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We consider a phase field model for molecular beam epitaxial growth with slope selec-

tion, with the goal of determining linear energy stable time integration methods for the

dynamics. Stable methods for this model have been found via a concave-convex splitting
of the dynamics, but this approach generally leads to a nonlinear update equation. We

seek a linear energy-stable method to allow for simple and efficient time marching with

fast Fourier transforms. Our approach is to parametrize a class of semi-implicit methods
and perform unconditional von Neumann stability analysis to identify the region of sta-

bility in parameter space. Since unconditional von Neumann stability does not ensure

energy stability, we perform extensive numerical tests and find strong agreement between
the predicted and observed stable regions of parameter space. This analysis elucidates

a novel feature that the stability region in parameter space differs for a mono-domain

system (single equilibrium slope) versus a many-domain system (coarsening facets from
an initially flat surface). The utility of these steps is then demonstrated by a comparison

of the coarsening dynamics for isotropic and anisotropic variants of the model.
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1. Introduction

In growing crystal surfaces by molecular beam epitaxy (MBE), the Ehrlich-

Schwoebel-Villain effect1,2,3 can destabilize a flat interface and lead to the forma-

tion of pyramids or mounds (see 4 for a recent review). These surface features then

coarsen, with their height and spatial extent growing as powers of time. Theoreti-

cal studies of MBE coarsening typically employ continuum models with nonlinear

equations of motion. Unfortunately, numerical integration of these equations is ham-

pered by instabilities. As such, much recent effort has been devoted to finding stable

integration methods. In this work, we determine a class of linear energy stable in-

tegration methods that are particularly efficient and simple to implement because

1
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the updated field can be obtained via the fast Fourier transform (FFT).

Our model consists of a height field h(x, y, t) that obeys the equation of motion

∂h

∂t
= −ε2∇4h−∇ ·

{
(1− |∇h|2)∇h

}
, (1)

applicable for homoepitaxial growth with isotropic slope selection. The motivation

for this and related models is discussed below. With these dynamics, equilibrated

regions of uniform gradient and unit slope form. Domains with different slope orien-

tations meet at edges of constant width w, which is of order ε. As the system evolves

the edges are healed out, resulting in the growth of the characteristic domain size

L(t). For this particular model the power law growth L(t) ∼ t1/3 has been found

from theoretical analysis5,6,7,8, simulations6,7,9, and rigorous bounds10.

Numerical simulations of coarsening are useful for testing scaling and the pre-

dicted growth laws and for measuring properties of the scaling state, such as cor-

relations, growth law amplitudes, autocorrelation functions, and more (see 11 for

a coarsening review). But these simulations face several restrictions. To reach the

asymptotic scaling regime, it is necessary to evolve until the domain size is much

greater than the edge width, L(t)� w. But the lattice size ∆x must be sufficiently

small compared to w, in order to resolve the edge shape and corresponding line

tension. Finally, the system size Lsys must be large enough that domains can grow

into the scaling regime before finite size effects appear. To satisfy this string of con-

ditions, ∆x < w � L(t)� Lsys, requires lattices of very large linear size Lsys/∆x,

evolved to late times.

Thus, for coarsening studies it is crucial to use integration schemes that are ac-

curacy-limited rather than stability-limited. The order of the accuracy and the size

of the truncated error is relatively less important. The distinction is that stability-

limited methods require marching with a fixed-size time step, while an uncondition-

ally stable method, i.e. one with no conditions on ∆t, allows a time step determined

by the natural time scale of the dynamics. Since the characteristic edge velocity

scales as vedge ∼ ∂L/∂t ∼ t−2/3, where t is the instantaneous time, this allows

a growing time step ∆t ∼ At2/3(see12,13). The order of the method and the size

of the truncation error affect the optimal choice of the coefficient A, but do not

alter the time exponent. Using dt/dn ∼ ∆t, where n is the number of integration

steps, it follows that unconditionally stable methods allow accurate evolution with

t ∼ n3, rather than the stability-limited t ∼ n. For typical simulation parameters,

this provides greater than a 1000-fold increase in efficiency!

Eyre provided a general approach for generating unconditionally stable semi-

implicit integration methods, based on a convex-concave splitting14. These schemes

are energy stable, which means they preserve the monotonic energy decrease of

the continuous-time equation. This convex-concave splitting has been successfully

applied to Eq. (1)9,15,16,17, but these schemes have nonlinear implicit terms that

require iteration to solve for the updated field. Qiao, Sun, and Zhang constructed

linear energy stable methods18, but their implicit terms contain non-constant, field-
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Fig. 1. (color online) Stability diagram for the parameters b1 and b2 in Eq. (2). The UvN stable

parameter values are shaded in gray, with the darker region corresponding to a single-domain
system and the combined gray regions corresponding to a many-domain system. The points rep-

resent numerical tests of energy stability: the (blue) triangles are parameter values that are stable

for single-domain systems; these together with the (purple) squares are stable for multi-domain
systems; and the × are parameter values that were found to be unstable.

dependent factors, so the update equation must similarly be solved iteratively rather

than directly by FFT.

Our goal is to find integration methods for Eq. (1) that are (i) unconditionally

energy stable, i.e. stable for any size time step ∆t, and (ii) linear in the updated

field with constant coefficients, so the updated field can obtained directly via FFT.

Such methods were found for a model of MBE growth without slope selection19,20.

For the model with slope selection, Xu and Tang proved that a scheme with both

properties is possible, given an assumption that the magnitude of the slope |∇h| has

an upper bound21. Our work is complementary to Ref. 21, in ways we will describe

below.

Our method is to parametrize steps with linear implicit terms that can be solved

directly by FFT, determine the range of step parameters that satisfy unconditional

von Neumann (UvN) stability, and then test these parameters numerically for energy

stability. This approach yielded stable, direct steps for the Cahn-Hilliard and Allen-

Cahn equations12. We find for the equation of motion Eq. (1) there exists a class of

first order, semi-implicit steps

ht+∆t = ht + ∆t
[
−ε2∇4ht −∇ ·

{
(1− |∇ht|2)∇ht

}]
− b1∆t∇2(ht+∆t − ht)− b2ε2∆t∇4(ht+∆t − ht)

(2)

that provides stable numerical integration for appropriate choice of the parameters

b1 and b2, as shown in Fig. 1. The b1 and b2 terms are added for stability purposes
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and are the same order as the error. The results of our UvN stability analysis are

presented as shaded regions while our numerical tests of energy stability are plotted

as points. Although UvN stability does not ensure energy stability, we find that it

is very effective in determining the energy stable regions.

The UvN stability conditions plotted here are independent of lattice type or

details of the spatial derivatives (e.g., finite difference versus spectral methods),

relying only on the negative semi-definite spectrum of the laplacian. In comparison

to Xu and Tang21 the current work provides the following.

(a) Xu and Tang proved energy stability for the parameters b1 < −1 and b2 = 1.

While we lack a proof and rely on numerical confirmation, our results are consistent

with theirs and extend the stable parameter range to all b2 > 1/2.

(b) The UvN stability analysis and our numerical tests reveal an interesting

feature: the stability range differs for single- and many-domain systems. The analysis

shows that the most unstable Fourier mode is that with its wavevector oriented

with the local slope ∇h. In the many-domain system, of interest in coarsening

studies, each mode samples many different slope directions, which acts to suppress

the instability. This expands the stable parameter range to b1 < −1/2.

(c) We perform extensive numerical tests, building on the testing done in 7,21.

This is important for supporting the assumption present in both Xu-Tang and the

present work that the slope |∇h| may safely be assumed to be bounded.

(d) We find, in conjunction with 12, a pattern of success for UvN stability anal-

ysis predicting the parameter range of energy stable methods. This is noteworthy

because it is a relatively straightforward procedure that can be easily brought to

new phase field models to develop more linear energy stable methods.

(e) As with Xu and Tang, our results can be generalized straightforwardly to

anisotropic growth, where only a discrete set of slope orientations are preferred.

We demonstrate this explicitly for a model with square symmetry, appropriate for

growth on (100) surface. An application taking full advantage of the accuracy re-

striction yields the most extensive (to date) demonstration of power law growth, and

challenges recent claims8 that the square symmetry model should exhibit asymp-

totically t1/3 growth.

The remainder of the paper is as follows. In Sec. 2 we review some of the proper-

ties of the model to provide necessary background for subsequent sections. In Sec. 3

we present the UvN stability analysis, both for single- and many-domain systems.

We describe the numerical tests of energy stability in Sec. 4, and in Sec. 5 we extend

our analysis to the anisotropic model with square symmetry. Details of our finite

difference scheme are presented in Sec. 6, followed by the application of comparing

the asymptotic coarsening of the isotropic and square symmetry model in Sec. 7.

Finally, we summarize our results in Sec. 8.
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2. The Continuous Time Model

In this section we provide motivation for the model and present some of its prop-

erties, showing in particular the instability to pyramid formation and the energy

decreasing dynamics of the continuous time model.

The height field, h(x, y, t), is defined in a co-moving frame so that its average is

zero, and obeys a continuity equation. The current J has an equilibrium surface dif-

fusion contribution equal to the gradient of the local curvature22, JSD = ∇(ε2∇2h),

and a non-equilibrium component JNE:

∂h

∂t
= −∇ · J = −ε2∇4h−∇ · JNE. (3)

A noise term is omitted as this is considered to be irrelevant for coarsening11. We

consider the slope-selecting nonequilibrium current

JNE = (1− |∇h|2)∇h, (4)

which gives JNE ∼ ∇h for small gradients, an uphill current due to the Ehrlich-

Schwoebel-Villain effect3, and JNE = 0 for slopes of unit magnitude. Inserting

Eq. (4) into the continuity equation (3) yields the equation of motion, Eq. (1).

Common variations on this model include slope-selecting currents that vanish for

only a discrete set of ∇h directions, reflecting the underlying crystalline structure,

and models without slope selection. The physical basis and experimental evidence

for these various models is described in 5,6,23,24,25 and references therein.

The equation of motion, Eq. (1), can be written as a gradient flow

∂h

∂t
= −δF

δh
(5)

for the free energy functional

F [h] =

∫
d2x

{
1
2ε

2(∇2h)2 + 1
4

(
1− |∇h|2

)2}
. (6)

Gradient flow results in a monotonically decreasing free energy,

d

dt
F =

∫
d2x

(
δF

δh

)
∂h

∂t
= −

∫
d2x

(
∂h

∂t

)2

≤ 0. (7)

As first noted by Eyre14, the essential stability criterion for discrete time steps is

to preserve the energy decreasing property of the continuous-time equation.

Next we review the the linear stability of the continuous time equation, which

will be useful context for the von Neumann stability analysis in Sec. 3. Consider a

height field

h(x, y, t) = Cx+ η(x, y, t), (8)

which consists of small deviations η from a uniform slope. Inserting this into Eq. (1),

linearizing in η, and Fourier transforming to η̃(k, t) ≡
∫
d2x exp(ik·x)η(x, y, t) gives

∂η̃(k, t)

∂t
= (k2 − ε2k4 − C2k2 − 2C2k2

x) η̃(k, t). (9)
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For an interface that is initially flat we set C = 0 and obtain the growth rate for

small fluctuations in the initial conditions:

∂η̃(k, t)

∂t
= k2(1− ε2k2) η̃(k, t). (10)

Long wavelength modes with k < ε−1 are unstable and grow, which is exactly the

instability that leads to pyramid formation. In the context of the Cahn-Hilliard

equation this is the spinodal instability11. Note that the exponential growth of the

mode is nevertheless accompanied by a decreasing total free energy, as required by

Eq. (7).

For an equilibrium interface we set the slope C = 1 to obtain

∂η̃(k, t)

∂t
= −(ε2k4 + k2

x) η̃(k, t). (11)

The negative right hand side indicates that height fluctuations about the equilibrium

slope decay, and the uniform slope profile is stable.

3. Unconditional von Neumann Stability Analysis

The goal in constructing a discrete time method is to be faithful to the physical

behavior of the continuous time equation. In our case, this means our discrete

step should be energy stable, to preserve the energy-decreasing property of the

continuous equation. However, in this section we analyze instead von Neumann

(vN) stability, i.e. the linear stability of the discrete step, Eq. (2). This analysis has

certain advantages. It is relatively straightforward and, as shown in Fig. 1 and in

Ref. 12, it successfully predicts the parameter range for energy stability, as judged by

numerical tests. Also, the method provides insight into the dynamics of the Fourier

modes, which in the present case proves useful in clarifying the distinction between

the single- and many-domain systems.

We first present vN stability analysis on the Euler step, as an example with

conditional stability, i.e., a lattice-dependent upper bound on ∆t. Then we consider

our parametrized semi-implicit step and perform unconditional vN stability analysis;

that is, we seek parameter values which yield vN stable steps for any size ∆t. Note

that we will only impose vN stability on the equilibrium, sloped interface and not

on the flat interface, where the linear instability is part of the physical behavior of

the continuum equation.

In addition to the time discretization, the spatial derivatives in our equation of

motion must be treated by finite-difference or spectral methods. Without specifying

the details of the scheme, we denote the Fourier transform of the two-dimensional

numerical laplacian as λ(k). In the continuum limit, λ(k) → −k2. For spatially

discretized systems, 0 ≥ λ(k) ≥ λmin, where the value of the lower bound λmin ∼
−1/∆x2 depends on the details of the discretized laplacian. Our stability conditions

will rely only on the universal upper bound of zero.

We will use λ(kx) to represent the Fourier transform of the numerical derivative

second derivative ∂2/∂x2.
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3.1. Euler Step

Our discrete time step, Eq. (2), reduces to an Euler step in the case b1 = b2 = 0.

We plug in h = x + η (i.e., slope C = 1), linearize in η, and Fourier transform to

obtain

η̃t+∆t =
[
1 + ∆t

{
−ε2λ(k)2 + 2λ(kx)

}]
η̃t. (12)

The vN stability condition is that the square bracket term has magnitude less than

unity, to ensure fluctuations die away. The negative curly bracket term in Eq. (12)

has no lower bound in the continuum limit ∆x → 0, and thus the Euler step

would be vN unstable for any size ∆t. The situation is improved by the numerical

derivative, which places a lower bound on the curly bracket terms, leading to vN

stability for ∆t . |λmin|−2ε−2 ∼ ∆x4. The analysis is essentially identical to what

happens in the Cahn-Hilliard equation26. The Euler step provides an example of

a lattice-dependent stability condition (relying on the lower bound of λ(k) rather

than the upper bound of zero) and it results in a fixed bound on the time step,

regardless of the natural time scale of the dynamics.

3.2. UvN Stability for a Single Domain

We return to our parametrized discrete step, Eq. (2), but now we leave b1 and b2
unspecified. We seek to find ranges for the parameters which will lift any restrictions

on ∆t, i.e., unconditional stability. We substitute Eq. (8) with slope C = 1 into

Eq. (2), linearize, and Fourier transform. The resulting step can be written as

[1 + ∆tL(k)] η̃t+∆t = [1 + ∆tR(k)] η̃t (13)

with

L(k) = b1λ(k) + b2ε
2λ(k)2 (14)

and

R(k) = 2λ(kx) + b1λ(k) + (b2 − 1)ε2λ(k)2. (15)

Before imposing the UvN stability, we note that it is necessary to have L(k) ≥ 0

so that the square bracket on the left of Eq. (13) is non-vanishing for all ∆t and k.

This gives the requirement that b1 ≤ 0 and b2 ≥ 0.

Next, the UvN stability condition, |η̃t+∆t| < |η̃t| for all ∆t and k, will be satisfied

if L(k) > |R(k)|. In the case that R(k) is positive, this gives the condition

0 < L(k)−R(k) = −2λ(kx) + ε2λ(k)2, (16)

which is intrinsically satisfied due to the non-positivity of λ(kx). While here and

below the k = 0 mode saturates the bound, we can safely ignore it since it is static.

The crucial condition, then, comes from imposing L(k) > −R(k), which becomes

λ(kx) + b1λ(k) +

(
b2 −

1

2

)
ε2λ(k)2 > 0. (17)
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The last term is positive for b2 > 1/2. Next, noting that λ(kx) ≥ λ(k), we have a

lower bound on the remaining two terms:

λ(kx) + b1λ(k) ≥ (1 + b1)λ(k). (18)

This will be positive provided that b1 < −1. Thus, our conditions for UvN stability

of a single-domain system are

b1 < −1, b2 > 1/2, (19)

which is plotted as the dark gray region of Fig. 1.

Note that for b1 slightly above −1, in the unstable region, it is Fourier modes

with λ(kx) ≈ λ(k) that first violate Eq. (17). This corresponds to wavevectors k that

are nearly oriented along the x-axis, i.e. the gradient direction of the equilibrium

interface.

3.3. UvN Stability for a Many-Domain System

In a many-domain system, which is the relevant case for coarsening studies, we are

not free to choose the coordinate axes to align the x axis with the interface gradient,

since there are many facets with different gradient directions. To analyze this case,

we first linearize about a single domain but with an arbitrary normal direction,

parametrized by the polar coordinate θ

h(x, y, t) = cos(θ)x+ sin(θ)y + η(x, y, t). (20)

This follows through just as before, with the important stability condition Eq. (17)

becoming

cos2 θλ(kx) + sin2 θλ(ky) + b1λ(k) +

(
b2 −

1

2

)
ε2λ(k)2 > 0. (21)

Now, if many domains are present in the system with essentially random orienta-

tions, then for any particular Fourier mode the above equation will be averaged

over θ, giving 〈cos2 θ〉 = 〈sin2 θ〉 = 1/2. Using

λ(kx) + λ(ky) ≈ λ(k) (22)

reduces Eq. (21) to (
b1 +

1

2

)
λ(k) +

(
b2 −

1

2

)
ε2λ(k)2 > 0. (23)

Thus, our UvN stability condition for many-domain systems is

b1 < −1/2, b2 > 1/2, (24)

which is depicted as the combined shaded regions of Fig. 1. The averaging over

multiple orientations provides a greater parameter range of stability than the single-

domain case.

Note that in general Eq. (22) is only an approximate relationship. It is a strict

equality in the ∆x→ 0 continuum limit, and also in the common five-point stencil
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for the numerical laplacian on a square lattice, but for other choices of numerical

derivatives it need not be exact.

4. Numerical Tests of Energy Stability

Since the field equation of motion is nonlinear, von Neumann stability analysis is

not sufficient to prove energy stability. For that reason, we have conducted extensive

numerical tests for energy stability for a range of b1 and b2 parameter values. We

present the details of the numerical derivative implementation in Sec. 6, but we note

here two important general features such an implementation should have. First, the

local conservation law should be constructed to hold exactly, without order ∆xn

truncation error, and second, the energy-decay property of the continuous time

equation should be maintained when spatially discretizing. That is, the particular

scheme of calculating the spatially discrete analog of the free energy F [h] in Eq. (6)

and the equation of motion should be consistent, so that

d

dt
hij = − ∂

∂hij

(
F

∆x2

)
(25)

is an exact relation, without order ∆xn truncation error.

For each b1 and b2 value represented as a data point in Fig. 1 we performed the

following tests. First, we nondimensionalize Eq. (2) without loss of generality by

rescaling length, height, and time via

x→ εx′ h→ εh′ ∆t→ ε2∆t′ t→ ε2t′. (26)

This transformation results in the same Eq. (2) for the primed quantities with ε = 1.

We then evolved 512× 512 sized lattices with lattice constant ∆x′ ranging from 0.1

to 1 (or ∆x ranging from 0.1ε to ε), up to a final time t′max. These systems were

evolved using three different methods: an Euler step with ∆t′ = 0.003 out to a

t′max = 104, a semi-implicit step with b1 = −1.5 and b2 = 1 and growing time step

∆t′ = 0.003t′2/3 out to time t′max = 105, and the same semi-implicit parameters

with a fixed time step ∆t′ = 10 out to time t′max = 105. For each of these cases we

analyzed multiple runs and varied between random initial conditions and sinusoidal

initial conditions with long and short wavelengths, including the cases studied in
7,21. These times may be translated to ε 6= 1 units for any choice of ε by the rescaling

t = ε2t′.

At regular intervals during the evolution we tested a single step calculated via

Eq. (2) with sizes varied between 1 ≤ ∆t′ ≤ 106. This step was used only for energy

stability testing and did not contribute to the subsequent time evolution. Any time

that the free energy was found to increase, that particular set of parameter values

was identified as unstable.

For the many-domain system, we used periodic boundary conditions and an

initially flat interface (plus the random or sinusoidal fluctuations). For the single-

domain system, we first re-write the field equation of motion, Eq. (1) in terms of
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deviations from the uniform slope, giving

∂η

∂t
=− ε2∇4η + 2∂2

xη + 2∂x|∇η|2 + 2(∂xη)∇2η

+∇ · (|∇η|2∇η),
(27)

where ∂x = ∂/∂x, and then constructed the analogous numerical implementation

of this equation. This approach was necessary to eliminate sensitivity to truncation

error. We imposed periodic boundary conditions on η, which corresponds to shifted

periodic boundary condition on h.

In Fig. 1 we show the results of this testing both for the single- and many-

domain systems. The (blue) triangles represent parameter values that were found

to be stable for the single-domain system, that is, under all our testing, there were

no single incidents of energy increase. The (purple) squares are parameters values

that were found to be unstable in the single-domain system, but stable for the many-

domain case. The remaining × are parameter values found to be unstable for both

single- and many-domain systems. We find a striking degree of agreement between

the predictions of UvN stability analysis and the numerical tests for unconditional

energy stability. This is one of our main results.

5. Model with Square Symmetry

While the isotropic growth model, Eq. (1), provides a useful starting point for

analyzing surface growth coarsening, experimental systems typically select for only

a discrete set of slope orientations. For example, homoepitaxial growth on a Cu(100)

surface exhibits a square symmetry with four equilibrium slope orientations27. This

symmetry can be easily added to the phase-field model by adding a term to the free

energy functional

Fsq[h] = Fiso[h] + α

∫
d2x (∂xh)2(∂yh)2 (28)

where Fiso[h] is the free energy of Eq. (6), α is a non-negative coefficient determining

the strength of the anisotropy, and ∂x = ∂/∂x. The additional term is non-negative

and vanishes for slopes oriented with the cartesian axes. For α = 1, the potential is

isotropic to quadratic order about any of the four equilibrium points.

Taking ∂h/∂t = −δFsq/δh then gives the equation of motion

∂h

∂t
= −ε2∇4h− ∂x

{[
1− |∇h|2 − 2α(∂yh)2

]
∂xh

}
− ∂y

{[
1− |∇h|2 − 2α(∂xh)2

]
∂yh

}
. (29)

We parametrize our first order accurate time step as before, with

ht+∆t = ht+∆t

(
∂h

∂t

)
t

− b1∆t∇2(ht+∆t − ht)

− b2ε2∆t∇4(ht+∆t − ht).
(30)
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Fig. 2. Stability diagram for the square symmetry model of Sec. 5. Squares represent (b1, b2)
parameter values which were energy stable in our numerical tests, whereas the × were found to

be unstable. The shaded region represents UvN stable parameter values..

UvN stability analysis about an equilibrium slope, h = x+ η, takes the same form

Eq. (13), with L(k) unchanged and

R(k) = 2(1− α)λ(kx) + (2α+ b1)λ(k) + (b2 − 1)ε2λ(k)2. (31)

Following the method of Sec. 3.2 for a single equilibrium domain, the crucial con-

dition L+R > 0 then results in the stability region

b1 < −max(1, α), b2 > 1/2. (32)

For α < 1, the stability boundary is determined by the Fourier mode in the direction

of the slope gradient, while for α > 1 the boundary is determined by the Fourier

mode perpendicular to the slope gradient.

For a multidomain system we need to average over domains with gradients in

the ±x̂ and ±ŷ directions, analogous to the average over orientations in Sec. 3.3.

This results in the stability region

b1 < −
1 + α

2
, b2 > 1/2. (33)

We conducted numerical tests of energy stability for the multidomain system with

α = 1 following the same protocol shown in Sec. 4 and again find good agreement,

as shown in Fig. 2. The details of our numerical spatial derivatives are provided

below in Sec. 6.

As this section demonstrates, it is straightforward to generalize the analysis

of the isotropic model to the case with a discrete set of preferred slope orienta-

tions. In particular, the analysis for models with six-fold symmetry6 and three-fold

symmetry28 should follow analogously.
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6. Finite Difference Scheme

Here we present details of the spatial discretization scheme we used in our numerical

tests. We present these in a discrete-space, continuous time picture, as our goal is to

ensure that the conservative dynamics and the gradient flow are exact, i.e. preserved

to all orders in ∆x. The essential condition for gradient flow is that the equation of

motion must be connected to a particular choice for the free energy functional such

that

∂hi,j
∂t

= − ∂

∂hi,j

(
F

∆x2

)
. (34)

Local conservation is imposed by ensuring that the equation of motion has the form

dhi,j
dt

= − 1

∆x

[
{Jx}i+1/2,j − {Jx}i−1/2,j

− {Jy}i,j+1/2 − {Jy}i,j−1/2

] (35)

so that the same {Jx}i+1/2,j flows into hi+1,j and out of hi,j , and the same

{Jy}i,j+1/2 flows into hi,j+1 and out of hi,j .

Our implementation uses an on-site finite-difference expression for ∇2h, for

which we take the standard five-point stencil,

{∇2h}i,j =
1

∆x2
[hi+1,j + hi−1,j + hi,j+1 + hi,j−1 − 4hi,j ], (36)

and the cell-centered expression for |∇h|2,

{|∇h|2}i+1/2,j+1/2 =

1

2∆x2

[
(hi+1,j − hi,j)2 + (hi+1,j+1 − hi,j+1)2

+ (hi,j+1 − hi,j)2 + (hi+1,j+1 − hi+1,j)
2
]
.

(37)

With these choices it is straightforward to show that

∂

∂hk,l

∑
i,j

{|∇h|2}i+1/2,j+1/2 = −2{∇2h}k,l. (38)

For the isotropic model, our equation of motion is given by Eq. (34) with the

choice

F

∆x2
=
∑
i,j

[
ε2

2
{∇2h}2i,j +

1

4

(
1− {|∇h|2}i+1/2,j+1/2

)2
]
. (39)

By making use of Eq. (38), the equation of motion can be shown to satisfy the

discrete continuity equation (35) with current

{Jx}i+1/2,j = {JSD
x }i+1/2,j + {JNE

x }i+1/2,j (40)

where the surface diffusion current is

{JSD
x }i+1/2,j = ε2 {∇2h}i+1,j − {∇2h}i,j

∆x
, (41)
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and the nonequilibrium current is

{JNE
x }i+1/2,j =

hi+1,j − hi,j
∆x

×
[
1− 1

2

(
{|∇h|2}i+1/2,j+1/2 + {|∇h|2}i+1/2,j−1/2

)]
,

(42)

and analogous expressions for {Jy}i,j+1/2. The discrete form of the free energy,

Eq. (39), was used for the numerical tests for energy stability.

For the square symmetry model, we need additionally the cell-centered deriva-

tives

{(∂xh)2}i+1/2,j+1/2 =

1

2∆x2

[
(hi+1,j − hi,j)2 + (hi+1,j+1 − hi,j+1)2

]
{(∂yh)2}i+1/2,j+1/2 =

1

2∆x2

[
(hi,j+1 − hi,j)2 + (hi+1,j+1 − hi+1,j)

2
]
.

(43)

The free energy is given by Eq. (39) with the additional term

Fsq

∆x2
=

F

∆x2
+ α

∑
i,j

{(∂xh)2}i+1/2,j+1/2{(∂yh)2}i+1/2,j+1/2 (44)

which corresponds to the nonequilibrium currents

{JNE,sq
x }i+1/2,j = {JNE

x }i+1/2,j − α
(
hi+1,j − hi,j

∆x

)
×
(
{(∂yh)2}i+1/2,j+1/2 + {(∂yh)2}i+1/2,j−1/2

)
,

(45)

and

{JNE,sq
y }i,j+1/2 = {JNE

y }i,j+1/2 − α
(
hi,j+1 − hi,j

∆x

)
×
(
{(∂xh)2}i+1/2,j+1/2 + {(∂xh)2}i−1/2,j+1/2

)
.

(46)

7. Coarsening Application

While the isotropic growth model is understood to exhibit L ∼ t1/3 coarsening,

experiments27 and simulations6,29 have found L ∼ t1/4 for crystal growth with

square symmetry. However, some variants of this square symmetry model can result

in t1/3 growth30, and more recently, it has been argued that all MBE coarsening with

slope selection should asymptotically crossover to t1/3 growth, with the observed

t1/4 behavior being a metastable transient8.

As an application, we have simulated the coarsening for both α = 0 (isotropic)

and α = 1 (square symmetry) using the stable step parameters b1 = −1.5 and

b2 = 1 and a growing step size

∆t′ = max(0.1, 0.01t′2/3). (47)
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t′ = 1 000 t′ = 5000

t′ = 100 000t′ = 25 000

Fig. 3. (color online) Plotted is the laplacian of h(x, y, t), for a system evolved with a growing

time step ∆t ∼ t2/3. Simulation details are provided in the text. Positive values (troughs) are red,
negative values (peaks) are blue, and the white regions are domains of uniform slope with zero

laplacian.

in units with ε = 1, which are generally used in coarsening studies (see, e.g.,

Refs. 8,10,11,12,13,24,25,26,29). The time t′ can be translated to a time t for any value

of ε by t = ε2t′, as in Eq. (26). Shown in Figs. 3 are snapshots of domain configu-

rations for various times for the isotropic model, Eq. (1), simulated on a 512× 512

lattice. The analogous configurations for the square symmetry model, Eq. (29), are

shown in Fig. 4.

To measure the coarsening rate, we performed 20 independent runs on a 2048×
2048 lattice with ∆x = ε = 1 (which is still small enough to resolve the rounding of

the facet edges), out to time t′max = 107. This extends at least two decades farther

into the scaling regime than previous simulations. We measure the length scale via

the free energy: once equilibrated domains form, the free energy density f = F/L2
sys

is proportional to the amount of edge in the system, which is inversely proportional

to the characteristic size of the domains, so f ∼ 1/L(t). Fig. 5 shows the decay

of the free energy with time for α = 0 (isotropic) and α = 1 (square symmetry).

For the time range simulated, we observe the expected t1/3 growth for the istropic

model, and slightly slower than t1/4 growth, with a exponent around 0.22, for the
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t′ = 1 000 t′ = 5000

t′ = 100 000t′ = 25 000

Fig. 4. (color online) Plotted is the laplacian of h(x, y, t) as described in Fig. 3, but here for the

square symmetry model.

square symmetry model. While these results do not rule out an asymptotic crossover

to t1/3 growth, we find no signature of the crossover in the extended time range of

our simulation.

Next, we explore the hypothesis of a square symmetry to isotropic crossover

further by weakening the anisotropy strength α. We measure the growth rates for

α = 0, 0.01, 0.1 and 1, as shown in Fig. 6, scaled by the expected time dependence

of the isotropic model (again measuring the length scale via the free energy density

f ∼ 1/L). We find that for weak α, the dynamics initially tracks the isotropic model,

and after sufficient evolution approaches that of the square-symmetry. That is, we

see the crossover happen in the opposite direction! Evidently with small enough

α, the facets initially form with a nearly isotropic distribution, but the dynamics

slowly evolves this towards the square-symmetry distribution over a time scale that

varies inversely with α.

8. Summary

We have parametrized a first order accurate discrete time step for MBE growth

with slope selection, given in Eq. (2), that is energy stable for appropriate choices

of the parameters b1 and b2. We determined the stability range for these parameters
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Fig. 5. (color online) The free energy density f = F/L2
sys ∼ 1/L(t) as a function of time, where

the time evolution utilized a growing time step, ∆t ∼ t2/3. Simulation details are in the text. The
lower (red) curve is the isotropic model, while the upper (blue) curve is for the anisotropic model

with square symmetry.
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Fig. 6. (color online) The free energy density f =∼ 1/L(t) for varying anisotropy strengths α,
scaled by the expected t1/3 time dependence for the isotropic model. For weak α there is evidence
of a crossover from the isotropic to the square-symmetry growth law.

via unconditional von Neumann stability analysis, and then tested these predictions

with numerical tests for energy stability, as shown in Fig. 1. We find that the UvN

stability analysis serves as an accurate proxy for unconditional energy stability,

similar to the behavior of the Cahn-Hilliard equation12. We extended this analysis

to a model with square symmetry, appropriate for growth on a (100) surface.

Our unconditional stability analysis and tests hold for any value of ε, since this

parameter can be freely varied by rescaling length and time scales, as in Eq. (26).

The accuracy-limited growing step size ∆t′ = A′t′2/3 in ε = 1 units translates

directly to the condition ∆t = At2/3 for ε 6= 1 units, with A = ε2/3A′. In particular,
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the power-law growth of the accuracy-limited time step size is unchanged.

Our stability analysis contained an implicit assumption that the interface slopes

do not exceed unit magnitude, which we justify by noting that the dynamics natu-

rally select for this slope. This came into our UvN analysis by our choice to linearize

about a unit slope domain. We note that the numerical tests for energy stability

contained no such assumption, so the agreement between the two approaches con-

firms validity of the unit slope assumption. The UvN stability analysis also revealed

a distinction in the stability for single-domain and multi-domain interfaces.

The increase in efficiency due to a energy stable method is substantial. For the

simulations presented in Fig. 5, computation by Euler step, for which the largest

stable step size (in ε = 1 units) is ∆t′ = 0.03, would require 3.3× 108 time steps. In

contrast, using a stable method with step size ∆t = max(∆t0, At
2/3) the number of

time steps required to reach some tmax is given by 3t
1/3
max/A, which for our simulations

is 6.5 × 104 steps. Each stable step involves an overhead factor of 2.4 due to the

addition of the FFT, but the net result is an overall increase of efficiency by a factor

of 2100 for the data we present! Note that this factor will increase as computational

resources allow for larger systems to be evolved to later times.

We used this method to extend the range of coarsening simulations for these

models by roughtly two decades in time. As a result we found even for weak

anisotropy no signature of the recently argued crossover to t1/3 coarsening for the

square symmetry model8.

The method of parametrizing linear semi-implicit steps, performing uncondi-

tional von Neumann stability analysis, and then testing the predictions numerically

for energy stability has yielded efficient stable methods for the Cahn-Hilliard and

Allen-Cahn equations12 and now for a class of MBE crystal growth models. We

anticipate that this procedure will prove useful to many other phase field models.
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