the amplitude to be independent of this rate constant. Second, the

leading order term in the ε expansion for the density amplitude in [55] is of order unity,

whereas we find it to be order ε−1/(k−1). An RG scheme involving an external source

of particles has been developed by Droz and Sasvári [56] which leads to scaling relations

which confirm the decay exponent. As with the analysis of Peliti, this approaches relies

on the irrelevance of the initial conditions, and does not demonstrate it. Friedman et

al. attempted to calculate the density perturbatively, and concluded that it is necessary

to perform a non-perturbative sum of all orders of n0, the initial density, when calculating

observables [57]. This infinite sum is exactly what we do in our calculation scheme.

A slightly different field theory formalism for this system was developed in analogy

with bose condensate calculations [58,59]. This approach leads to a confirmation of the

decay exponents as well. However, this method is not as readily generalized to an RG

calculation as is the field theory approach of Peliti.
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4.1. Renormalization Group Scheme

From the master equation description of the system one can derive the field theory

S[φ̄, φ, t] =

∫

ddx

[

∫ t

0

dt

{

φ̄(∂t −∇2)φ+
k
∑

i=1

λiφ̄
iφk

}

− n0φ̄(0)

]

, (4.4)

as was shown in chapter three. The dimensions of the various quantities in (4.4), expressed

in terms of wave number, are

[t] = p−2 [φ̄(x)] = p0 [φ(x)] = pd [λi] = p2−(k−1)d. (4.5)

The couplings become dimensionless at the traditionally accepted value of the critical

dimension, dc = 2/(k − 1) [48,49]. The relative dimensions of φ and φ̄ are arbitrary, so

long as [φ̄φ] = pd, but the choice above is the most natural, as any other would cause the

couplings λi to have dimensions which depend on i.

As demonstrated in chapter three, the density is calculated from the above action by

the average of φ. That is

n(t) = 〈〈φ(t)〉〉 =

〈

φ(t) exp

{

n0

∫

ddyφ̄(y, 0)

}〉

, (4.6)

where the double brackets denote averages with respect to (4.4), and the single brackets

are averages over the bulk action, which is given by the terms in curly braces in (4.4). From

this expression a perturbative calculation of n(t) can be found. The first term in the action

gives the diffusion propagator G(p, t) = e−p
2t for t > 0 and G = 0 for t < 0. An expansion

in powers of the couplings λi ∝ λ0 can be calculated with the usual perturbation theory

techniques. By using the Taylor expansion of the exponential in (4.6) a double expansion in

powers of λ0 and n0 can be obtained. When the renormalization group methods are applied

to the system it is found that the coupling λ0 flows to an order ε fixed point. However, the

initial density n0 flows to a strong coupling limit. Therefore for our perturbation theory

to be valid we must find an expansion in powers of the coupling which involves sums over
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all powers of n0. The development of this expansion and the resultant calculations are the

primary results of this chapter.

The scheme developed for renormalizing the theory follows conventional RG analysis

[41]. In this vein a renormalized coupling is introduced, and shown to have a stable fixed

point of order ε. The computation of observables requires summing over an infinite set of

diagrams, corresponding to all powers of n0, and this infinite sum must be grouped into

sets of diagrams whose sums give a particular order of the coupling constant. It will be

shown below that this grouping is given by the number of loops. That is, the infinite set of

tree diagrams sum to give the leading order term in the coupling, the one-loop diagrams

the next order term, and so on. However, before addressing the calculation of observables

we turn to the renormalization of the theory.

Exact Vertex Renormalization

To renormalize the theory all that is required is coupling constant renormalization.

This is because the set of vertices in (4.4) allow no diagrams which dress the propagator,

implying there is no wavefunction renormalization. As a consequence the bare propagator

is the full propagator for the theory.

To determine which couplings get renormalized one first needs to identify the primi-

tively divergent vertex functions. A general correlation function with ` φ’s and m φ̄’s has

the dimension

[ 〈φ(1) . . .φ(`)φ̄(`+ 1) . . . φ̄(`+m)〉 ] = pd` (4.7)

where (1) = (x1, t1). The Green’s function G(`,m)(p1, s1, . . . , p`+m, s`+m) is calculated by

Fourier and Laplace transforming the correlation function above, and factoring out overall

p and s conserving δ functions. The dimensions of this quantity are

[G(`,m)] = pd+2−2`−(d+2)m. (4.8)
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The dimensions of the vertex functions Γ(`,m) are given by the Green’s functions with the

`+m external propagators stripped off.

[Γ(`,m)] = [G(`,m)/(G(1,1))`+m] = p2−d(m−1). (4.9)

The vertex functions with m ≤ k are those which are primitively divergent for d ≤ dc.

Since vertices can only connect k φ̄’s to some number less than or equal to k φ’s, then it

follows that the primitively divergent diagrams have m = k and ` ≤ k.

time
p

t 1t 2

= + +

+ + . . .

Figure 4.1. Sum of all the diagrams which contribute to the

vertex function λ(p, t2 − t1). Shown here is the case k = 3, i = 1.

These diagrams can be summed exactly, and are the same for all i.

A general φ̄iφk vertex is renormalized by the set of diagrams shown in fig. 4.1. In

these diagrams the propagator is represented by a plain line. Note that this sum is the

same for all i, that is all vertices renormalize identically. This is a reflection of the fact that

there is a only one coupling in the theory. These diagrams can be summed to all orders, as

noted in [54]. In (p, t) space the temporally extended vertex function λ(p, t2 − t1) is given

by

λ(p, t2 − t1) =λ0δ(t2 − t1) − λ2
0I(p, t2 − t1)

+ λ3
0

∫ t2

t1

dt′I(p, t2 − t′)I(p, t′ − t1) − . . .
(4.10)
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where I(p, t) is the k − 1 loop integral

I(p, t) = k!

∫ k
∏

i

(

ddpi
(2π)d

)

(2π)dδ
(

p−
k
∑

i

pi
)

exp
(

−
k
∑

i

p2
i t
)

. (4.11)

The δ function can be written in integral form, which turns the integral into a product of

k Gaussian integrals. This gives

I(p, t) = Bkt
−(k−1)d/2e−p

2t/k (4.12)

where

Bk =
k!

kd/2

(

1

4π

)(k−1)d/2

. (4.13)

Taking the Laplace transform, λ(p, s) =
∫∞

0
dte−stλ(p, t), makes (4.10) a geometric sum:

λ(p, s) =
λ0

1 + λ0BkΓ(ε/dc)(s+ p2/k)−ε/dc
, (4.14)

where the d and k have been exchanged for ε and dc. For a general φ̄iφk vertex the λ0 in

the numerator is replaced by λi =
(

k
i

)

λ0, and the denominator is unchanged. Therefore

the small s and p form of the vertex function is independent of λ0 for all i.

The vertex function (4.14) is used to define a renormalized coupling. Using the wave

number κ as a normalization point, we define the dimensionless renormalized coupling to

be

gR = κ−2ε/dcλ(s, p)|s=κ2,p=0, and the dimensionless bare coupling

g0 = κ−2ε/dcλ0. The β function is defined by

β(gR) ≡ κ
∂

∂κ
gR = −2ε

dc
gR +

2ε

dc
BkΓ

(

ε

dc

)

g2
R. (4.15)

It is exactly quadratic in gR and has a fixed point β(g∗R) = 0 at

g∗R =
{

BkΓ(ε/dc)
}−1

. (4.16)

The fixed point is of order ε. From the definition of gR, (4.14), and (4.16) it follows that

g−1
R = g−1

0 + g∗−1
R , or

g0 =
gR

1 − gR/g
∗
R

= gR +
g2
R

g∗R
+ . . . (4.17)

This will be used to exchange an expansion in g0, calculated in perturbation theory, for

an expansion in gR.
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Calculation of Observables

Next we develop a Callan-Symanzik equation for the theory. Given a correlation

function

F (m)(t, λ0) ≡
〈

φ(x, t)

(
∫

ddy φ̄(y, t = 0)

)m〉

(4.18)

The lack of dependence on the normalization scale can be expressed via

[

κ
∂

∂κ
+ β(gR)

∂

∂gR

]

F (m)(t, κ, gR) = 0. (4.19)

From dimensional analysis [F (m)] = pd−md, implying

[

κ
∂

∂κ
− 2t

∂

∂t
− d+md

]

F (m) = 0. (4.20)

We are interested in the density n(t, n0, gR, κ) =
∑

m n
m
0 F

(m)/m!. Substituting (4.20) into

(4.19) and summing to get the density gives the equation

[

2t
∂

∂t
− dn0

∂

∂n0
+ β(gR)

∂

∂gR
+ d

]

n(t, n0, gR, κ) = 0. (4.21)

This is solved by the method of characteristics, and has the solution

n(t, n0, gR, κ) = (κ2t)−d/2n
(

κ−2, ñ0(κ
−2), g̃R(κ−2), κ

)

, (4.22)

with the characteristic equations for the running coupling and initial density

2t
∂ñ0

∂t
= −dñ0 ñ0(t) = n0, (4.23)

2t
∂g̃R
∂t

= β(g̃R) g̃R(t) = gR. (4.24)

Because of the simple form of the β function, the running coupling can be found exactly:

ñ0(t
′) = (t/t′)d/2n0, (4.25)

g̃R(t′) = g∗R

(

1 +
g∗R − gR

gR(t/t′)ε/dc

)−1

. (4.26)

84



One then sets t′ = κ−2 and plugs the result into (4.23). Notice that in the large t limit

g̃R → g∗R.

In conventional RG analysis the mechanics developed above is used in the following

way: one calculates an expansion in powers of g0, and then converts this to an expansion

in powers of gR via (4.17). As long as the expansion coefficients are non-singular in ε,

then the gR expansion can be related to an ε expansion via (4.22). That is, we substitute

t → κ−2, n0 → ñ0, gR → g̃R, in the gR expansion, and multiply by the overall factor

shown in (4.22). Then for large t, g̃R → g∗R giving n(t, n0, λ0) as an expansion in powers

of ε. For a given coefficient in the gR expansion we keep only the leading term for large

n0, since ñ0 ∼ td/2 and so the subleading terms in ñ0 will correspond to sub-leading terms

in t.

The identification of the leading terms in g0 is less straightforward than it is in conven-

tional RG calculations, since the sum over all powers of n0 must be taken into account. For

the density, tree diagrams are of order gi0n
1+i(k−1)
0 for integer i. Diagrams with j loops are

of order gi0n
1+i(k−1)−j
0 . Since the addition of loops makes the power of g0 higher relative

to the power of n0, we hypothesize that the number of loops will serve as an indicator of

the order of g0. This will be shown to be the case via explicit calculation.

4.2. Tree Diagrams

To calculate all possible diagrams of a given number of loops it is necessary to develop

two tree-level quantities: the classical density and the classical response function. The term

classical means averaged with respect to the classical action, which is the action (4.4), but

with only the φ̄φk vertex. The classical density is given by sum of all tree diagrams which

terminate with a single propagator, as shown in fig. 4.2, and is represented graphically by

a wavy line. These diagrams are evaluated in wave number space. From (4.6) it follows

that the φ̄(t = 0) in the initial state all have p = 0, so all diagrams at tree level have p = 0.
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. . .

(b)

(a)

Figure 4.2. The classical density, represented as a wavy line, is

given by (a) the complete sum of tree diagrams, and (b) an integral

equation. The latter is equivalent to the mean-field rate equation.

Shown here is the case k = 2.

Shown also in fig. 4.2 is an exact graphical relation for the infinite sum, which is

equivalent to the mean-field rate equation (4.1). This can be seen by considering the

diagram in position space, and acting with (∂t −∇2), the inverse of the Green’s function

G0, on either side of the diagrammatic equation. Note that the combinatoric factors

involved in attaching the full density lines to vertices is different than for propagators,

which is discussed in appendix 4.A. This equation has the exact and asymptotic solutions

ncl(t) =
n0

(1 + k(k − 1)nk−1
0 λ0t)1/(k−1)

∼
(

1

k(k − 1)λ0

)1/(k−1)

t−1/(k−1).

(4.27)

The asymptotic solution depends on the coupling strength, but not the initial density.

The response function is defined by

G(p, t2, t1) ≡ 〈〈φ(−p, t2)φ̄(p, t1)〉〉, (4.28)
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. . .
t t2 1

p

Figure 4.3. The response function, shown as a heavy line, is given

as a sum of the bare propagator plus a term with a single vertex

connecting k − 1 full density lines, plus a term with two vertices,

and so on. Shown here is k = 3. These diagrams can be summed

exactly.

and the classical response function is the above quantity with only tree diagrams included

in the averaging. It is represented graphically by a heavy line, and is given by the sum

of diagrams as shown in fig. 4.3. Note that the only p-dependence is that of the bare

propagator. That is, the density lines all carry zero wave number. The time dependence of

the propagators connecting the vertices cancels to leave only overall dependence on t1, t2.

The vertices are now symmetric under interchange, so we can trade the requirement that

they be ordered for a factor of 1/nv! where nv is the number of vertices. The sum of

diagrams is then identified as the Taylor expansion of an exponential, giving

Gcl(p, t2, t1) =e−p
2(t2−t1) exp

{

−k2λ0

∫ t2

t1

dt ncl(t)
k−1

}

=e−p
2(t2−t1)

(

1 + k(k − 1)nk−1
0 λ0t1

1 + k(k − 1)nk−1
0 λ0t2

)k/(k−1)

.

(4.29)

The extra factor of k associated with each −kλ0 vertex is a consequence of the combi-

natorics (see Appendix 4.A). From (4.6) it follows that 〈〈φ(t)φ̄(0)〉〉 = ∂〈〈φ(t)〉〉/∂n0 or

G(p = 0, t, 0) = ∂n(t)/∂n0. This relation should also hold for the classical density and

response function, as is the case for the solution above.

4.3. Density Calculation

With the classical or tree-level solutions of the previous section, and the renormaliza-

tion scheme developed above, the asymptotic form of the density can now be calculated.

87



The solution for the tree diagrams in terms of g0, or λ0, is given by (4.27). To leading

order in gR one just replaces λ0 with gRκ
2ε/dc . For large t the running coupling g̃R → g∗R,

which gives

n(0)(t) =
n0

(1 + k(k − 1)nk−1
0 g∗R t

(k−1)d/2)1/(k−1)
. (4.30)

The superscript on the density refers to the number of loops in the calculation. The

asymptotic form of this expression is

n(0)(t) ∼
(

(k − 2)!

2π(k − 1)k1/(k−1)ε

)1/(k−1)

t−d/2 +O(ε1−1/(k−1)). (4.31)

The term in parentheses is the leading order term in Ak, the amplitude of the t−d/2

component of the density.

Amplitude Corrections for k = 2

Next the corrections from the higher loop diagrams are calculated. It will be shown

that adding a loop makes the sum of diagrams an order g
1/(k−1)
R higher. At k−1 loops the

diagrams will contain a singularity in ε, caused by the appearance of the first primitively

divergent diagram. However this singularity is cancelled when the g2
R correction to g0 in

(4.17) is included in the tree diagram sum. In general the higher order terms in (4.17) will

cancel all divergences in the coefficients of the gR expansion. This will be illustrated in

the one-loop corrections for k = 2.

The infinite sum of all one-loop diagrams can be written in terms of the classical

response function found above. The sum of diagrams is shown in fig. 4.4(a). Expressing

this graph in integral form

n(1)(t,n0, g0, κ) =

2

∫

dt2dt1
ddp

(2π)d
Gcl(0, t, t2)(−2λ0)Gcl(p, t2, t1)

2(−λ0)ncl(t1)
2,

(4.32)

where the time integrals are over 0 < t1 < t2 < t. Taking the large n0 limit of (4.32) to

extract the asymptotic part gives

n(1)(t, n0, g0, κ) =
1

t2

∫

dt2dt1
ddp

(2π)d
t−2
2 e−2p2(t2−t1)t21 +O(n−1

0 ). (4.33)
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(a) (b) (c)

(e)(d) (f) (g)

Figure 4.4. One- and two-loop diagrams for k = 2. By using the

response function all such diagrams are included. Diagram (a) is

used to calculate the amplitude correction.

Notice that this is independent of g0, consistent with the prediction that the one-loop

diagrams are of order g0
R and provide a correction to the leading term in (4.31). The

integral can be done exactly. Expressing the leading piece in terms of g∗R, and the rest as

an expansion in ε:

n(1)(t, n0, g0, κ) = t−d/2
(

1

2g∗R
− 2C + 5

16π
+O(ε)

)

, (4.34)

where C is Euler’s constant. The correction to the tree-level component due to the sub-

leading term in g0(gR) is

n(0)(t, gR) =
1

2gR
t−d/2 − 1

2g∗R
t−d/2 +O(gR). (4.35)

The singular parts of the g0
R coefficient cancel as advertised. Combining (4.34) and (4.35)

and making use of the Callan-Symanzik solution (4.22) gives

A2 =
1

4πε
+

2 ln 8π − 5

16π
+ O(ε). (4.36)

The two-loop diagrams are also shown in fig. 4.4. They all contribute to order g1
R.

Unfortunately we are unable to evaluate diagrams (f,g) due to the complicated time de-

pendence of the vertices, which prohibits calculation of the O(ε) term in A2. The most
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singular of the diagrams, (b-d), are of order ε−2. These diagrams can be calculated and

the singular pieces cancel as expected.

Note that the asymptotic, or large n0, limits of the classical density and the classical

response function are of order n0
0, which implies that the asymptotic time dependence of

the density, calculated to any number of loops, will be t−d/2. Therefore the decay exponent

is exact to all orders in ε.

The cancellation of the singularities which appear in the gR expansion can be most

easily understood by viewing the correction terms in (4.17) as counterterms introduced to

cancel primitive divergences. That is, considering δgR = g2
R/g

∗
R + O(g3

R), and calculating

the first order term in δgR at tree level gives a diagram similar to fig. 4.4(a), but with

the counterterm in place of the loop. This diagram, when added to the one-loop diagram,

cancels the singularity in the g0
R coefficient. Two-loop diagrams (b-f) can be viewed as

primitively divergent loops added to the one-loop diagram (a). The order δgR terms in

the one-loop diagram are equivalent to diagrams (b-f) with a counterterm in place of the

additional loop, and will cancel the divergences in these diagrams. Diagram (g) differs

in that it is not a primitively divergent loop ‘added on’ to diagram (a), but it is also

non-singular.

Amplitude Corrections for k = 3

The one- and two-loop diagrams for k = 3 are shown in fig. 4.5. The one-loop diagram

contains no singularity, and gives the order g0
R correction to (4.31). The asymptotic piece

is given by the integral

n(1)(t, n0, g0, κ) =
3

2t3/2

∫

dt2dt1
ddp

(2π)d
t−2
2 e−2p2(t2−t1)t

3/2
1 + O(n−1

0 ). (4.37)

Performing the integral and using (4.22) we find the amplitude

A3 =

( √
3

12πε

)1/2

+
9
√

2π

64
+O(ε1/2). (4.38)
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(a) (b) (c)

(f)

(g) (h) (i) (j)

(d) (e)

Figure 4.5. One- and two-loop diagrams for k = 3. Diagram

(a) contains no ε singularity, and is used to calculate the amplitude

correction.

The two-loop diagrams are of order g
1/2
R , although, similar to the case of k = 2, we

are unable to calculate diagrams (f-i). The only diagram with a singularity is (j), which

can be calculated to demonstrate that the g
1/2
R coefficient is non-singular as expected.

Dressed Tree Calculation

There exists an alternate method for calculating the leading order amplitude of the

density which does not require using the RG formalism. However, there is a discrepancy

between this method, the dressed tree sum, and the RG in the case k = 2. We present

the dressed tree calculation below, and an explanation for why we believe the RG to be

correct for k = 2.

Consider summing the most divergent diagrams for each power of λ0 and n0. This

is equivalent to summing the dressed tree diagrams, which are tree diagrams with all the

vertices replaced by the temporally extended vertex function (4.10).
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Figure 4.6. Exact diagrammatic equation for ndt(t), the sum of

the dressed tree diagrams.

The sum of these diagrams, ndt(t), satisfies the diagrammatic equation shown in

fig. 4.6, where ndt is represented by a dotted line. As with the tree diagram sum, acting

on this equation with the propagator inverse (∂t −∇2) gives a differential equation

∂tndt(t) = n0δ(t) − k

∫ t

0

dt′λ(p = 0, t− t′)ndt(t
′)k. (4.39)

Laplace transforming the equation gives

sn(s) − n0 = −kλ(0, s)nk(s), (4.40)

where n(s) =
∫∞

0
dte−stndt(t) and nk(s) =

∫∞

0
dte−stndt(t)

k. The transform of the vertex

function λ(0, s) is known exactly, and is given by (4.14). However, the equation is not

algebraic in n(s), making it difficult to obtain an exact solution. To proceed, we assume

ndt ∼ Ãt−α, so that for small s, n(s) ∼ ÃΓ(1 − α)sα−1. Also, nk(s) ∼ ÃkΓ(1 − kα)skα−1,

and λ(0, s) ∼ sε/dc/(BkΓ(ε/dc)). The transform of ndt(t)
k is calculated by imposing a small

t regulator, which is justified as the transform of the exact solution does exist, and then

taking the small s limit. The amplitude which results is independent of the regulator.

Substituting these in to (4.40) and taking the small s limit of the equation gives α = d/2,

and the amplitude

Ãk−1 =
BkΓ

(

2ε
k − 1

)

Γ
(

k − 2
k − 1

+ ε
2

)(

1
k − 1

− kε
2

)

k Γ
(

k − 2
k − 1

+ kε
2

) . (4.41)

For k 6= 2 the non-singular Γ functions cancel to leading order in ε, with the result Ã =

Ak+O(ε0). However, for k = 2 all the Γ functions are singular, which has the consequence
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that Ã2 = 2A2 +O(ε0). In light of this, it seems necessary to find an explanation why this

particular set of diagrams sums to give the proper leading order term for general k, but

not for k = 2, if indeed the RG is giving the correct leading order term.

Consider the set of dressed one-loop diagrams. That is, the set of diagrams given in

fig. 4.4(a) and fig. 4.5(a), but again with each vertex replaced by the temporally extended

vertex function. While it would be difficult to calculate this sum, it is possible to see

a property specific to k = 2 that they have. The analog of the classical densities in

these diagrams is the dressed tree density ndt ∝ t−d/2. Therefore for general k there is

a time integral over t−kd/2, or t−k/(k−1)−kε/2. This time integral will be in the form of a

Laplace convolution integral, similar to (4.39). Using a regulated transform as before, the

amplitude of the small s limit will be proportional to Γ
(

(k − 2)/(k − 1) + kε/2
)

. For k 6= 2

this is non-singular at ε = 0, but for k = 2 it is of order ε−1. Therefore these diagrams

are part of the leading order amplitude for k = 2. As a result, it would appear that the

discrepancy is a consequence of the failure of the dressed tree method, and not of the RG.

Crossovers

There are two crossover time scales in this system, one given by n0 and one by λ0.

For the coupling constant crossover we consider the large t expansion of (4.26)

g̃R = g∗R

(

1 − λ−1
0 t−ε/dc + O(t−2ε/dc)

)

. (4.42)

Including the correction term in the density calculation will generate a λ0 dependent

term proportional to t−d/2−ε/dc . From (4.42) it follows that the characteristic crossover

time is given by tλ0
∼ (ε/λ0)

dc/ε. In terms of the constants in the master equation,

tλ ∼ a2D−1(εD/a2λ)dc/ε. For small ε, or large λ0, the time required to reach the fluctua-

tion dominated regime becomes small.

The n0 crossover is calculated by keeping the order n−1
0 terms in the integrals per-

formed above. These terms will pick up an extra factor of t−d/2 when put into (4.22), so
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the exponent of the leading n0 dependent term in the density is t−d. The characteristic

crossover time is only weakly ε dependent, and is given by tn0
∼ D−1n

−2/d
0 = a2D−1n̄

−2/d
0 .

If the n0 crossover occurs first, then for intermediate times tn0
� t � tλ0

one would

expect the system to obey the asymptotic form of the mean-field solution. That is, n ∼

[k(k − 1)λ0t]
−1/(k−1). If the λ0 crossover occurs first it is less clear what the behavior in

the intermediate regime will be. The contribution from the tree diagrams will be exactly

(4.30), which does not become a power law until the n0 crossover is reached. This is

complicated even further by the higher order diagrams.

4.4. Correlation Function Calculation

The density correlation function is given by

C(x, t) = 〈〈
(

φ(x, t) + δd(x)
)

φ(0, t)〉〉. (4.43)

where the δ function is a consequence of the second quantized operators developed in

chapter three. A Callan-Symanzik equation for the correlation function can be developed

in a similar fashion as before. Consider the function

F (m)(p, t, λ0) ≡
∫

ddx e−ip·x
〈

(

φ(x, t) + δd(x)
)

φ(0, t)

(
∫

ddy φ̄(y, t = 0)

)m〉

.
(4.44)

Dimensional analysis gives [F (m)] = pd−md. The correlation function C(p, t) is given by

∑

m n
m
0 F

(m)/m!. This leads to the equation

[

2t
∂

∂t
− p

∂

∂p
− dn0

∂

∂n0
+ β(gR)

∂

∂gR
+ d

]

C(p, t, n0, gR, κ) = 0 (4.45)

which has the solution

C(p, t, n0, gR, κ) = (κ2t)−d/2C
(

p̃(κ−2), t = κ−2, ñ0(κ
−2), g̃R(κ−2), κ

)

, (4.46)
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with g̃R and ñ0 given by (4.25) and (4.26), and

p̃(t′) = p

√

t

t′
. (4.47)

Again the calculation of the right hand side of (4.46) is divided into the number of

loops. First the connected and disconnected pieces are separated

C(p, t) = n(t) + g(p, t) + δd(p)n(t)2. (4.48)

The first term on the right hand side is a consequence of the δ function in (4.43), and is

considered part of the connected correlation function. The disconnected tree-level graphs

are of the order gi0n
2+i(k−1)
0 , and represent the leading order terms in the correlation

function. This is reasonable, as the classical solution of this system corresponds to the

absence of correlations. The connected tree-level diagrams, which are the leading terms in

g(p, t), are of order gi0n
1+i(k−1)
0 , and represent the leading corrections due to fluctuations.

The tree-level and one-loop diagrams for g(p, t) in the case k = 2 are shown in fig. 4.7.

Diagram (a) can be calculated explicitly to give the leading term

g(p, t) = − 1

4πε
t−d/2f2(p

2t) + O(ε0)

f2(x) = −e
−2x

4x3
+

1

4x3
− 1

2x2
+

1

2x
.

(4.49)

The function f2(x) is regular at x = 0, with f2(0) = 1/3. For large x, f2(x) ∼ 1/(2x).

(a) (b) (c) (d)

(f)(e) (g)

Figure 4.7. The diagrams for the connected correlation function

at tree level and one loop, for k = 2.
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We are unable to evaluate the one-loop diagrams analytically for general p, although

it is possible to calculate an expansion in p2, which we have done to order p2. For the

connected correlation function,

C̄(p, t) = n(t) + g(p, t)

=

[

1

6πε
+

9 ln 8π − 26

108π
+

(

1

24πε
+

15 ln 8π − 19

720π

)

p2t+ . . .

]

t−d/2

+ O(ε).

(4.50)

With the expansion above it is possible to calculate the second moment of C̄(x, t), giving

a length scale for the correlations. For C̄(p, t) = A + Bp2 + . . . the second moment

−ξ2 ≡
∫

ddxx2C̄(x, t)/
∫

ddxC̄(x, t) = −2B/A. The negative sign in the definition of ξ is

required since the second moment is negative, indicating that the particles are negatively

correlated at larger distances. For k = 2 the length ξ is given by

ξ2 =
√
t

(√
2

2
+

73
√

2

360
ε+ O(ε2)

)

. (4.51)

The correlation function can be used to calculate the fluctuations in the density.

For example, the fluctuations in the local density are given by integrating C(p, t) over p.

However, the p-independent term causes this integral to diverge. One can consider the

fluctuations of the average particle number within a fiducial volume v. This is given by

(δNv)
2 = v

∫

v

dx C̄(x, t) = vn(t) + O(v2), (4.52)

where translational invariance is assumed. The order v contribution originates from the δ

function in (4.43). For small v the fluctuations go as δNv ∼
√

vn(t), which is universal.

Also, δNv/Nv ∼ 1/
√

vn(t), which diverges as v goes to zero, consistent with the local

fluctuations being divergent.

The fluctuations in the total number of particles is given by V C̄(p = 0, t) where V is

the volume of the system. When divided by the square of the average number of particles,

V 2n(t)2, this gives

(δN)2

N2
V =

(

8π

3
ε− 18π ln 8π − 38π

3
ε2 +O(ε3)

)

t−d/2. (4.53)
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(a) (b) (d)

(f)(e) (g)

(c)

Figure 4.8. The diagrams for the connected correlation function

at tree level and one loop, for k = 3.

Note that all these fluctuation terms would be negative if the δ function term were ne-

glected. That is, 〈〈φ(x)2〉〉 < 0, a demonstration that the fields introduced via the path

integral formulation of [28] are complex.

The diagrams contributing to g(p, t) for k = 3 are shown in fig. 4.8. The leading order

term for the connected part is

g(p, t) = −
( √

3

12πε

)1/2

t−d/2f3(x) + O(ε0)

f3(x) =
e−2x3

√
πerfi(

√
2x)

16
√

2x5/2
− 3

8x2
+

1

2x

(4.54)

where erfi(x) = −i erf(ix) = (2/
√
π)
∫ x

0
dyey

2

. The function f3(x) is also regular, with

f3(0) = 2/5 and f3(x) ∼ 1/(2x) for large x.

The one-loop diagrams can be calculated as an expansion in p2, with the net result

C̄(p, t) =

[

3

10

(√
3

3πε

)1/2

+
81

√
2π

1600
+

288

875

√

2

π

+





4

35

(√
3

3πε

)1/2

+
9
√

2π

98
− 27546

42875

√

2

π



 p2t+ . . .

]

t−d/2

(4.55)
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plus terms of order ε1/2. In this case the sign of the second moment of the correlation

function depends on ε. For ε < 0.4 the second moment is negative, and the resulting

length scale is given by

ξ3 =
√
t





4√
21

+

(

2
√

3

21

)1/2
(

711π

2240
− 2217

490

)

ε1/2 + O(ε)



 . (4.56)

The fluctuations in total particle number are given by

(δN)2

N2
V =

(

6
√
π

5
ε1/2 + (2π

√
3)1/2

(

1152

875
− 189π

400

)

ε

)

t−d/2. (4.57)

plus terms of order ε3/2.

4.5. Logarithmic Corrections for d = dc.

In general, when d < dc, certain relevant parameters determine the critical exponents

of the system. When d = dc these parameters become marginally irrelevant. In such a

case the exponents are given by mean-field theory, but with logarithmic corrections. In

our system the marginally irrelevant parameter is the coupling λ0.

When d = dc the Callan-Symanzik solution (4.22) still holds, although with a different

running coupling. The β function can be calculated either with a cutoff which is taken to

infinity or by taking ε→ 0 in (4.15) with the same result: β(gR) = 2Bkg
2
R. This gives the

running coupling

g̃R(κ−2) =
gR

1 + gRBk ln(κ2t)
. (4.58)

For large t the coupling goes to zero, which is the only fixed point of the β function. Using

the asymptotic form g̃R ∼ {Bk ln(κ2t)}−1 in the tree-level sum gives

n(t) ∼
(

(k − 2)!

4πk1/(k−1)

)1/(k−1) (
ln t

t

)1/(k−1)
[

1 + O
(

(ln t)−1/(k−1)
)

]

. (4.59)

Higher order terms in g̃R will give sub-leading time dependence, so this represents the full

leading order amplitude. Notice that the correction terms are only an order (ln t)−1/(k−1)

smaller, which will make time required to reach the asymptotic regime large.
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The same procedure gives an exact expression for the leading term in the correlation

function as well. For k = 2

C̄(p, t) =
1

8π

(

1 − f2(p
2t)
)

(

ln t

t

)

[

1 +O
(

(ln t)−1
)]

(4.60)

and for k = 3

C̄(p, t) =

( √
3

12π

)1/2
(

1 − f3(p
2t)
)

(

ln t

t

)1/2
[

1 + O
(

(ln t)−1/2
)

]

. (4.61)

4.6. Generalization to the Reaction kA→ `A

Our results can be immediately generalized to a coagulation reaction kA→ `A, ` < k.

The only change in the field theory is the vertices λi in (4.4):

λi =







λ0

(

k
i

)

− λ0

(

`
i

)

, i ≤ `

λ0

(

k
i

)

, i > `.
(4.62)

The renormalization follows identically. For example, the leading term in the amplitude,

given by (4.31), is generalized to

Ak,` =

(

k

k − `

)1/(k−1)

Ak + O(ε0). (4.63)

This proportionality is not generally true for all terms in the ε expansion, although it

does happen to hold when k = 2. To see this, consider a rescaling φ → bφ, φ̄ → φ̄/b,

and n0 → bn0 in the action (4.4). The only terms changed by such a rescaling are the

couplings λi → bi−kλi, which for k = 2 is only the coupling λ1. Starting from the theory

A + A → ∅ and making the scale transformation with b = 2 gives exactly the theory for

A+A→ A. As a consequence, the density for A+A→ A, starting from an initial density

of n0, will for all times be exactly twice the density of the system A+ A → ∅ with initial

density of n0/2. This result agrees with the recent exact solution of a particular model of

A + A → (∅, A) in d = 1 [53], although it should be noted that this relation is not truly

universal for all times, as it only holds when the irrelevant couplings are excluded. The

99



asymptotic amplitude is universal, and so the relation A2,1 = 2A2,0 is exact to all orders

in ε, and independent of the initial densities.

For k = 3 such a simple relation does not hold. We can consider all three theories,

` = 0, 1, 2, combined with relative strengths r0, r1, r2, where
∑

i ri = 1. The rescaling

defined above will relate two systems with different r` in that the densities will be identical

up to a rescaling. However this rescaling only removes one degree of freedom from the two

independent variables, so unlike k = 2, one cannot necessarily scale one theory into another.

Considering r0 and r1, we find

r0(b) = (1 − b)2 + b(2b− 1)r̄0 + b(1 − b)r̄1 (4.64)

r1(b) = (3 − b)(b− 1) + 2b(1 − b)r̄0 + b2r̄1 (4.65)

where r̄0, r̄1 are the values of r0, r1 prior to rescaling. Consider the system which is purely

` = 0, or r̄0 = 1, r̄1 = r̄2 = 0. For any b 6= 1 then r1(b) < 0, which implies that there is

no combination of systems with different ` which is equivalent to ` = 0 up to a rescaling.

This is not the case for the pure ` = 1 system. This system can be rescaled from b = 1 to

b = 3/4. At the latter point one has r0 = 1/4, r1 = 0, and r2 = 3/4, so this combination

of systems, with an initial density of 3n0/4, will give exactly 3/4 the density of the ` = 1

system at all times. Similarly, starting with r̄2 = 1 the system can be rescaled from b = 1

to b = 3/2. At the latter point r0 = 1/4, r1 = 3/4, and r2 = 0.

The correlation function will not be identical up to a rescaling for any of the systems

described above. This is a consequence of the fact that the correlation function contains

both φ and φ2 pieces.

When d = dc the density amplitudes for ` 6= 0 are given exactly by the relation

Ak,` =

(

k

k − `

)1/(k−1)

Ak. (4.66)

This is because the amplitude is given by the same diagrams which contribute the leading

order term in ε for d < dc. These amplitudes have recently been measured numerically
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for the reactions 3A → A and 3A → 2A in one dimension with the results A3,1 ≈ 0.76

and A3,2 ≈ 0.93 [60]. Our calculations yield instead A3,1 ≈ 0.26 and A3,2 ≈ 0.37. The

magnitude of this discrepancy is somewhat disturbing. One possible explanation is that

it is from the diffusion constant, as one can easily make errors of factors of two with the

analytical and numerical definitions of this quantity. We have checked our calculations

and believe them to be correct. It is quite difficult to measure numerically the amplitudes

of logarithmic terms, and the correction terms in this case are predicted to be of order

(ln t)−1/2. The data in [60] becomes dominated by noise around a value of ln t = 10, so the

correction terms could still be contributing. It is also worth noting that (4.66) predicts that

A3,2/A3,1 =
√

2, which is independent of possible errors in deriving the diffusion constant

or evaluating the loop integrals. The numerical amplitudes have a ratio A3,2/A3,1 ≈ 1.22.

Appendix 4.A. Symmetry Factors

Diagrams which contain the classical density or the classical response function are

representations of infinite sums of diagrams. While they resemble ordinary perturbation

theory diagrams, they differ in combinatorics. When calculating the Wick contraction com-

binatorics one treats propagators as distinguishable, although the resulting combinatoric

factor is then cancelled by a factor which is absorbed into the definition of the coupling

constant. Our diagrams differ from this in two ways. First, the classical density is attached

to vertices as an indistinguishable object. This will be demonstrated below. Second, we

have chosen to introduce in the coupling constants no pre-adjusted combinatoric factor.

This is merely a matter of convention, and is motivated by the indistinguishability men-

tioned above, and by the direct relation of the coupling constant to the parameters used

in the master equation.
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The indistinguishability of the density lines can be demonstrated by considering the

contraction of k φ’s, representing a vertex, with the infinite sum which is the initial state.

〈〈φk〉〉cl =
∞
∑

m=0

nm0
m!

〈φkφ̄m〉cl

=
∞
∑

m=0

1

m!

∑

m1,...,mk

m1+...+mk=m

Cmm1,...,mk

k
∏

i=1

(

nmi

0 〈φφ̄mi〉cl
)

.

(4.A.1)

where Cmm1,...,mk
= m!/(m1! . . .mk!) is the number of ways to partition m objects into k

distinct boxes. The sums can be replaced with unrestricted sums over m1 . . .mk, and the

above expression factors completely, giving

〈〈φk〉〉cl = 〈〈φ〉〉kcl (4.A.2)

The significance of (4.A.2) is that there is no k! prefactor. The k classical density lines

which are connected to the vertex are effectively indistinguishable.

In calculating the classical response function it is necessary to consider attaching one

propagator and k − 1 density lines to a φk vertex. This brings in a factor of k, for the

number of distinguishable ways the propagator can be attached. The remaining k − 1

densities follow through the same combinatorics as that shown above, and contribute a

factor of 1.

In general, where the classical response function appears in a diagram it can be treated

as a propagator for combinatorics. The exception to this situation is in diagrams such as

fig. 4.4 and fig. 4.5, diagrams (d). Here the symmetry of the two disconnected branches

will result in the branches attaching as indistinguishable objects.
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Chapter 5. Two-Species Reaction A+B → ∅

Consider a model with two types of particles, A and B, each undergoing continuous-

time random walks on a lattice. These particles will, whenever they meet on a lattice

site, react with some rate to form an inert particle, or equivalently to annihilate. The

particles may have equal or unequal diffusion constants. We will assume that the particles

are initially randomly distributed, and also that they have equal initial densities.

The first approach this problem is to assume the particles are uniformly distributed

at all times. Then the system can be described by the mean-field rate equations

∂

∂t
a =

∂

∂t
b = −Γab, (5.1)

where a, b are the densities of A,B particles, and Γ is a rate constant. These rate equations

would be valid for a rapidly stirred system, in which the densities a, b are driven to remain

homogeneous. With equal initial densities they have the asymptotic solution a, b ∼ 1/(Γt).

In the absence of mixing there are fluctuations in the densities, which then modify the

decay of the density. Note that the mean-field solution for the density in the two-species

reaction is the same as that of A+A→ ∅ (see chapter four). However, the density behaves

quite differently when fluctuations are included, which is a consequence of a conservation

law present in the two-species reaction.
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The reaction A+B → ∅ does not change the number difference of A and B particles.

Therefore fluctuations in a− b can only evolve diffusively, giving a slow mode for the two-

species reaction which does not exist in the one-species case. This conserved quantity is set

equal to zero under the assumption of uniformity above, but a random initial distribution

of A and B particles will contain non-zero fluctuations of a− b, which will dominate the

asymptotic dynamics.

A scaling argument can be used to predict the time dependence of the density based

on the fluctuations in a(0) − b(0) for a random initial distribution. The total number of A

or B particles initially present in a volume of size `D, assuming that both species have an

initial density of n0, goes as

N ≈ n0`
d
D ±

√

n0`
d
D. (5.2)

Therefore the absolute value of the number difference is given by

|NA−B| ∝
√

n0`
d
D = `dD

√

n0/`
d
D. (5.3)

Dividing both sides by `dD gives the density of the excess of the majority species in this

region, nmaj ∝
√

n0/`dD. Next one argues that by a time t ∝ `2D/D, where D is the usual

diffusion constant, all the particles in this region have had a chance to interact, and

therefore all that will remain is the initial excess of A or B particles. This leads to

the prediction that asymptotically

a, b ∝ √
n0 (Dt)−d/4. (5.4)

For d < 4 this process gives a slower decay than the mean-field t−1, and is therefore dom-

inant. When d > 4 one expects a crossover, then, to the mean-field power law t−1, and an

amplitude which is independent of the initial density.
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5.1. Previous Analytical and Numerical Work

The importance of these fluctuations was first noted by Ovchinnikov and Zeldovich

[61]. Later Toussaint and Wilczek [31] developed a calculation scheme for the density which

predicted the exponent t−d/4 and the crossover at d = 4 from mean-field theory. They also

calculated the amplitude of the density explicitly. Their method was to use the central

limit theorem to calculate the strength of the fluctuations in the field f = a− b, given

random initial conditions for particles on a lattice. Then they assumed this field would

obey a classical diffusion equation, from which they concluded that f(t) has a normal

distribution with a calculable width. Their final assumption was that at late times the

regions of A particles and B particles would be completely segregated, from which they

concluded that 〈a〉, 〈b〉 = 〈|f |〉/2, where the angle brackets denote averages over the initial

conditions. That is, if the local minority species is completely absent, then |f | represents

the density of the local majority species, which will be A in half of the segregated regions

and B in the other half. Their result8 was that for d < 4 (henceforth denoting the behavior

of both species by that of a)

〈a〉 ∼
√
n0

π1/2(8π)d/4
(Dt)−d/4. (5.5)

This result is confirmed, at least for d > 2 and n0 small, by our calculation. We find

that the
√
n0 term above can be regarded as the leading term in a small n0 expansion,

and that there are higher order corrections. We also demonstrate that the segregation

occurs, rather than assuming it as input for the calculation. For d ≤ 2 we believe the

amplitude may be the same as above, at least to leading order in ε = 2 − d. In this case

there are non-trivial noise effects due to the diffusion which were neglected in Toussaint

and Wilczek’s calculation, which can be treated with RG methods.

A different approach to the problem was pursued by Bramson and Lebowitz [46,47],

which is a refinement of the simple scaling arguments presented above that led to (5.4).

8 There is a misprint in the quoted value for the d = 3 amplitude in equation (19c) of [31].
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They start with particles on a lattice with Poissonian initial conditions for the occupation

number of each species, with the average per site given by n̄0. Then they consider a

continuous time diffusion of the particles, with the rule that A and B will annihilate

whenever they are simultaneously occupying a lattice site. This definition of the model

has a shortcoming in that it does not have an input parameter with which to vary the

rate of reaction, and therefore cannot predict the dependence on such a parameter. They

consider a region of a given size of the reacting model, and compare it to an auxiliary

model, which is defined to have the same initial configuration of particles, but to evolve

with the reaction turned off. They provide a lengthy proof in [46] that the asymptotic

density has the upper and lower bounds

cd ≤ 〈a〉 t
d/4

√
n̄0

≤ Cd d < 4

c4 ≤ 〈a〉 t

max(
√
n̄0, 1)

≤ C4 d = 4

cd ≤ 〈a〉 t ≤ Cd d > 4,

(5.6)

where cd and Cd are constants. Furthermore, they state a theorem in their more recent

paper [47] that the quantities above are not just bounded by constants, but are in fact

asymptotically equal to constants. This is a stronger statement than we are able to make

in the case d = 4, as they are predicting a discontinuity in the first derivative of the

amplitude with respect to n0 at some value of the initial density nc0, which is equal to one

in their treatment, but likely dependent on the lattice size and the reaction rate. For initial

densities greater or lesser than this value the amplitude goes as
√
n0 or is independent of

n0, respectively. We can derive upper and lower bounds on the amplitude for d = 4 which

have these limits asymptotically for large and small n0, but we have no means of predicting

or ruling out this intermediate singular dependence. The proof of the theorem in [47] has,

to our knowledge, not yet been published.

The two-species reaction has been simulated in d = 1, 2, 3, with the simulations giving

convincing confirmation of the power law t−d/4. However, the amplitude of this power law
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has received little attention, and seems to vary dramatically between simulations. The

original simulations were performed by Toussaint and Wilczek [31] for d = 1 and d = 2.

They considered a low density limit, with initial densities of 0.05 and 0.1, in units where

the lattice spacing is unity. They also did not allow multiple occupancy at a given site,

which introduces hard sphere correlations in the particles. They found that the amplitude

in one dimension went like A1
√
n0 with an amplitude A1 = 0.28, which differs from their

calculated value of 0.25. Their two-dimensional simulations used only n0 = 0.05, and so

did not test the n0 dependence. Using the
√
n0 prediction to calculate A2 gives a value of

A2 = 0.17 from the simulations, in contrast to the calculated value 0.11. Simulations were

later performed by Kang and Redner [49,62] in which they also observed the t−1/4 power

law in one-dimension.

More recent simulations involve those of Schnörer, et al. [63]. They also simulated

one- and two-dimensional systems, and also with the hard sphere correlations introduced

by allowing only single occupancy. They start from a nearly filled lattice, the initial density

of each species n0 = 0.4 in one dimension, and a completely filled lattice in two dimensions.

Their results do not test the
√
n0 dependence of the amplitude, but if it is assumed then

their simulations give values for A which are twice that given by (5.5) in one dimension,

and a factor of five larger in two dimensions. However, their plots do not show a convincing

asymptotic regime. Still, it is probable that starting with such a strongly lattice dependent

initial condition has a dramatic effect on the amplitude of the power law. The amplitude

is, in this sense, a less universal quantity.

The square-root dependence on the initial density has been tested in two dimensions

by Cornell, el. [64]. They find, in the regime where the t−1/2 power law is convincing,

that the amplitude seems to goes as n
1/4
0 rather than the predicted square root. This is

difficult to reconcile with any of the previous approaches, although we predict corrections

to the square root dependence of n0 which could become quite large in the strong lattice

limit, that is, the limit of a nearly filled lattice with only single occupancy allowed.
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The only three dimensional simulation was performed by Leyvraz [30], in which again

only single occupancy was allowed. Various initial densities (per individual species) be-

tween 0.025 and 0.5 were simulated, with only the initially completely filled lattice giving

a good power law regime. For this initial density, the power law t−3/4 is convincingly

demonstrated. Assuming the amplitude has the form A3
√
n0 leads to a value of A3 = 0.3,

which is much larger than the prediction (5.5) of A3 = 0.05. For smaller values of the

initial density the simulations fail to reach the asymptotic regime before finite size effects

dominate. This can understood by considering that in approaching the asymptotic regime

there is a subleading mean-field component of the density which is independent of n0.

That is

〈a〉 ∝ √
n0t

−3/4 + (constant)t−1, (5.7)

so that lowering the initial density enhances the strength of the subleading term. The

crossover time can be found from above to scale like t ∼ 1/n2
0.

To summarize, the power law t−d/4 is confirmed in all simulations, but the amplitude

prediction (5.5), which we will show is really a small n0 prediction, does not agree with

the simulations in two and three dimensions. In these cases a strong lattice limit has been

used in order to obtain an asymptotic regime.

There has been recently interest in studying the microscopic distribution of parti-

cles. For example, it is found from scaling arguments that the nearest neighbor distance

distribution function for like particles scales differently than that of unlike particles [32].

The characteristic length of the nearest neighbor distribution for like particles goes as

`AA ∼ t1/4 for d < 4, which is the same as the average interparticle spacing given by the

density ¯̀= 〈a〉−1/d. This length scale is already present in the problem, and so this result

is considered trivial. In contrast, if one considers the separation distance when the nearest

neighbors are of the opposite species, then this distribution has a characteristic length in

d = 1 of `AB ∼ t3/8. This exponent is argued also to be non-trivial in d = 2 [32], with

`AB ∼ t1/3. These exponents have been verified numerically, with an algorithm that uses
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some fixed number of nearest neighbors in order to improve the statistics of the distribu-

tion. In three dimensions it is found numerically that `AB ∼ t1/4 [30,32], which is claimed

to hold for all d > 2. We disagree with this result, and argue that this length scale will be

non-trivial for all d < 4, as will be demonstrated in §5.7.

Generally it is assumed that the two species of particles have equal diffusion constants,

which would not necessarily be the case when considering a chemical reaction. In all

the simulations mentioned above the diffusion constants were set equal. While it seems

plausible that the density power law t−d/4 should be independent of a difference in the

diffusion constants, this has never been explicitly demonstrated. Also, there has been no

previous calculation of the amplitude when DA 6= DB . We have calculated this amplitude

for d > 2.

5.2. Field Theory

In our approach to the two-species reaction we consider a master equation which

describes particles on a lattice undergoing a continuous time random walks. Multiple

occupancy is allowed. When at least one particle of each species is present on a lattice

site, then these particles have some rate of annihilation. This master equation is shown in

chapter three to have a corresponding field theory, given by the action

S =

∫

ddx

[
∫ t

0

dt
{

φ̄(∂t −∇2)φ+ ψ̄(∂t −∇2)ψ − ψ̄δ∇2φ− φ̄δ∇2ψ

+ λ1φ̄(φ2 − ψ2) + λ2(φ̄
2 − ψ̄2)(φ2 − ψ2)

}

− nφφ̄(0)

]

.

(5.8)

This action is written in terms of the fields φ = (a + b)/
√

2 and ψ = (a − b)/
√

2, and is

what we will refer to as the full theory. It provides the complete description of the system

for all dimensions d. It should be noted that nφ =
√

2n0, where n0 is the initial density of

each individual species, and the relations of the other parameters to those of the master

equation can be found in chapter three. The parameter δ is dimensionless and is given by

δ = (DA −DB)/(DA +DB).
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One can calculate various quantities given by this action via perturbation theory. We

will treat the δ vertices as two-point interactions, and so the propagators for φ, ψ are

given by the first two terms in (5.8), and are the usual diffusion propagators: Gφ̄φ(p, t) =

Gψ̄ψ(p, t) = e−p
2t when t > 0, and Gφ̄φ = Gψ̄ψ = 0 for t < 0. These propagators are

represented by solid and dashed lines respectively. The three- and four-point vertices,

which correspond to the annihilation reaction, are shown in fig. 5.1. When δ 6= 0 then

there are two-point vertices which connect a φ propagator to a ψ propagator, and vice

versa. These vertices are wave number dependent, with magnitude p2. In addition there

is a source term for φ at t = 0, similar to the one-species reaction of the previous chapter.

λ 1−λ 1

G =ψψ

G =φφ

δp2

δp2

−λ 2 λ 2 λ 2 −λ 2

Figure 5.1. Propagators and vertices for the full theory in the

two-species reaction-diffusion system.

With these tools one can construct a perturbation expansion which, if summed exactly,

would give the complete description of the system. It is useful to introduce the classical

density and response function, as derived in §4.2. These quantities, constructed with only φ

propagators, are defined and calculated exactly as before. The classical density is denoted

by a wavy line, and the response function by a heavy line.

We can perform dimensional analysis on this action in the following way. There is

a rigid constraint that [φ̄φ] = [ψ̄ψ] = pd, where p is a wave number. We can consider
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rescaling the fields by dimensionful parameters, as long as the conjugate fields are rescaled

accordingly. Under such a rescaling the couplings λ1 and λ2 behave differently, although

originally they are both proportional to λ0. In particular, we could rescale the fields

φ→ φ/λ1 φ̄→ λ1φ̄ ψ → ψ/λ1 ψ̄ → λ1ψ̄, (5.9)

which has the result of setting the φ̄(φ2−ψ2) coupling to unity, while leaving λ2 unchanged.

The rescaling (5.9) also results in nφ → λ1nφ. This is the proper quantity to study when

addressing issues of relevance and irrelevance, which can be seen by studying the diagrams

generated by the action (5.8): whenever an additional t = 0 line is added with weight nφ,

there is an additional λ1 required to connect it. In this system of units, then, one finds

that

[λ2] = p2−d [λ1nφ] = p2 [δ] = p0. (5.10)

Therefore there exists a critical dimension dc = 2, above which λ2 flows to zero. Doing

the complete power counting method with vertex functions, as was done in chapter four,

yields the same result. Also, as before, the initial density is a strongly relevant parameter.

The diffusion constant difference δ is always marginal whenever it is not zero.

One approach to studying this problem is to integrate out the conjugate fields ψ̄ and

φ̄. This leads to the equations of motion

∂

∂t
φ = ∇2φ− λ1φ

2 + λ1ψ
2 + ηφ (5.11)

∂

∂t
ψ = ∇2ψ + ηψ, (5.12)

where ηφ, ηψ are noise terms with non-trivial distributions, but with average zero. In fact,

the ηφ noise is purely imaginary. It is important to note that the physical density is not

the field φ, but rather the average of φ over the noise terms. These equations, without the

noise terms included, are often taken as the starting point for analysis, but this approach

is not generally valid. It is correct for d > 2 at least, as will be shown below. One can

111



simplify equation (5.12) in any dimension, since it is a linear equation, by averaging over

the noise. This is an average over the stochastic process of diffusion, and not over the

initial conditions. Then the field 〈ψ〉diff obeys the simple diffusion equation, for any given

initial configuration.

5.3. Effective Field Theory for d > 2

From the dimensional analysis and power counting above it follows that for d > 2

the full theory given by (5.8) can be replaced by an effective theory in which λ2 = 0 and

λ1 → λeff(λ1, λ2,Λ), where Λ is a wave number cutoff, necessary to regulate the theory.

However, in constructing such an effective theory one has to consider all possible relevant

terms, consistent with the symmetry of the theory, which might be generated. In order

to identify these terms we note that this problem is analogous to that of a semi-infinite

system in equilibrium statistical mechanics, with the analog of the boundary being the

hyperplane t = 0. While one finds, in the semi-infinite equilibrium case, that the bulk

critical properties do not depend on the surface terms, nonetheless one expects surface

terms to contribute to correlation functions which involve fields on the boundary [65].

All observables in our problem are given by such correlation functions, since all diagrams

originate with the nφφ̄(0) term. Therefore we must check for all relevant initial terms, the

t = 0 analog of the surface terms, which might be generated, as well as those of the bulk.

As mentioned above, the only relevant bulk term is that of λ1.

The proper framework for determining which terms are relevant is via the rescaled

fields (5.9). Therefore, for an initial term of the type (∆(m,n)/m!n!)φ̄mψ̄n|t=0 added to

(5.8) we consider the dimensions of the coupling [λm+n
1 ∆(m,n)] = p(n+m)(2−d)+d. This

power of λ1 also follows from calculating the number of vertices required to attach a t = 0

vertex of ∆(m,n) to a given diagram. These terms are relevant when

d <
2(n+m)

n+m− 1
. (5.13)
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If m+n = 1 then the initial term is relevant for all d. The case m = 1 corresponds to

the initial density, which has already been demonstrated to be relevant. For the case n = 1

we first address the symmetry of the theory. When starting with equal initial densities

the system is invariant under exchanging A ↔ B and DA ↔ DB . Therefore the action

must be invariant under the transformation (φ, φ̄, ψ, ψ̄, δ) → (φ, φ̄,−ψ,−ψ̄,−δ). For what

follows we will consider only the case δ = 0, or DA = DB , in which case the symmetry

forbids the generation of a initial term ∆(0,1)ψ̄. In §5.8 the case δ 6= 0 will be discussed,

and it will be demonstrated that again no n = 1 initial term is generated.

For m+n = 2 symmetry allows only the generation of ∆(2,0) and ∆(0,2). Below we will

address the calculation of these quantities, and demonstrate that ∆(0,2) = −∆(2,0) ≡ ∆.

These terms are relevant whenever d < 4, as can be seen by equation (5.13), and therefore

must be considered when constructing an effective theory for 2 < d ≤ 4. In fact, it will be

shown that the term (∆/2)ψ̄2 is solely responsible for determining the asymptotic decay

of the density. This is an important point. This system is dominated by initial terms, as

opposed to the one-species reaction studied in chapter four. Therefore techniques which

utilize homogeneous source terms and look for a bulk steady state will not work for this

problem. Since this initial term dominates the asymptotic behavior of the density, we

identify d∗c = 4 as a second critical dimension of the system.

Higher order initial terms will also be relevant in the range 2 < d ≤ 3. In fact, as

d→ 2 one finds that all initial terms become relevant. While this seems to be an extreme

complication, it is in fact possible to calculate exactly the asymptotic density for 2 < d ≤ 4

and demonstrate that it is independent of such terms. This will be presented in the next

section. We now turn to the calculation of the parameter ∆.

The diagrams which must be considered in calculating an effective initial term (∆/2)ψ̄2

are all those in which two ψ lines exit from the left, as shown in fig. 5.2(a). The sum of

these diagrams gives rise to an effective term f(t)ψ̄(t)2 in the action. If the function f(t)

goes to zero for large t, and is sharply peaked enough that
∫∞

0
dtf(t) is finite, then a coarse-

graining in time gives f(t)ψ̄(t)2 ∼ (∆/2)δ(t)ψ̄(0)2, where both quantities are understood
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(a) (b) (c)

Figure 5.2. The initial term ∆ is generated by diagrams of the

form (a). The tree diagrams in (b) give the leading order contri-

bution for small n0. The leading order corrections come from the

diagrams (c). The classical density and response functions are de-

fined in §4.2. For ∆(2,0) the same diagrams would be used, but with

the opposite sign for the λ2 vertex on the left.

to be integrated over t, and ∆ = 2
∫∞

0
dt′f(t′). To calculate this parameter ∆ we consider

first the subset of diagrams given by the tree diagrams, as shown in fig. 5.2(b). These

diagrams sum to give f0(t) = −λ2/(1 + nφλ1t)
2, and so

∆0 = −2λ2

∫ ∞

0

dt
1

(1 + nφλ1t)2
= 2nφ

λ2

λ1
. (5.14)

Therefore we conclude that this set of diagrams generates an effective initial term ∆0 =

2nφλ2/λ1, or, in terms of the parameters in the master equation (3.56), ∆0 = n0, the

initial density of each species. This will be shown to be the leading order term for a small

n0 expansion of ∆. The width of the function f0(t) is given by (nφλ1)
−1, and therefore

we expect this coarse-grained picture to be valid for times t� (nφλ1)
−1

We can group all the diagrams in the full theory (5.8) which are of the form specified

in fig. 5.2(a) in the following way. There is a vertex λ2 which is the leftmost vertex in the

diagram. The lines coming into this vertex from the right can either come from mutually

distinct or connected diagrams. The tree diagrams are a subset of the former group, and we

argue that by letting λ1 go to some bulk effective coupling λeff all diagrams of the former

group are included. The connected diagrams can be grouped by the number of times

they are connected, and shown in fig. 5.2(c) are a set of diagrams which are connected

exactly once. Again we argue that by taking λ1 → λeff the diagrams of fig. 5.2(c) give
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the entire contribution of the set which are connected exactly once. The sum of these

diagrams can be evaluated, and is found to contribute to ∆ a term which is higher order

in n0 than that given by the tree diagrams. It can be shown in general that the groups

with more connections will contribute correspondingly higher order terms, and therefore

this classification scheme gives rise to an expansion for ∆.

λ eff λ 2λ 2 −λ 2 −λ 2 λ 2

= ++

p=0

+ . . .

Figure 5.3. The expansion for the effective coupling constant.

The wave number integrals are regulated by a cutoff Λ.

In order to calculate the next order of correction terms to the expansion ∆ = ∆0 + . . .

we must first comment on the bulk diagrams which generate λeff . The effective coupling

can be calculated as an expansion in the bare couplings, via the diagrams shown in fig. 5.3.

The loop integrals in this expansion require the cutoff Λ, and one finds

λeff = λ2 − λ2
2

4Λd−2

(8π)d/2(d− 2)
+ O(λ3

2). (5.15)

If the response functions in the loop of fig. 5.2(c) were instead just propagators, then this

set of diagrams would be included into those of fig. 5.2(b) when the substitution λ2 → λeff

is made via (5.15). Therefore, the terms which are new and constitute a correction to ∆0

are those in fig. 5.2(c) with the propagator loop subtracted out. We define the large t limit

of these diagrams to be ∆1, that is

∆1 = 4λ2
2n

2
φ

∫ ∞

0

dt2

[
∫ t2

0

dt1
ddp

(2π)d

{

e−2p2t(1 + nφλ1t1)
2

(1 + nφλ1t2)4

− Λd−2

(8π)d/2(d− 2)(1 + nφλ1t2)2

}]

.

(5.16)
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Performing the wave number integral with the Λ cutoff imposed in the same manner as in

(5.15) gives

∆1 =
4λ2

2n
2
φ

(8π)d/2

∫ ∞

0

dt2
(1 + nφλ1t2)4

[
∫ t2

0

dt1

{

(1 + nφλ1t1)
2

(t2 − t1 − Λ−2)d/2

−Λd−2

d− 2
(1 + nφλ1t2)

2

}]

.

(5.17)

The t1 integral can be evaluated as a Laplace convolution integral, and the cutoff dependent

terms cancel. The remaining t2 integral is

∆1 =
−8λ2

2n
2
φ

(8π)d/2(d− 2)

∫ ∞

0

dt2 t
1−d/2
2

(1 + nφλ1t2)4

[

1 +
4nφt2
4 − d

+
8n2

φt
2
2

(4 − d)(6 − d)

]

. (5.18)

This integral can be done exactly, giving

∆1 =
λ2

2

λ2
1

(nφλ1)
d/2 (d+ 2)(d+ 4)

48(8π)d/2−1 sin(πd/2)
. (5.19)

In terms of the initial density n0 and the effective coupling then

∆ = n0 − (n0λeff)d/2
(d+ 2)(d+ 4)

384(8π)d/2−1 sin
(

π(d− 2)/2
) + . . . (5.20)

Evaluating the diagrams such as those in fig. 5.2(c), but containing more loops will then

give the higher order terms in this small n0 expansion of ∆.

In summary of the discussion above, we conclude that for 2 < d ≤ 4 and for large

times one can replace the full theory with a simpler action

S =

∫

ddx

[
∫ t

0

dt
{

φ̄(∂t −∇2)φ+ ψ̄(∂t −∇2)ψ − λeff φ̄(φ2 − ψ2)
}

− nφφ̄(0) − ∆

2
ψ̄(0)2 + other initial terms

]

,

(5.21)

where ∆ is given by (5.20). Since the bulk theory is linear in φ̄ and ψ̄ these fields can be

integrated out to yield the equations of motion

∂

∂t
φ = ∇2φ− λeffφ

2 + λeffψ
2 (5.22)

∂

∂t
ψ = ∇2ψ. (5.23)

These are equations for classical fields with fluctuations in the initial conditions. They are

often taken to be the continuum limit of the master equation (3.56), but we stress that

only for d > 2 and large times are these equations valid.
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5.4. Density Calculation for 2 < d < 4

Starting with the action (5.21) one can calculate exactly the leading time dependence

of the density, as well as correlation functions. We begin with a comment about notation.

For this section and the next, where we deal with only the effective field theory, averages

over the initial conditions will be denoted by angular brackets. The averages over the bulk

action have already been taken implicitly. That is, the classical fields φ, ψ represent bulk

averages, or equivalently, averages over diffusion, of the same fields as written in (5.8).

Also, the effective coupling is abbreviated to be λ = λeff . With this notation, then, the

average of equation (5.22) over the translationally invariant initial conditions is

d

dt
〈φ〉 = −λ〈φ2〉 + λ〈ψ2〉, (5.24)

since ∇2〈φ〉 = 0.

+ + + +  . . .

+ + + . . .

+  . . .<φ> + +=

Figure 5.4. Diagrammatic expansion for 〈φ〉. Diagrams which

contain initial terms other than nφ and ∆ are not shown, but are

included in the sum. The only diagram in which the leftmost vertex

is connected to ψ fields is that of the single ψ loop.

A diagrammatic expansion for 〈φ〉 is shown in fig. 5.4. Operating on both sides of this

expansion with (∂t − ∇2), the inverse of the Green’s function propagator, gives equation

(5.24). While exactly summing these diagrams appears not to be possible, nonetheless

117



by use of non-perturbative methods we are able to find the asymptotic form of this sum.

Acting on this sum with the inverse propagator turns the left side into ∂t〈ψ〉, and on the

right side it has the effect of removing the propagator on the left and setting the leftmost

vertex to time t. Out of this infinite sum, then, there is only one diagram contributing to

the value of 〈ψ2〉 in equation (5.24), which is the single ψ loop. Evaluating this loop gives

〈ψ2〉 = ∆/(8πt)d/2. It is important to note that this result holds even when all possible

higher order initial terms are included.

Next, consider as an approximation replacing 〈φ2〉 in (5.24) by 〈φ〉2, which is equivalent

to including only the diagrams in fig. 5.4 which are disconnected to the right of the leftmost

vertex. This partial sum satisfies a differential equation known as Ricatti’s equation, which,

though non-linear, can be solved. Let f denote the function which satisfies this equation,

that is,

d

dt
f = −λf2 + λ

∆

(8π)d/2
t−d/2. (5.25)

It will be shown below that this function f provides a upper bound for the actual density,

but first we will discuss the solution of this equation. It is integrable for certain values of d,

specifically d = 4 and d = 4± 4/(2s+ 1) where s is a non-negative integer, with a solution

which can be expressed in terms simple functions. For general values of d a solution can

be obtained9 by transforming the equation via the substitution f = u̇/(λu), which gives

ü =
λ2∆

(8π)d/2
t−d/2u, (5.26)

a linear, second order equation whose solution can be expressed in terms of confluent

hypergeometric functions. Therefore the asymptotic behavior of f is rigorously obtained,

and is in fact what one naively obtains by assuming f ∼ At−α and plugging it in to (5.25):

f ∼







∆1/2(8πt)−d/4 d < 4
Au4 t

−1 d = 4
(λt)−1 d > 4

. (5.27)

9 For an interesting presentation of the properties and history of this equation, see [66].
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When d < 4 the asymptotic behavior comes from balancing the two terms on the right

hand side of (5.25), whereas for d > 4 it comes from balancing the f 2 and the ḟ terms.

For d = 4 all three terms contribute, and the amplitude is

Au4 =
1

2λ
+

√

1

(2λ)2
+

∆

(8π)2
. (5.28)

The case of d = 4 will be discussed in more detail in §5.5. Notice that the asymptotic

behavior of the solution f is independent of the initial conditions. In fact, the initial

conditions must be specified at some t0 > 0, since the equation is singular at t = 0. A

natural choice for this initial time is that given by the coarse-graining time scale of the

effective initial conditions, that is t0 = (nφλ)−1.

Now we show that f provides an upper bound for the actual density 〈φ〉. Our method

is to derive an equation for χ = f − 〈φ〉 and show that asymptotically χ ≥ 0. Since φ is

a real field in the effective theory, then h(t) ≡ 〈φ2〉 − 〈φ〉2 ≥ 0. Equation (5.24) can be

rewritten

d

dt
〈φ〉 = −λh(t) − λ〈φ〉2 + λ〈ψ2〉, (5.29)

and then substituting 〈φ〉 = f − χ gives

d

dt
χ = λh+ λ(χ− 2f)χ. (5.30)

Assume that χ(t0) = 0, that is we choose the initial condition for f such that f(t0) =

〈φ(t0)〉. As mentioned above, the asymptotic value of f is independent of the choice of

initial conditions. Since the solution of f is known and is positive for all t > t0, then from

equation (5.30) we know that χ̇ > 0 whenever χ < 0. Now we make the assumption that

there exists some some t1 > t0 for which χ(t1) < 0. Since χ(t) is a continuous function

then it follows that there must be some intermediate time t0 < t < t1 for which χ(t) < 0

and χ̇(t) < 0. This is in contradiction with equation (5.30), and therefore our assumption

that there exists χ(t1) < 0 for t1 > t0 is false.
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We can also find a lower bound for 〈φ〉 by noting that φ(x, t) ≥ |ψ(x, t)| at all points

(x, t). This is equivalent to the statement that a(x, t), b(x, t) are at all points non-negative,

when starting from any initial condition in which a, b are everywhere non-negative. While

this result is somewhat intuitive, it can be made more rigorous by considering the field

equations (5.22), (5.23) expressed in terms of a = (φ+ ψ)/
√

2 and b = (φ− ψ)/
√

2:

∂

∂t
a = ∇2a−

√
2λab

∂

∂t
b = ∇2b−

√
2λab. (5.31)

Given that the fields a, b are initially everywhere non-negative, then for the fields to have

a negative value at a later time t1 there must be an intermediate time 0 < t0 < t1 for

which both a(t0) = 0 and ∂ta(t0) < 0. However, in the case where a = 0 at a single point

in space, then a > 0 locally around the point, implying that it is a local minimum and

∂ta > 0. For a region of a = 0 equation (5.31) gives ∂ta = 0 in the region and ∂ta > 0 on

the boundary. Therefore the fields cannot pass through zero, and will remain non-negative.

Since φ ≥ |ψ| it follows that 〈φ〉 ≥ 〈|ψ|〉. At late times ψ has a normal distribution,

independent of the initial distribution, which follows from the fact that ψ obeys the simple

diffusion equation (5.23). Therefore the asymptotic value of 〈|ψ|〉 can be computed directly.

The asymptotic distribution of ψ is given by

P [ψ(t)] ∝ exp

{

− ψ(t)2

2〈ψ(t)2〉

}

, (5.32)

from which it follows that

〈|ψ(t)|〉 =

√

2

π
〈ψ(t)2〉 =

(2∆)1/2

π1/2(8π)d/4
t−d/4. (5.33)

Given the upper bound f ∼ t−d/4 it can be shown that 〈φ〉 ∼ 〈|ψ|〉, that is, that the

lower bound gives exactly the density. Using again φ ≥ |ψ|:

〈φ− |ψ|〉2 ≤ 〈(φ− |ψ|)2〉

= 〈φ2〉 + 〈ψ2〉 − 2〈φ|ψ|〉

≤ 〈φ2〉 − 〈ψ2〉

= − 1

λ
〈φ̇〉 = O(t−1−d/4).

(5.34)
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Therefore 〈φ〉 = 〈|ψ|〉 + O(t−1/2−d/8), which gives 〈φ〉 ∼ 〈|ψ|〉 for d < 4. This is actually

a statement about segregation in the system, implying that to leading order the density

of a + b is the same as |a − b|, or equivalently, that the minority species in each region

decays faster than the majority. The densities 〈a〉, 〈b〉 are given by 〈a〉 = 〈b〉 = 〈φ〉/
√

2.

For 2 < d < 4 then, we find

〈a〉 =
∆1/2

π1/2(8π)d/4
t−d/4, (5.35)

with ∆ given by (5.20). Substituting the leading order term in the expansion ∆ = n0 +

O(n
d/2
0 ) then gives the result of Toussaint and Wilczek [31]. In fact, our method is very

similar to theirs, with two exceptions. First, they use a central limit argument to calculate

∆, whereas we can compute it directly from the full field theory. It is reassuring that the

answers agree, to leading order in n0. The other difference is that they calculate 〈|ψ|〉, and

then hypothesize the asymptotic segregation, saying 〈φ〉 ∼ 〈|ψ|〉. The methods developed

here can be used to show rigorously that these quantities are asymptotically the same.

5.5. Density for d ≥ 4

When d = 4 the upper and lower bounds for the density from §5.4 still hold: 〈|ψ|〉 ≤

〈φ〉 ≤ f . However, it is no longer necessarily true that 〈φ〉 ∼ 〈|ψ|〉, since the bound on the

corrections, which is of order O(t−1/2−d/8), is the same order as the density. The upper

bound f ∼ Au4/t is given by (5.27) and (5.28). Notice that for small λ or small ∆ that

Au4 → 1/λ. Also, when λ is large or ∆ is large then Au4 → ∆1/2/(8π). However, in the

intermediate region there is a smooth crossover in the upper bound from the λ dependent

asymptote to the ∆ dependent asymptote.

The lower bound is given by 〈φ〉 ≥ 〈|ψ|〉 = A`4/t with A`4 = ∆1/2/8π3/2. For large ∆,

then, the upper and lower bounds differ by a factor of
√
π. The lower bound continues

to decrease with ∆, and therefore is not very useful in the small ∆ limit. However, since

the parameter ∆ is dimensionless in d = 4 one can do a perturbative expansion for small

∆, which results in a better lower bound. It follows from equation (5.24) that the zeroth
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order term in this expansion is a constant, and is in fact equal to the small ∆ limit of the

upper bound, λ−1. To the next order one has

〈a〉 =
1

λt
+
λ∆

t
+ O(∆2), (5.36)

and it is plausible to conjecture that the amplitude is monotonically increasing with ∆.

The conjectured form of the amplitude given by Bramson and Lebowitz [47], has the

form

A4 ∝
{

constant ∆ < ∆c

∆1/2 ∆ > ∆c.
(5.37)

Their result seems to be at odds with our small ∆ calculation. However, one possible

explanation is that in the model they consider the reaction occurs immediately if one

of each species occupy the same lattice site. Thus, they allow multiple occupation, but

only of the same particle type. In our model the reaction occurs at a given rate, but not

immediately. Given the non-universal nature of the amplitude, this could be the cause of

the discrepancy.

When d > 4 then it follows from the power counting of §5.3 that the (∆/2)ψ̄2 initial

term is irrelevant. In this case the density is given asymptotically by 〈a〉 ∼ (λt)−1. The

power law of the density decay is independent of the dimension of space. The amplitude

λ−1 will depend on the dimension and the microscopic details, but it is independent of

initial terms, or equivalently initial conditions.

5.6. Renormalization for d ≤ 2

When d ≤ 2 one has to consider the full theory as given by the action (5.8). In

calculating the diagrams generated by this theory one encounters divergences, just as in

the one-species case. The primitively divergent vertex functions can be identified by power

counting, and are found to be those with two lines coming in and two or fewer lines going

out. This is identical to the situation in the A+A→ ∅. In order to calculate the density,
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or other quantities such as correlation functions, it is then necessary to introduce the

renormalized coupling and Callan-Symanzik equation as was done in chapter four.

The renormalization of the coupling follows quite similarly to that of the one-species

reaction. There are now four λ2 couplings, shown in fig. 5.1, which contribute to the bubble

sums. However, it is still true that all of the vertex functions renormalize identically, since

they have the same sum of bubble diagrams. The temporally extended vertex function

λi(p, t) is defined to be the sum of the bubble diagrams shown in fig. 5.5. The subscript

i = 1, 2 refers to the number of exiting lines.

p

+ +

+ +

+ + + . . .

τ+t

(p,tλ )

=
τ

Figure 5.5. The sum of diagrams which contribute to the prim-

itively divergent vertex function λi(p, t). Shown here is the case

i = 1, with the ψ propagators for the incoming external legs.

To each order in the number of loops there are more diagrams than in the one-

species case, because the loops can be composed of ψ or φ propagator pairs in all possible

combinations. These different combinations come in with the same sign, since replacing a

φ loop with a ψ loop, for example, introduces always two negative signs (see fig. 5.1). For

a bubble diagram with n loops there are 2n diagrams, all contributing identically, whereas

in the one-species reaction there is just one. As a result, the sum is the same as that

123



performed in equation (4.10), except that at the order of n loops there is a new factor of

2n. Taking the Laplace transform λi(p, s) =
∫∞

0
dt e−stλi(p, t) gives a geometric sum

λ(p, s) =
±λi

1 + 2λ2B2Γ(ε/2)(s+ p2/2)−ε/2
, (5.38)

where ε = 2− d, and the overall sign is positive when the incoming and outgoing external

lines are of the same type, and negative if they differ. The constant B2 = 2(8π)−d/2 is

calculated in §4.1.

As before, this vertex function is used to define a renormalized coupling. For a given

wave number scale κ we define gR ≡ λ(p = 0, s = κ2). The rest of the analysis follows

identically to that in chapter four, which leads to the solution of the Callan-Symanzik

equation for the density

n(t, n0, gR, κ) = (κ2t)−d/2n
(

κ−2, ñ0(κ
−2), g̃R(κ−2), κ

)

, (5.39)

where n = 〈a〉 = 〈b〉. The running coupling g̃R flows to an order ε fixed point as t→ ∞.

The difference between the two- and one-species reactions lies in determining which

diagrams to put into the right hand side of (5.39) in order to get an exact or perturbative

answer from the left hand side. In the one-species case the answer was relatively simple:

by using on the right hand side the infinite sum of diagrams containing a given number

n loops, one generates the nth order term in the perturbative calculation. A scheme was

developed which allowed one, in principle, to calculate these sums, and was sufficient to

show that to all orders the exponent of the density decay was exact. The state of affairs

is less convincing for the two-species case.

In the one-species case it was shown that the leading order in ε contribution to the

amplitude comes from putting the tree diagrams into the right hand side of the Callan-

Symanzik solution. This was shown explicitly, but it was motivated first by observing that

the mean-field diagrams, those which contain no λ2 vertices, have the lowest power of the

coupling relative to n0. In the two-species case the analog of these diagrams are those
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with no λ2 vertices, but with the effective initial terms included. These effective terms are

generated for d ≤ 2 as well as d > 2. They arise from including certain λ2 vertices, as

shown in fig. 5.2. While it might appear arbitrary to include these λ2 vertices in calculating

the lowest order term for the right hand side of (5.39), this is motivated by the fact that

these terms give rise to the “classical” density for d > d2 = 2, and are therefore the analog

of the usual tree diagram expansion. From here we make the conjecture that, as before,

the sum over all powers of n0 for a given power of λ2 gives a term higher order in the

coupling. Then, from the Callan-Symanzik solution, these diagrams contribute to higher

order in ε terms. Plugging the previous solution into (5.39) gives

〈a〉 =
∆1/2

π1/2(8π)d/4
t−d/4 + O(ε). (5.40)

The value of ∆ is yet to be determined. The set of diagrams in fig. 5.2(b) can still

be evaluated, and gives ∆ = n0 as before. However, when d ≤ 2 we cannot proceed to

calculate the correction terms as we did in §5.3. It seems plausible that any correction

terms would be higher order in the coupling when calculated, and therefore higher order

in ε. If this is correct, then ∆ can be replaced with n0 in the equation above. This result

is in good agreement with the simulations of Toussaint and Wilczek [31] for d = 1.

When d = 2 the running coupling goes to zero as (ln t)−1 for t→ ∞, rather than to an

order ε fixed point. Therefore the leading order terms for an ε expansion of the amplitude

become the exact asymptotic amplitude, with correction terms which go as (ln t)−1. As

a result, the amplitude predicted above should be exact in the truly asymptotic limit.

However, these logarithmic corrections are likely to persist for the time scales accessible

to simulation.

5.7. Reaction Zones

It was shown in §5.4 that for d < 4 the particles segregate asymptotically into regions

of purely A or B particles. As a result of this segregation there exist interfaces between
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the two species, and all reactions occur in the interfacial regions. These reaction zones

have interesting scaling properties. For example, the width of the interface goes as tα with

the exponent α < 1/2. Also one can study the nearest neighbor distance distribution of

the particles in the reaction zone, and show that the characteristic length `rz also goes

as a power of t with a non-trivial exponent for d < 4. By non-trivial we mean that the

characteristic separation distance in the reaction zone differs from that of the bulk system,

in which ¯̀ ∼ 〈a〉−1/d ∼ t1/4. To derive these properties we begin with the related and

well-studied problem of a single interface.

Consider an initial configuration in which the A and B particles are completely seg-

regated, so that for some spatial coordinate x there are only A particles where x < 0 and

only B particles where x > 0. At later times one expects the densities 〈a〉 and 〈b〉 to be

continuous functions of x with a cross-section as pictured in fig. 5.6. The angle brackets

in this case correspond to averages over the stochastic process of diffusion, and also any

randomness in the initial state—for example, the particles can be taken to be randomly

distributed throughout their semi-infinite region. The reaction rate profile is defined to be

R(x, t) = 〈ab〉. One way to visualize this function R is to consider the reaction A+B → C,

with C particles inert. Then R(x, t) represents the rate of production of C particles at

time t and position x.

a0 b0

w

R(x)

x

Wd

<a> <b>

Figure 5.6. The cross-section of a reaction zone. The reaction

profile R(x, t) = 〈ab〉 has the characteristic width w. The depletion

region Wd ∼ t1/2.
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The field equations for this reaction are given by

∂

∂t
〈a〉 = ∇2〈a〉 −

√
2λ〈ab〉

∂

∂t
〈b〉 = ∇2〈b〉 −

√
2λ〈ab〉.

(5.41)

The functions 〈a〉 and 〈b〉 will depend on x, and so ∇2〈a〉 6= 0, unlike in the case of the

translationally invariant initial conditions. If one makes the mean-field approximation

that 〈ab〉 = 〈a〉〈b〉 then the equations above become partial differential equations for the

functions 〈a〉, 〈b〉. From these equations it has been demonstrated that the densities and

the reaction profile exhibit scaling, that is

〈a〉 = t−β/2f(xt−α) 〈b〉 = t−β/2g(xt−α) R = t−βh(xt−α), (5.42)

with the exponents α = 1/6 and β = 2/3 [67]. Here x refers to the distance from the

center of the interface. From these scaling relations it follows that width w of the profile

R goes as w ∼ t1/6.

It is important to observe that the reaction front is highly localized relative to the

depletion zone. The densities will be depleted from their initial values out to a range

Wd ∼ t1/2, since particles within this range will have had a chance to diffuse into the

reaction region. The reaction zone goes as tα, and it is generally assumed that α < 1/2,

and then demonstrated self-consistently. The significance of this localization is that there

is a diffusion zone, defined by the range of x where w � |x| � Wd, in which the density

has simply a linear profile. This follows from the solution of Laplace’s equation with the

boundary conditions being 〈a〉 ≈ a0 at x = −Wd and 〈a〉 ≈ 0 at x = 0. The slope of

this linear profile is denoted by ±J , and is given by J ≈ a0/Wd ∼ t−1/2. In this diffusion

region the density is 〈a〉 = −Jx, so the current J = −∇〈a〉 = J x̂. Now we observe that the

reaction front in this dynamic case is equivalent to the steady state reaction front created

by incoming currents J ∼ t−1/2. This correspondence to a steady state problem is very

useful for simulations of the front [33], and is also important in generalizing the results of a
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single reaction front to the case of the reaction zones formed in the homogeneous system,

as will be shown below.

It is possible to derive the exponent characterizing the width of the of the reaction

front from the field theory version of the problem. For example, the current J is given by

an operator ā∂xa, where a = (φ+ ψ)/
√

2. From dimensional analysis one has [J ] = pd+1.

The width of the reaction zone can in principle depend on the current J and the reaction

rate λ0. However, we have demonstrated that for d < 2 the coupling λ0 flows to an order

ε fixed point, and so all observables are independent of the initial value of the coupling.

Therefore, for d < 2, w ∼ J−1/(d+1).10 When d > 2 the coupling enters back in to the

scaling analysis, and we expect the dependence of w on J to be independent of dimension,

that is w ∼ J−1/3. This last result can be made rigorous by the scaling analysis of [67].

Making the correspondence J ∼ t−1/2 then gives

w ∼







t1/2(d+1) d ≤ 2

t1/6 d ≥ 2

(5.43)

While there is still controversy regarding the situation for d < 2 [68], there is a reasonable

amount of theoretical and numerical work [33] which indicates that w ∼ t1/4 for d = 1,

consistent with the results above.11

A similar argument can be made for the density within the reaction region. That is,

since lengths scale as J−1/(d+1) for d < 2, then

〈a〉 =







Jd/(d+1)f(xJ1/(d+1)) d ≤ 2

J2/3f(xJ1/3) d > 2.

(5.44)

The scaling form for d > 2 follows from [67]. If we assume that the distribution of

particles in the reaction zone is roughly uniform, which would be equivalent to saying that

10 This result holds even if the diffusion constants of the two species are not equal, since the

new parameter which is introduced, δ = (DA −DB)/(DA +DB), is dimensionless.
11 It is actually found that w ∼ tα with α ≈ 0.30 in the time-dependent case. However, it is

very difficult to get into the asymptotic regime, and the analogous steady state simulation yields

w ∼ J−ν with ν = 0.497 ± 0.008, in excellent agreement with the analysis.
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the function f(xJ1/(d+1)) can be replaced by a constant, then the characteristic distance

between nearest neighbors in the reaction zone would go like

`rz ∼ 〈a〉−1/d ∼







J−1/(d+1) d ≤ 2

J−2/3d d ≥ 2.

(5.45)

While the density is not truly uniform, we argue that non-uniformities do not affect the

scaling analysis, or equivalently, that there is just one length scale characterizing this

non-uniform distribution. Making the correspondence J ∼ t−1/2 gives

`rz ∼







t1/2(d+1) d ≤ 2

t1/3d d ≥ 2.

(5.46)

The results above are for the case of a single reaction front created by inhomogeneous

initial conditions. However, we can extend this analysis to the reaction zones which form

for d < 4 when starting from homogeneous initial conditions with equal initial densities

of each species. Asymptotically the segregated domains of A and B particles will form

a percolated network as shown in fig. 5.7. We are interested in the cross-section of an

interface, which will look roughly like fig. 5.6. Since these reaction zones will be confined

within a diffusion depleted region as before, then again the analogy to the steady state

system can be made.

a

b

Figure 5.7. A two-dimensional picture of the segregated domains.

The cross-section labeled by the rectangle will resemble fig. 5.6.
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The scaling dependence of w and `rz on J is unchanged. The difference in the reaction

zones between the homogeneous case and that of the single front lies in how the J scales

with t. The width of the diffusion depleted region is still given by Wd ∼ t1/2. However,

the height of the non-depleted density now scales as 〈a〉 ∼ t−d/4, instead of being time

independent as in the single reaction front case. Since the slope of the depletion region

determines the current J in the steady state analog, then we have J ∼ t−(d+2)/4 for d < 4.

The width of the reaction zone, for the homogeneous case, is then

w ∼







t(d+2)/4(d+1) d ≤ 2

t(d+2)/12 2 ≤ d < 4

(5.47)

These exponents are new results. Note that as d→ 4, w → t1/2. That is, the width of the

reaction zone is of the same order as the size of the segregated regions, consistent with the

loss of segregation at d = 4.

Making the substitution J ∼ t−(d+2)/4 into the scaling results (5.45) for `rz, gives

`rz ∼







t(d+2)/4(d+1) d ≤ 2

t(d+2)/6d 2 ≤ d < 4.

(5.48)

The scaling of this quantity has been studied by Leyvraz and Redner, and also measured

numerically [30,32]. What they actually study is the length scale of the unlike nearest

neighbor distribution function, `AB. This distribution is for the separation lengths of

nearest neighbors when they are of the opposite species, and should not be confused with

the distribution of distances to the nearest unlike neighbor. If the nearest neighbor is an

unlike particle then the particles must be in the reaction zone, and therefore `AB ∝ `rz.

Comparing our results we find that `rz ∼ t3/8 in d = 1 and `rz ∼ t1/3 in d = 2,

in agreement with the scaling arguments and numerical results of Leyvraz and Redner.

However, they argue that for d > 2 that `AB ∼ t1/4, that is, that the reaction zone

no longer contains a non-trivial length scale. They report numerical results for d = 3

consistent with this prediction. We find instead that `rz is non-trivial for all d < 4, and
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that `rz ∼ t5/18 in d = 3. This value for the exponent is close to 1/4, and appears to

provide an equally good, if not better, fit to their data.

It is interesting to use the scaling results above to test the standard assumption that

the segregated regions are of length t1/2. If we integrate the field equations (5.41) over the

entire volume V , we find
∫

ddx∂t〈a〉 ∝ −
∫

ddx〈ab〉, or

V t−1−d/4 ∝ A

∫

dx⊥R(x⊥, t) (5.49)

where A represents the volume of the d−1 dimensional hypersurface given by the interfaces,

which are the only regions which give a contribution to 〈ab〉. The coordinate x⊥ is locally

defined to be perpendicular to the surface of the interface. If d > 2 then we can assume

R = 〈a〉〈b〉, and therefore R ∼ J4/3f(xJ1/3) and
∫

dxR(x) ∼ J ∼ t−1/2−d/4. Substituting

this into (5.49) we find for d > 2 that the characteristic length of the segregated domains

¯̀
seg = V/A ∼ t1/2. When d ≤ 2 one cannot assume that 〈ab〉 and 〈a〉〈b〉 scale in the same

way. In fact, it can be shown via RG arguments [69] that

〈ab〉
〈a〉〈b〉 ∼ J (2−d)/(d+1). (5.50)

Recalling that J1/(d+1) scales as the wave number p, then this anomalous dimension is just

pε where ε = 2 − d. The scaling form of R for d < 2 is then

R = J (d+2)/(d+1)f(xJ1/(d+1)), (5.51)

and so
∫

dx⊥R(x⊥) ∼ J ∼ t−1/2−d/4, just as before. As a result, the size of the segregated

domains goes as ¯̀
seg ∼ t1/2 for d ≤ 2 as well.

5.8. Unequal Diffusion Constants, DA 6= DB, for d > 2

When the two species of particles no longer have equal diffusion constants, then the

vertices which depend on δ must be included in the full theory. Then for d > 2 an effective

theory can be developed, just as before, with the resulting action

S =

∫

ddx

[
∫ t

0

dt
{

φ̄(∂t −∇2)φ+ ψ̄(∂t −∇2)ψ − ψ̄δ∇2φ− φ̄δ∇2ψ

+ λφ̄(φ2 − ψ2)
}

− nφφ̄(0) − ∆

2
ψ̄(0)2 + . . .

]

.

(5.52)
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The effective theory describes classical fields which evolve via the deterministic equations

of motion

∂

∂t
φ = ∇2φ+ δ∇2ψ − λφ2 + λψ2 (5.53)

∂

∂t
ψ = ∇2ψ + δ∇2φ, (5.54)

which follows from integrating out the φ̄, ψ̄ degrees of freedom in the bulk component of

(5.52). From these equations the density can be calculated exactly by using the same

methods as before. First, equation (5.53) is averaged over the initial conditions to yield

equation (5.24), just as in the δ = 0 case. The solution to Ricatti’s equation again provides

an upper bound f ∼
√

〈ψ(t)2〉, although the value of 〈ψ(t)2〉 is changed. It will be shown

that 〈ψ2〉 ∝ t−d/2, so the upper bound decays with the same exponent as before. Since the

fields are real and φ ≥ |ψ|, it then follows that 〈φ〉 ∼ 〈|ψ|〉 for d < 4, as shown in (5.34).

Furthermore, it will be shown that asymptotically ψ(t) has a normal distribution, so the

density is given exactly by 〈a〉 = 〈φ〉/
√

2 ∼
√

〈ψ2〉/π. Therefore the only change in the

asymptotic density from the δ = 0 case is due to the change in the value of 〈ψ(t)2〉.

Calculation of 〈ψ(t)2〉

The initial terms in the effective theory are in general changed by the presence of δ

in the full theory, and therefore must be computed again. One can show that, as before,

no ∆(0,1)ψ̄ initial term is generated. For any diagram which ends with a single ψ line, the

last vertex (first from the left) must be a δp2 vertex. However, this external line has p = 0,

and so all of these diagrams have no contribution. To leading order ∆ = n0 is unchanged,

as can be seen from the diagrams in fig. 5.2: the leading order contribution to ∆ comes

from diagrams composed of no loops, and so all lines carry wave number p = 0 and are

unaffected by the δp2 vertex. The correction terms to the small n0 limit of ∆ will likely be

of the same order as before, O(n
d/2
0 λd/2), but with a different amplitude. This amplitude

could be calculated, although it would require a generalization of the response functions
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discussed below. It will be shown the asymptotic value of 〈ψ2〉 depends only on ∆, and so

the other surface terms can be neglected.

There are new response functions generated in the bulk theory. With δ = 0 there was

just a bare ψ propagator and a φ response function. In this theory there are instead four

response functions, which connect φ, ψ to φ̄, ψ̄ in each possible way, as shown in fig. 5.8.

Each of these response functions, represented by double lines, is an infinite sum over all

possible numbers of δp2 vertices inserted.

t 2 t 1

J

p

= + . . .+

=
H

+ . . .+ +

=
F

+ . . .+

=
G

+ . . .+ +

=

=
(a)

+

=

=
(b)

+

Figure 5.8. The response functions for the case δ 6= 0, and the

coupled equations they satisfy.

These response functions can be found exactly via the coupled integral equations, also

shown in fig. 5.8. For our purposes we need to know only the form of the response functions
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when the earlier time argument is set to zero.12 Setting t2 = t, t1 = 0 in the equations

represented by diagrams (a) gives

G(p, t) = e−p
2t + δp2

∫ t

0

dt′e−p
2(t−t′)F (p, t′)

F (p, t) = δp2

∫ t

0

dt′ep
2(t−t′)

(

1 + nφλt
′

1 + nφλt

)2

G(p, t′),

(5.55)

or, in terms of f, g defined by G(p, t) = e−p
2tg(p, t) and F (p, t) = e−p

2tf(p, t)

g(p, t) = 1 + δp2

∫ t

0

dt′f(p, t′)

f(p, t) = δp2

∫ t

0

dt′
(

1 + nφλt
′

1 + nφλt

)2

g(p, t′).

(5.56)

Differentiating both equations in (5.56) with respect to t gives

f(p, t) =
1

δp2
ġ(p, t) (5.57)

∂

∂t

[

(1 + nφλt)
2f(p, t)

]

= δp2(1 + nφλt)
2g(p, t) (5.58)

Substituting for f into the lower equation and manipulating the expression gives a remark-

ably simple equation for g

∂2

∂t2
[(1 + nφλt)g] = δ2p4[(1 + nφλt)g] (5.59)

which has the general solution

g(p, t) =
1

1 + nφλt

[

A cosh(δp2t) + B sinh(δp2t)
]

. (5.60)

From the integral equation (5.56) one finds the conditions g(p, 0) = 1, which implies A = 1,

and g(0, t) = 1, which then implies B = n0λ/(δp
2). Therefore the explicit form of G(p, t),

and from (5.57) F (p, t), is known

G(p, t) =
e−p

2t

1 + nφλt

[

cosh(δp2t) +
nφλ

δp2
sinh(δp2t)

]

(5.61)

12 To calculate the higher order terms in the expansion ∆ = n0 + . . . one needs to derive these

response functions with t1 6= 0.
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F (p, t) =
e−p

2t

(1 + nφλt)2

[(

1 + nφλt−
n2
φλ

2

δ2p4

)

sinh(δp2t)

+
n2
φλ

2t

δp2
cosh(δp2t)

]

.

(5.62)

The other response functions, H(p, t) and J(p, t), defined in diagram fig. 5.8, can be

found via similar methods. The coupled integral equations shown in fig. 5.8(b), written in

terms of h = ep
2tH and j = ep

2tJ , are

h(p, t) =
1

(1 + nφλt)2
+ δp2

∫ t

0

dt′
(

1 + nφλt
′

1 + nφλt

)2

j(p, t′)

j(p, t) = δp2

∫ t

0

h(p, t′).

(5.63)

Differentiating both equations with respect to t and substituting to eliminate h gives the

equation

∂2

∂t2
[(1 + nφλt)j] = δ2p4[(1 + nφλt)j] (5.64)

which has the general solution

j(p, t) =
1

1 + nφλt

[

A cosh(δp2t) + B sinh(δp2t)
]

. (5.65)

The condition that j(p, 0) = 0 implies A = 0. The general solution of h can be found from

(5.65), and then the condition that h(p, 0) = 1 implies B = 1. Therefore H and J are

given by

H(p, t) =
e−p

2t

(1 + nφλt)2

[

(1 + nφλt) cosh(δp2t) − nφλ

δp2
sinh(δp2t)

]

(5.66)

J(p, t) =
e−p

2t

(1 + nφλt)
sinh(δp2t). (5.67)

In §5.4 the value of 〈ψ2〉 was calculated from the simple loop shown in fig. 5.4. The

generalization of this calculation is given by the diagrams shown in fig. 5.9, which are

composed of the G(p, t) and J(p, t) response functions. The surface couplings ∆(0,2) 6=

−∆(2,0) beyond the leading small n0 terms, and so the couplings are labeled ∆ and ∆′

respectively. It should be noted that unlike the δ = 0 case, these are not the only diagrams
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<ψ2> ∆ ∆

+ irrelevant  terms

= +

Figure 5.9. The generalization of the simple ψ loop of fig. 5.4 to

the case of δ 6= 0.

which contribute to 〈ψ2〉. Examples of other diagrams, and arguments for why they are

irrelevant, will be given below. First, we compute those of fig. 5.9, which give

〈ψ(t)2〉 =

∫

ddp

(2π)d
[∆G(p, t)2 − ∆′J(p, t)2]. (5.68)

Substituting (5.61) and (5.67) into the equation above, and rewriting the integral in terms

of the variable u = p2t gives

〈ψ(t)2〉 =
∆t−d/2

(4π)d/2Γ(d/2)(1 + nφλt)2

∫ ∞

0

du ud/2−1e−2u

[

∆ cosh2(δu)

−∆′ sinh2(δu) +
nφλt

δu
sinh(2δu) +

(

nφλt

δu

)2

sinh(δu)2
]

.

(5.69)

Each term in the square brackets gives a convergent integral for d > 0. Therefore we

can take the large t limit before integrating, and only calculate the leading term in t.

This term, on the far right in the brackets, depends only on ∆, and so the value of ∆′ is

unimportant.

Evaluating this integral gives

〈ψ2〉 =
∆

(8π)d/2
Q(d, δ) t−d/2 (5.70)

where

Q(d, δ) = 4
(1 + δ)2−d/2 + (1 − δ)2−d/2 − 2

δ2(d− 2)(d− 4)
. (5.71)
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From (5.70) it follows that Q = 〈ψ2〉δ/〈ψ2〉0, to the extent that ∆ is independent of δ.

This function Q is non-singular at δ = 0, and satisfies Q(d, 0) = 1. While Q appears to

be divergent at d = 2, 4, it is actually finite everywhere except d ≥ 4 and δ = ±1. It

is likely that the limits of t → ∞ and δ → ±1 do not necessarily commute, and that a

separate treatment for the case of an immobile species, at least in this singular case, would

be required. For d < 4 this function has finite values as δ → ±1, but the slope at δ = ±1

is infinite for d ≥ 2.

1

1.5

2

-1 0 1
δ

Q
1/2

d=1
d=2
d=3
d=4

Figure 5.10. A plot of
√
Q = 〈a〉δ/〈a〉0 for integer values of d.

While the calculation of Q(d, δ) is only strictly valid for 2 < d < 4, it is nonetheless

interesting to consider its limits for the integer dimensions from d = 1 to d = 4, motivated

by §5.6 on d ≤ 2, in which it was conjectured that the “classical” amplitude is also the
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leading term in an ε expansion for d = 2 − ε. From (5.71)

Q(d, δ) =











































4
3δ2

[(1 + δ)3/2 + (1 − δ)3/2 − 2] d = 1

(1 − δ) ln(1 − δ) + (1 + δ) ln(1 + δ)
δ2

d = 2

4
δ2

[2 −
√

1 + δ −
√

1 − δ] d = 3

− ln(1 − δ2)
δ2

d = 4

(5.72)

Since the density goes as
√

〈ψ2〉, the function
√

Q(d, δ) is plotted in fig. 5.10 for integer

values of d. The density amplitude increases monotonically with |δ|, but is not changed

remarkably for modest values of δ.

(a)

p2λ ψψ 2

p2λ ψφ 2
(b)

Figure 5.11. (a) An example of one of the diagrams besides

those of fig. 5.9 which contribute to 〈ψ2〉, and (b) the effective bulk

vertices that all such diagrams contain.

There are other diagrams which give contributions to 〈ψ2〉, unlike the δ = 0 case.

Some of these are shown in fig. 5.11(a). All of these diagrams have the similar feature

that they contain one of the two sub-diagrams in fig. 5.11(b). These sub-diagrams give

rise to effective vertices of the form λ′ψ̄∇2ψ2 and λ′ψ̄∇2φ2 in the bulk theory. However,

such vertices are irrelevant, which follows from power counting, and so the diagrams which

arise from them must be sub-leading in time. Therefore we conclude that asymptotically

the value of 〈ψ2〉 is given by (5.70) and (5.71).
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Demonstration that ψ(t) has a Normal Distribution

In order for the calculation of 〈ψ2〉 to give the amplitude of the density it is necessary

that ψ(t) have a normal distribution. When δ = 0 this follows directly from the simple

diffusion equation satisfied by ψ, or equivalently, from central limit arguments. However,

ψ evolves via equation (5.54) for δ 6= 0, and so it needs to be shown that it still flows to a

normal distribution. What we will show is that the random variable td/4ψ flows to a static

normal distribution, the width of which was calculated above.

Consider 〈ψn〉, where n is even. There is one diagram in which n response functions

G(p, t) are connected in pairs to n/2 initial terms (∆/2)ψ̄2. This diagram contains n/2

loops, and is therefore of order t−nd/4. It was shown above replacing any of the G(p, t) loops

with J(p, t) response functions connected to (∆′/2)φ̄2 gives a lower order contribution.

Similarly, any other diagrams, which would originate from considering higher order surface

terms, will involve more than n/2 loops, and will therefore decay faster in time. For n

odd one finds that there are no diagrams for 〈ψn〉 which decay as slowly as t−nd/4. That

is, for n odd, limt→∞〈(td/4ψ)n〉 = 0. The distribution of the variable td/4ψ has only even

moments as t → ∞, and these moments are just multiples of 〈(td/4ψ)2〉, generated by all

possible pair contractions. Therefore the distribution is normal.

5.9. Correlation Functions for 2 < d < 4

When d > 2, one can use the classical action to calculate the correlation functions.

Unfortunately, these correlation functions are averaged quantities, and therefore much of

the microscopic information about the distribution of particles is lost. However, there are

interesting parallels between these correlation functions and those of the phase ordering

systems with scalar order parameter.

Consider the distribution of the random variable td/4φ(x, t) with 2 < d < 4. From

§5.4 we know that 〈td/4φ− td/4|ψ|〉 → 0 as t → ∞. Furthermore, from equation (5.34) it

follows that, as t → ∞, 〈(td/4φ − td/4|ψ|)2〉 → 0. This suggests that the joint probability

139



distribution of the non-negative random variable td/4φ(x, t) − td/4|ψ(x, t)| goes to a δ

function, or that the distribution P [td/4φ] → P ′[td/4|ψ|] as t→ ∞. The latter distribution

is known exactly, as td/4ψ is at late times given by a static normal distribution.

It is not correct to say that asymptotically φ and |ψ| are everywhere equal, since

this would imply that there are no regions in which the densities a and b are both non-

zero. However, the reaction regions, those in which both densities are non-zero, become

negligibly small for large t, and the corrections to setting φ equal to |ψ| in calculating

correlation functions will be subleading in time. Stated another way, the leading term in

both 〈φ1φ2〉 and 〈|ψ1||ψ2|〉 is of order t−d/2. To this order the two random variables φ and

|ψ| have identical distributions. This is in contrast to a quantity such as φ2 −ψ2, which is

measuring a subleading term relative to t−d/2.

We can use the property that td/4φ is given by the absolute value of a Gaussian random

field to calculate correlation functions. This is similar to what is done is the dynamics of

phase ordering, where the order parameter field can be mapped to an auxiliary field which

is assumed to be a Gaussian random field. This analogy will be discussed further below.

Since φ and |ψ| are given by the same distribution, we conclude

〈φ1φ2〉 ∼ 〈|ψ1||ψ2|〉, where the labels indicate the positions x1 and x2 at time t. The corre-

lation function 〈|ψ1||ψ2|〉 can be calculated exactly by using the fact that, asymptotically,

ψ(t) has a normal distribution. The joint probability distribution P [ψ1, ψ2] is then also

normal, so

P [ψ1, ψ2] =

√

4α2 − β2

2π
exp

{

−αψ2
1 − αψ2

2 − βψ1ψ2

}

, (5.73)

where we have used translational invariance to set 〈ψ2
1〉 = 〈ψ2

2〉. The constants α and β are

determined by the values of 〈ψ2〉 and 〈ψ1ψ2〉, which are evaluated from the diagrams. The

latter we have only calculated for δ = 0, or equal diffusion constants, so we consider that

case first. For notational convenience we define 〈ψ2〉 ≡ C(t) = ∆/(8πt)d/2. The diagram

shown in fig. 5.12(a) is used to calculate the correlation function 〈ψ(p)ψ(−p)〉, from which

one finds

〈ψ1ψ2〉 =

∫

ddp

(2π)d
eip·(x1−x2)〈ψ(p)ψ(−p)〉. (5.74)
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When δ = 0 then 〈ψ(p)ψ(−p)〉 = ∆e−2p2t, and

〈ψ1ψ2〉 = C(t) exp(−r2/8t) ≡ C(t)f(r2/t) (5.75)

where r = |x1 − x2|. In terms of (5.75) we find for α, β

α =
1

2C(1 − f2)
β =

f

C(1 − f2)
. (5.76)

p)ψ( -pψ( ) ∆=

-p

p

Figure 5.12. The diagram for 〈ψ(p)ψ(−p)〉, when δ = 0.

With these values substituted into (5.73), one can calculate

〈φ1φ2〉 ∼ 〈|ψ1||ψ2|〉 =

∫ ∞

−∞

dψ1

∫ ∞

−∞

dψ2 |ψ1||ψ2|P [ψ1, ψ2]

=
2C

π

[

√

1 − f2 + f arctan

(

f
√

1 − f2

)]

.

(5.77)

This correlation function can be used to find the correlation functions 〈a1a2〉 and 〈a1b2〉.

Specifically

〈a1a2〉 =
1

2
〈φ1φ2 + ψ1ψ2〉, (5.78)

which gives for the connected part 〈α1a2〉c = 〈a1a2〉 − 〈a〉2,

〈a1a2〉c =
∆

π(8πt)d/2

[

π

2
f − 1 +

√

1 − f2 + f arctan

(

f
√

1 − f2

)]

(5.79)

For large r, f = exp(−r2/8t) is small, giving

〈a1a2〉c ∼
∆

2(8πt)d/2
e−r

2/8t. (5.80)
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Similarly, 〈a1b2〉 = 〈φ1φ2 − ψ1ψ2〉/2, so that

〈a1b2〉c =
∆

π(8πt)d/2

[

−π
2
f − 1 +

√

1 − f2 + f arctan

(

f
√

1 − f2

)]

(5.81)

which for large r goes as

〈a1b2〉c ∼ − ∆

4(8πt)d/2
e−r

2/8t. (5.82)

A plot of these connected correlation functions is shown in fig. 5.13. The signs of these,

〈a1a2〉 > 0 and 〈a1b2〉 < 0, can be understood for short distances to be a consequence of

the segregation. Given an A particle at a particular point, there is an increased probability

that a nearby particle is also an A, and a decreased probability that it is a B.

-0.4

0

0.4

0.8

0 2 4 6
r/ t

<aa>

<ab>

1/2

c

c

Figure 5.13. The correlation functions 〈a(r, t)a(0, t)〉c and

〈a(r, t)b(0, t)〉c plotted as functions of r/
√
t. The vertical axis is

given in units of ∆(8πt)−d/2.

For the case δ 6= 0 one has 〈ψ2〉 = C(t)Q(d, δ), as given by (5.70). The generalization

of 〈ψ(p)ψ(−p)〉, shown in fig. 5.12, behaves for small p the same as when δ = 0. Therefore,

for large r one still has 〈ψ1ψ2〉 = Cf . When this is put in the expressions for 〈a1a2〉 and
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〈a1b2〉 one finds that the large r behavior is given by (5.80) and (5.82) is unaffected by

δ 6= 0.

While these correlation functions and other quantities can be calculated, they ulti-

mately rely on the stronger statement that ψ is a Gaussian random field, and that φ ∼ |ψ|.

The topology of the domains is determined by the random field, with the boundaries

between a regions and b regions given by the zeroes of ψ. This topology is completely

equivalent to an analogous situation in phase ordering. It has been suggested in the phase

ordering of a scalar order parameter that an invertible, non-linear mapping from the order

parameter field to an auxiliary field results in the latter being a Gaussian random field

[70]. Usually this mapping is chosen to be the solution of a single kink, for example the

hyperbolic tangent profile. While this method is no longer believed quantitatively to be

correct [71], it does provide a qualitative picture of the structure of the domains. Again,

the zeroes of this Gaussian random field determine the boundaries between the equilibrated

phase.

The difference between these systems lies in how correlation functions are calculated

from this random field. In the reaction-diffusion case one is interested in the correlation

functions of the field itself, and of the absolute value of the field. Neither of these quantities

exhibit remarkable behavior. In the phase ordering one argues that at late times the

mapping between the order parameter field and the Gaussian field goes to a step function,

and therefore order parameter correlations are given by the correlations of the sign of the

random field. These sharp boundaries have generally more interesting features than in

the present case. In particular they give rise to non-analytic terms in the small r limit of

the correlation function, or correspondingly power law tails for large wave number in the

Fourier transform.
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