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Approximate theories for the restricted primitive model electrolyte are compared in the light of Totsuji's
lower bound for the energfan improvement over Onsagey;’$illan’s upper bound for the free energy, and
thermal stability requirements. Theories based on the Deby#éliyDH) approach and the mean spherical
approximation(MSA), including extensions due to Bjerrum, Ebeling, Fisher, and Levin, and Stell, Zhou, and
Yeh (PMSAL, 2, 3 are tested. In the range* =kgTDa/g?< 10T =0.5, all DH-based theories satisfy Tot-
suji's bound, while the MSA possesses a significant region of violation. Both DH and MSA theories violate
Gillan’s bound in the critical region and below unless ion pairing and the consequent free-ion depletion are
incorporated. However, the PMSA theories, which recognize pairing but not depletion, fail to meet the bound.
The inclusion of excluded-volume terms has only small effects in this respect. Finally, all the pairing theories
exhibit negative constant-volume specific heats whtr 2T =0.1; this is attributable to the treatment of the
association constartS1063-651X%97)03212-1

PACS numbd(s): 05.70.Ce, 64.70-p, 82.60.Hc, 82.60.Lf

I. INTRODUCTION whereFy andUy=VKkgT?(9f/JT) denote the total free en-
ergy and(interna) energy.

The liquid-gas phase transition in electrolytes is of current Recent theory{2—8] has focused on two approaches to
interest because of puzzling experiments and theoretical ekpproximating the free energy of the RPM, based on either
forts to understand them. For recent reviews, [de€3]. The  Debye-Hickel (DH) theory [9] or the mean spherical ap-
primary model used is the restricted primitive mot®PM)  proximation(MSA) [10-12. Many years ago BjerrurfiL3]
consisting of two oppositely charged, but otherwise identicalproposed to improve DH theory by including ion pairing via
sets ofN, =N_ hard spheres of diametarand charge per  chemical association.” Later, Ebeling and Grigd4] com-
particle = g, immersed in a medium of dielectric constant  Pined ion-pairing with an MSA expression for the ionic free

(to represent the solverand volumeV. We will restrict our ~ €nergy; more recently, Levin and Fishi&] and Stell and
attention to the RPM ird=3 dimensions and use the re- Co-workers[8] explored further extensions of the MSA. On

duced temperature and density the other hand, Fisher and Levjd,5] supplemented DH
theory not only with ion pairing and excluded-volume terms
T*=kgTDa/q? (1.19 but also included the solvation free energy of the electrically
active (+,—) dipolar ion pairs. Currently, this class of DH-
and based theories seems to give the best, albeit semiquantitative,
account of the RPM in the critical region as judged by com-
p* =a’p, (1.1D  parison with simulations performed by various autH@ ).
It may be remarked that the simulation estimatesTfrand
ps have been changing at an alarming rfa)]. Neverthe-
less, the MSA-based theories yield approximations Tpr
xp=(47q%p/DkgT) Y2 (1.23 (=0.073) that are significantlyligh.erthan those based on
the DH approach T} <0.056), which in fact agrees much
with better with the simulationsTf =0.048-0.056)2, 5, 8, 15.
At a purely theoretical level, however, one cannot be con-
X= Kpa= \/(477p*/T*), (1.2b tent sincea priori, there seem no clear grounds for prefer-
ring the DH-based theories—apart from their more direct and
the reduced Helmholtz free energy density intuitive physical interpretation—rather than the more mod-
o ern (and fashionable MSA-based theories which—since
f(p,T)=—Fn(V;T)/VKgT, (1.3)  they entail the pair correlation functions and the Ornstein-
Zernike (O2) relation—give the impression of being more
and the reduced configurational energy per particiefined ~ firmly rooted in statistical mechanics. On the other hand, it
via has recently been shown that the DH theories yield pair cor-
relations satisfying the OZ relation in a very natural way
(Ng?/Da)u(p,T)=Uy— 3NKkgT, (1.4 [16]. Furthermore, both theories have an essentially mean-
field character despite which, in contrast to typical mean
field theories for lattice systemseither has any known
*Present address: Polymers Division, National Institute of StanGibbs-Bogoliubov variational formulation or similar basis.
dards and Technology, Gaithersburg, MD 20899. How, then, might the two approaches be distinguished?

wherep=(N,+N_)/V=N/V; the Debye inverse screening
length
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Now Blum and his co-workers have, in various places The recognition of(+,—) ion pairing requires the speci-
[17-20, enthusiastically sung the praises of the MSA for thefication of the correspondingssociation constant ().
RPM, asserting that the theory “is asymptotically correct inEver since Bjerrum’s original proposklL3], this has been a
the limit of high density and infinite charge” or “high matter of confusion and contentigsee, e.g.[2,4]). Never-
screening parametébebye length going to zejd Further-  theless, in the low-temperature region of principal interest
more, “unlike the DH theory, ifthe MSA] satisfies the exact here, sayT*=0.08=1.5T¢, Bjerrum’s cutoff form and
Onsager bounds for the Helmholtz free energy and the intefEbeling’s more sophisticated expression agree to within
nal energy”[l?, 18] (|n the same asymptotic ||n)|and the 1.8% or better[4,5, 13, 14 and, along with other cutoff
“internal energy of the MSA is an exact lower bounfir9].  forms, have identical asymptotic expansions in powerg*of
As reported below, these claims cannot be sustained: how5, 27]. For practical purposes, therefoke(T) might be re-
ever, they do suggest that one might usefully assess arfifrded as known “exactly.” At higher temperatures, where
compare the MSA and DH theories, and their various extenPairing should b&and is predicted to Bemuch weaker, it is
sions, by checking their predictions against previously develnatural to surmise that different treatments of association
oped bounds for the internal energy and Helmholtz free enWOUld prove inconsequential. However, this proves false. In-
ergy. That task is undertaken here. deed, for all the pI'EViOUS pairing theorié$,5,7,8, 13, 1]1

Indeed, as discussed more fully in Sec. II, several bound¥e find that the constant-volume configurational specific
have been established. The well-known Onsatmwer heat becomesegative(violating thermodynamic$25] and
bound for theconfigurational energyf the RPM was de- statistical mechanig¢sn the regionT*=0.1 to 0.5, see Sec.
rived in 1939[21]; less heralded is an improvement due to!V. The source of this serious problem is found in the pro-
Totsuji some forty years latd@2]. For thefree energyRa-  Posed behavior of the association constant. Initial steps to-
saiah and Stel[23] proved that the hard-core free energy wards amelioration are indicated, but the issue will be pur-
provides anupper bound, while Gillan[24] developed a sued in more detail elsewhej28].
much stronger upper bound embodying the ideg-6f—) It should be mentioned that we also examine the general-
pairing into dipoles[2,4,5,13,14 Finally, we note that ized MSA(GMSA) [7,12] and variants of the MSA thermo-
thermodynamic stability with respect to temperature requireglynamics derived from théapproximatg pair correlation
the positivity of the specific heat at constant voluf@s]. functions by routes other than the standard energy equation

We will focus particularly on the Totsuji and Gillan [11]; these are discussed in Sec. lIl. Other even less realistic
bounds applied in the region of the predicted gas-liquidmodels for electrolytes exist, including the one-component
phase transition and critical point. We find that DH theoryplasma with hard corel29] and the corresponding “dense-
and all its augmentations alwagstisfy Totsuji's (and On-  point limit” [11(c)]; however, we address here only the
sager'$ bound providedr* <10T%* =0.5. On the other hand, RPM. N _ _
the MSA actuallyviolatesthe Totsuji bound in a significant ~_ The explicit comparisons of the DH and MSA theories
region of the p,T) plane where coexistence is predicted,W'thOUt allowance for ion pairing are presenteq in Sec. I_II,
unless the theory is suitably augmented. be!qw. In Sec. IV the theoneg that include descriptions of ion

In the light cast by Gillan’s bound, the two approachesPairing are assessed, including the PMSA thedi#gs
rest on a more equal footing. As already shown by Gillan

[24], the MSA (ln its usual form fails badly forT*<0.08; Il. BOUNDS FOR THE ENERGY AND FREE ENERGY
but the same is true for the original DH thedigven when . _
supplemented by excluded-volume terrf 4,5]). Only A. Configurational energy bounds

when both basic theories are augmented by ion-pairing con- The first rigorous lower bound for the configurational en-
tributions and by allowing for the associated depletion of theargy of the RPM seems to be due to Onsaf]. It is
free-ion screening do they satisfy the Gillan bound. Asegssentially a consequence of the positivity of the total elec-

against the hard-core electrostatic effects, includetddth _trostatic potential energy density and, with the notation of
DH and MSA treatments, the presence or absence of specifieq. (1.4), yields

excluded-volume terms has small effect numerically and

does not affect the satisfaction of the bound. However, the u(p,T)=uUgpse= — 1. (2.1
recent PMSA(or pairing-MSA theories of Stell and co-

workers[8] violate Gillan's bound apparently because theyyiqre transparent derivationgut only for a system with a

do not account appropriately for the free-ion depletion. e ralizing background that is of less concern to us here

. The_ main Iess_on is thg crucial importance of the clusteryave peen presented by Lieb and Narnhofer and by Rosen-
ing of ions into dipolar pairs at low temperatures. Of course¢q|q and Gelbar{30]. Totsuiji, in 1981[22], improved on

this has been appreciated heuristically for a long {88 Gpgager's result for the RPM by writing the energy as an
and was quantitatively demonstrated in 1983 by Gill26]  jntegral over the ionic pair correlation functions and showing

in calculations for the RPM which showed that the vapor forthat the presence of the hard-core repulsions implies an up-

T*=<0.053 consisted mainly of+,—), (2+.,2=), (3+,  perhound on the correlation functions. He thence established
3-),..., neutral clusters an2+,1-), (1+,2—), (3+,2-),

and (2+,3—) singly charged clusters, with relatively far
fewer free monopoleg;+) and(—). The present work, how-
ever, seems to be the first purely analytic demonstration of
the thermodynamic necessity for including clustering, im-Although the improvement is by only 4.0%, it has significant
plicitly or, perhaps, explicitly, in approximate theories. consequences.

U(p,T)= Ure= —0.960. 2.2
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As remarked by Totsuji, one may usefully compare these lll. BASIC THEORIES FOR THE RPM:
bounds with the electrostatic or Madelung energies of an COMPARISON WITH BOUNDS
ionic crystal; for the NaC(sc) and CsCl(bcg structures one
has[31] A. DH and MSA without pairing
1. DH theory
Unac=—0.8738 and ucec=—0.8813. (2.3 Debye-Hickel theory[9] (here referred to as “pure” DH

theory, since explicit dipolar pairing is not incluged the
Idest theory for electrolytes still in current use. The theory
fitails two approximations: first, the pair correlation func-
tions g;j(ri—r;) are represented by naive Boltzmann
factors—uwith the charge;, multiplied by the average elec-
trostatic potential at; when an ion of charge; is fixed at
B. Gillan’s free-energy upper bound ri—ignoring higher order correlation effects, and, second,
. o . these Boltzmann factors are linearized, which is valid only in
Gillan [24] has developed a convincing, but not fully rig- yhe jimit of low density, small charge, or high temperature.
orous, upper bound on the I-_|e|mho|t_z free_ energy of thefFor a modern discussion, see McQuafBé) The thermo-
RPM, which incorporates the idea Of. lon pairing. The puredynamics predicted by DH theory depends only on the single
hard-core free e.”ef%’y actual_ly provides a rigorous uppef)arameterxzKDa. The appearance of the hard core diam-
bound[23]_,_but G*|Ilan s_g)ound is lower except for extremely oq 5 gemonstrates that DH theory takes account of the elec-
low densities p*=10"") whgre the "“.“'“”,9 behavior IS trostatic effects of the hard cores; however, the original or
well understood. Here we utilize only Gillan’s bound, which pure DH theory did not treat the excluded-volume effects of
is derived with the aid of the Gibbs-Bogoliubov inequality the hard coresand so reduced to a theory for an ideal gas
by employin'g a sequence of truncatgd reference Systemﬁixture in the limit of vanishing chargg— 0). Nonetheless,
The calculation finally incorporates pairéd,—) ions or di- excluded volume contributions may be included naturally by

poles by “?"‘9 a re_ference_g,ystem of ove_rsized, .Spherica"é{dding to the free energy a suitably chosen pure hard-core
capped cyImd.ers with modified C_:oulomb Interactions. Theterm [4,5]; see below. In the DH critical region, such terms
last step of Gillan’s argument relies on a comparison of an e a,reiatively small effect '

approximate analytical expression for the pressure of a sys-
tem of such spherocylinders with computer simulation esti-
mated 32, 33: the approximate formula appears to provide a
bound on the true results. A search of the more recent litera- The other “basic” theory we consider, the mean spherical
ture concerning this systelfe.g., Refs[34—37) indicates approximation10], is defined by a closure of the Ornstein-
that the original simulations have withstood the test of time Zernike relation in which they;;(r) vanishinside the hard
(However, Frenke[38] has observed that at high densities core, while the direct correlation functiositsidethe hard-
and for(length/(diametey ratios larger than needed here, the core exclusion zone are approximated by the Coulombic po-
simulations—and, certainly, the analytic approximation—tentials. Waisman and Lebowi{A1] solved the MSA ex-
miss an isotropic-nematic fluid transition that is to be ex-actly for the RPM; that is, they determined the correlation
pected) We thus believe that Gillan’s bound is valid. functions which, in principle, yield the thermodynamics. The
To display the bound explicitly, we write the diameter andelectrostatic free energy again depends onlxkenxpa, but
the choseri24] center-to-center distance of the spherocylin-it and the overall free energy depend strongly on the theoret-

One may reasonably suppose that the latter represents tﬁ
best possible lower bound and so we will also invoke it in
testing approximate theories for the RPM.

2. The MSA and variants

ders asa;=(1+ §)a and put ical route taken—via, in particular, the energy, pressure, or
3 - compressibility relations. Since very different results are ob-
N=(57/24) pag=(5m/24)(1+ 56)°p*. (2.4 tained, we review them briefly. The standard MSA thermo-

dynamics almost invariably discussed in the literature em-
loys the energy route; but as a resul, excluded-volume
ard-core terms are generatedypically this problem is
overcome by adding in appropriate terms “by hand,” just as
for DH theory [4,5]. In light of this fact, the conceptual
Y —_rfid 1 advantage sometimes claimed for the standard MSA in com-
e D=1 2p.T)+2 pFp.T), 29 parison to DH theory(see, e.g.[8(b)]), namely, that the
former treats the hard cores in better fashion, seems strictly
inconsequential. Note also that the density-density correla-
—In L(p,T), tion functions G,,(r) and also charge-charge correlation
functions G44(r) that satisfy the Stillinger-Lovett second-
(2.6) moment-condition follow from DH theorgagain contrary to
[8(b)]) when properly generalized 6].
L(p,T)=T*(1—-N){1—exd —dIT*(1+)]}. (2.7) 'The pressure route to MSA thermodynam(w.hich' we
will denote MSpA generates a different approximation for
the electrostatic excess free energy, along with the Percus-
We will adopt §=0.3, which Gillan found optimized the Yevick-pressure-equation hard-core free energy. It is inter-
bound for most values of. esting that, like the ordinary energy-route MSA thermody-

|f?d(p,T) is the ideal-gas free energy density, we then haveﬁ
[24]

FpT)=1-2mpt— 12y T 20
(1-)N)

T_*_s
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namics, the MSpA yields both a critical point and the exact
DH limiting laws; early on, however, Waisman and Lebow-
itz [11(c)] dismissed it as inferior. By contrast, the compress-
ibility route yields no electrostatic contribution, but gener- o2 |
ates only the Percus-Yevick-compressibility-equation free

energy for uncharged hard spheres. Finally, note that the
thermodynamics of the generalized MSA or GM®#hich

is designed so that all three routes to the thermodynamic:

agree [7,12], is identical to the ordinary, energy-route MSA _¢ | 1-06
combined with the Carnahan-Starlin€S approximation | Totsuji bound MSA
for the pure hard-core free enerf39].
08 1 DHLL| \MSpA N 08
L N s NaCL
3. Hard cores F Csci
Since the RPM consists of hard spheres, it is certainly —1.0 Lo i I A W [ i | 4‘1'0
1 0.1 1 10 100 103 10

desirable to include an account of the excluded volume ef-
fects in any approximate theory. As we have seen, the two

pr|n0|pal apprOXImatlonsL DH and”MSA, require the ms,er' FIG. 1. The configurational energy per particle for the Debye-
tion of hard cores terms' by har!d, and two other theor'e,S’HUckeI (DH), mean spherical approximatiofMSA) and related
MSPA and GMSA, entail two dlfferent hard-C(_)re apProXi- theories above criticality, for comparison with lower bounds. For a
mations. For the sake of convenience and uniformity, thengescription of the bounds and the theories, see the text. The inset
we will employ the CS hard core approximatifd] in the  shows isotherms foF <T, for the DH and DHCS theories as solid
calculations reported here fail theories that recognize ex- and dashed curves, respectiveliiere and below, CS denotes use
cluded volume effects. The corresponding theories will besf the Carnahan-Starling approximation for the excluded-volume
denoted DHCS, MSACS, and MSpACS, while the notationeffects)

DH, MSA, and MSpA will be reserved for the “pure(elec-

trostatics only theories. We have, however, checked thatandg. In fact, if the energies per particle ang andu g and
other approximations for the pure hard-core contributionghe densitiep,,=p,(T) andpg=p4(T), one finds

yield qualitatively similar results.

It is worth mentioning that although hard-core terms do Palpp=P)Uat pa(p—pa)Ug
not contribute directly to the internal energince their con- u(p*,T*)= (pa—pa)
tribution to the energy of allowed configurations PLPE™ Pa
vanishes—as correctly reflected by the CS approximation o, that, varies linearly with 14. Thus the main DH plot in

theydo influence the overall internal energy picture. Spec'f"Fig. 1 is restricted toT;TEH' and similarly for the other

cally, for the basic theories, as we shall see, they affect Ntheories. However, including phase coexistence according to

the augmented, pairing theories, they enter by changing tﬁéq' (3.2) cannot induce bound violati_on_, since a weighted
degree of pairir,]g ' §um o_f two acceptable valuesf also saﬂsﬂes_the bom_md: see the
' inset in Fig. 1 where the solid curves depict DH isotherms
for T<TOM,
Regarding the effects of hard cores, one finds that the
1. DH configurational energy only changes in DHCS theory occur in the two-phase regions
below T2HCS: the energy isotherms are shifted from those of
ure DH theory since the coexistence curve differs. The
ashed curves in the inset to Fig. 1 show the rather small
effects: the shifts mainly reflect the expected lowered densi-
UPH(p*  T*) = —x/2(1+X). (3.1) ties on the liquid branc.h of the coexiste_nce curve. Naturally,
these changes cannot induce any violation of Totsuji's bound

Evidently the energy of DH theoryiolates none of the ©OF of the crystal limits.

boundsfor any values ofp andT; see Egs(1.2), (2.1), and

(2.2). Furthermore,uP®" remains above the crystal values

(2.3) as is apparent in Fig. 1. The contrary statements by Now Blum and Bernard17,18 have claimed the energy

Blum and co-workerg17—-19 that uP violates Onsager's of the (pure MSA, is “asymptotically correct.” However, as

bound perhaps mistake the Debyeeel limiting law can be seen in Fig. 1, the MSA reduced excess energy,

(DHLL )—i.e., truncation of DH theory to lowest orderiy  namely[40],

which no one should take seriously fox0.3; see Fig. 1—

for the full DH theory propounded if9]. uMSA(p* T*)=—[1+x—(1+2x)*?)/x, (3.3
Strictly, the dependence af" on the single parameter

given in Eq.(3.1) can be correct only in single-phase regionsasymptotically approaches the Onsager bound bfbutvio-

of the (p,T) plane. Below the critical temperatufas defined lates the Totsuji boundor x=x;=1200 (as Totsuji noted

by the theory at handhe energy in the coexistence region is originally [22]). Furthermore,uM” lies below the crystal

always a weighted sum of the values in the two phasesgsay values forx=xy=125.

. (32

B. Assessment of basic theories

For pure DH theory(with neither pairing nor hard-core
effecty the configurational energy assumes a particularl)};
simple form, namely,

2. MSA configurational energy
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O I T T T i' ‘WW' LR 0‘1 T T T T T T T T T T T T 7T
GMSA ‘f DHCS
-02r 003 | |
u K*% .08 bound
: T* violated
-0.4 :
-0.6 3
Totsuji
0.04 F——
-0.8 ]
CsCl
______________________________________________ N —
—1.0 PR T I S N S N Y 0.02 T T RTINS T T BT RT
1% 0" 10 107 1072 10 10° 107 10" 107 5 001 0l 1
X =Kpd
. . FIG. 3. Comparison of the free energies predicted by the DHCS
FIG. 2. Comparison of the MSA energy with bounds fbr

. N . A and GMSA theories in the density-temperature plane with Gillan’s
=T, at multiples ofT*=0.01 up toT¢ =0.0858(solid curves. The et hound. The bound is violated below the solid and dashed
dashed curve shows th&* =0.03 isotherm for the GMSA for

> o curves, respectively. For comparison, the associated coexistence
l’Vh'Ch' presumably, violations occur only at much lower tempera-c,es with tie lines and critical points are also plotted.
ures.

) . spectively. These results provide ample justification for a
In fact, even in the absence of Totsuiji's result, it is hard todisparaging evaluation of the pressure-route thermodynamics

make sense of the claifl7,1g that the MSA energy is o the MSA. For the remainder of this paper, we thus omit
asymptotically correct for the RPM in the limit of largeby  he MSpA.

virtue of its approach to Onsager’s bound. Agreement with a
bound is hardly proof of correctne$§4l]. Furthermore, the .
limit x—oc at fixed density impliesT* ~T/gq?—0; but at C. DH and MSA free energies
low temperatures, one expects crystalline phases to appear In the pure theoriegsin which Bjerrum ion pairing is not
for p* <pp..,=v2 (for fcc sphere packing 2] and these are explicitly incluqled we find thatboth DH theory and the
not described by any of theories under consideration. MSA violate Gillan's free energy upper bound. The entire
It is worthwhile to interpret more explicitly the valugg  Vvapor branches of both coexistence curves, as well as both
and xy, where violation by the pure MSAno hard cores  sides of the DH critical region, are in violation. As shown in
occurs. On the ||qu|d side of the coexistence CUXAECOr- Flg 3, the violations remain when hard-core excluded vol-
responds to violation whefi* <0.012=(0.14)T* MSA and ~ ume corrections are included. The DHCS and GMSA treat-
Xy corresponds td™* <0.035=(0.41)T* MSA (The first vio- ments exhibit very similar features, for the low densities of
lation temperature here is estimated with the aid of a low Nt€rest. Note that in Fig. 3 we follow the coexistence pre-
temperature asymptotic analysis of the pure MSA coexistScriPtion for the free energy corresponding to E312). Note
ence curve[42] while the second follows directly from a also that non-violation on one branch of the coexistence
numerical evaluation.The solid curves in Fig. 2 demon- CUrve (@s on the GMSA liquid sideis at best a qualified
strate the effects. virtue since the construction of the coexistence curve de-
The inclusion of hard-core ternigby hand”) in the pure pends on the free energies both sides. In light of these
MSA changes the liquid-side coexistence curves mor esults it is clearly imperative to examine theories which al-
strongly than in DH theory. Thus for the MSA with CS terms 'OW for ion pairing.
or, equivalently, for the GMSA, the violations shift to much
lower ratios of T/TSMSA: this is clearly evidenced by the IV. ASSESSMENT OF ION-PAIRING THEORIES
dashed coexistegcg:Msi:otherm*S,Gr’}/losvz\/n in Fig. 2 for A. Bjerrum and beyond
=0.030=(0.38)T with T =0.0786[7,43)). . o
( e ( ¢ [7.43) To compensate for the effects of the DH linearization of
3. MSpA configurational energy the elec'_[rostatlcuBoltfrr_\ann factor,_ Bjerrt[m:%]_postul_ated
. association of “free” ions of(residua) density p; into
The energy according to the MSpA[i$1] “bound” neutral dipolar pairs of density, so that the over-
uMSPA= — 1 11— (1—J1+2x)/x

all density is
p=p1t2p;. 4.9
+2In(1+x+y1+2x)—2-In4], (3.9 _
In terms of the ideal-gas free energy densft)f(pj ,T)
which, in the single-phase region, also depends only on the pj[l—ln(Aprj /)] with mean thermal de Broglie wave-
parametex. As evident from Fig. 1, however, this violates lengthsA;(T) and internal partition functiong;(T) [5], we

the Totsuji and Onsager boundsxgt=6.5 andxo=7.1, re- may then write the total free energy density|4s5]
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FoofdL 47 +fe o), 4.2 here usea;=a anda,=1.1619&.) The resulting DHB|DI
1(z PO+ T 2(p2) + 1 p1p2) “.2 theories lead to sensible coexistence curise® Fig. 5 be-

with the excess free energy density low) that agree fairly well with current simulatiofs, 2(b)].
s L _ L At an earlier stage, Ebeling and Grigd4] combined
fX(p1,p2)=F "% p1,p2)+f Yp)+T P py,po), Bjerrum pairing with the MSA by replacing °" by [7, 11]

4.3

o fMSA(x) =[2+ 6x+ 3x?—2(1+2x)%?]/127a’,
where (i) f HC denotes the pure hard-core/excluded-volume (4.10
terms,(ii) f '°" represents the electrostatic contribution of the
free ions, while(iii) f ®' denotes the dipole-ion interaction/ With X=X, again evaluated afp,. They also added
solvation termg4, 5]. As mentioned, we take hefe"C to be ~ €xcluded-volume terms. The resulting MSABj and
of Carnahan-Starling forni39] with the dipoles treated as MSABJCS=EGA [8(b), 14] theories yield fully acceptable
effective spheres of diameter,=2"%a [16]. coexistence curve$] bgt, as mentlonedZ the predicted criti-

Chemical equilibrium among the and — free ions and @l temperatures are significantly too higtb), 5].
dipolar pairs is imposed via the equalify,=2u, of the Recently, Zhou, Yeh, and StelEYS) [8] have extended
chemical potentials. If the association constant is defined b{2€/ing’s approach by using the MSA in conjunction with a

K(TY=A3 A3¢./z.7 AS=¢. (seel5]) and the reduced ex- ‘reference c_avity theory of gssociatior[’46]. Thgirpairing
ce(ss) che:nic:allgzp(ft;ﬁtialé ar%( el5) . ¥ mean-spherical approximationsr PMSA theories may be

described by

X, ex — — ex
wr TNy =) A ysa: o TS +T S+ paTup)In(y v 172,
with p, =p_=3p, andy, =y_=1y;,, then the mass action (4.11
law states . . .
wherex= kpa is now evaluated with theotal densityp and
o Yiy_ f CS represents the single-component Carnahan-Starling

=K(T;p1,p2)=K(T) v, (4.9 form, evaluated ap=p,+2p, (i.e., bound pairs are not
treated as geometrically distinct objectsote thatp,, is here
The optimal expression foK(T) is a matter for debate to be determined from Eq4.5 onceK, vy;, andy, are
[4,5]—and will be discussed further below. For referencespecified(see beloy; hencep, is an explicit algebraic func-
purposes we adopt Ebeling’s forif, 14, 44 which guaran- tion of the arguments stated in E@.11). The use of only
tees an exact representation of the RPM'’s electrostatic sethe total densityin place of the free ion densify,) results in
ond virial coefficient when one uses DH theory or the MSAan analytically simpler, more explicit formulation; but, in the
(but not the MSpA for f ion(pl), Note that forT*<0.05 light of the original DH and Bjerrum arguments, it seems

=T* the difference betweeki®™ and Bjerrum’s original pro- ~ rather unphysical since neutral bound pairs cannot contribute
posal KB is less than 0.01%; it rises to 3.0% a+  toscreening in adirect way. Furthermore, as we will see, this

pP+p-

= T*MSA_ 0,085, in accord with the Introduction approach entails a significant cost in accuracy.
Bjerrum’s original theonf13] amounts to the approxima- The specification of the PMSA may be completed by first
tion noting that ZYS also adopt Ebeling’s association constant
L KEP(T) [5,14,44. Then, for the activity coefficientsy.
DHBj: f ®=f "=fPH(x.) with x;=x;a, (4.6) =vy_ andy,, ZYS propose three levels of approximation.
First,
where Kf=4wq2p1/DkBT represents the inverse squared _
Debye length for thdree ions alongwhile as usual9], PMSAL: Iny,=—(af ™A p)r=u™AT,p),
f PHOX) =[In(1+x) —x+ 3 x2]/4mras. (4.7) v2=1, (4.12

Friedman and Larsef#5] later found that the predicted co- Which neglects dipole-ion contributiongf., Eq. (4.11)].
existence curve was unphysical. More recently, Fisher an&econd, dipole-ion interactions are introduced by replacing
Levin [2, 4, 5 elucidated the peculiar “banana” shape of the the approximationy,=1 by

DHBj coexistence curvésee Fig. 4 beloyvand showed it

became worse when excluded-volume terms were added asPMSA2:  Iny,=[2(1+X)1+2x—2—4x—x*]/T*x?,

e.g., in DHBj CS theory. However, they also estimated the

dipole-ion solvation term ag5] ~—X?AT*[1+O(X)]; (4.13

0= p(aalladT*)By(x,), X,=kidp, (4.8  see[8(b)], Eq. (4.11). Finally, the dumbbell-shaped hard
cores of a dipolar ion pair are incorporatg®ia)] by using
@o(X)=3[IN(1+x+2 x?)—x+ £ x?]/x®>~x3/12, the CS cavity-value contact function and incrementing-n

(4.9 by

wherea,;=(1.0-1.3p is the mean dipolar size, or/— ion PMSA3: Alny,=In[2(1—7)%(2—17)], (4.14
separation, while,=1.161%a represents the effective elec-
trostatic exclusion radius]. (Note that all the results given where = mp*/6.
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FIG. 4. Pure Bjerrum pairing theories tested against Gillan’s FIG. 5. Comparison of BDICS free energies, which incorporate
free-energy bound. The solid and dashed “excess contours” ar‘gipole-ion solvation and Carnahan-Starling excluded-volume terms,
labeled by the magnitudes by which the DHBj and MSAB;| reducedWlth the Gillan bound, as in Fig. 4.

free energies, respectively, fall below the upper boeb text - g iact the solid curve in Fig. 6 marks the boundary
Note the associated coexistence curves and the unrealistic ba—lc . ion insid hich the PMSA3 f iolat
nana” shape of the DHB; predictiof?, 4, 45. of the region inside whic e ree energy violates

Gillan’s bound. The coexistence curve is also sho{itote,
however, that the coexistence prescription was not used here
PMSA3 is the preferred theory of ZYS and yields to compute the violation boundary within the two-phase do-
(T ,ps)=(0.0745, 0.0245). PMSAl1 and PMSA2 give main) The region of violation found for PMSA2 is nearly
(0.0748, 0.025pand(0.0733, 0.0229 respectively. Thd identical, while that for the PMSAL theory is slightly larger,
values are still significantly high¢B(b)] than the DH-based extendingabovethe corresponding critical poinffo"sA?;
estimates, namelyTgs =0.052—-0.057[2,5,47, while the see the dashed curve in Fig. 6.
simulations suggesk; =0.048—-0.0552(b), 15]. In conclusion, the violations of Gillan’s bound found pre-
viously and seen here for the PMSA theories demonstrate
convincingly that association of oppositely charged ions into
B. Pairing theories vs Gillan's bound dipolesalong witha concomitant depletion of free ions and

Comparison of the pairing theories with Gillan's free en_thei_r screenir)g effects is a cru_cial element in the critical-
ergy bound is mainly encouraging. We find that theories tha gg;ﬁ'n ht;eh?V|ort_of the TP'\{[I Slltlan S bgllj_'nd aldsi/lgirvbes t%
incorporate association in the Bjerrum chemical picture, in Ignhllg .|n eresting contrasts between DH- an -base
which the free ion density islepletedby pairing (i.e., p; theories: the MSA coexistence curve shifts only slightly
=p—2p,), never violate the bound. Indeed, even the mos

'yvhen pairing is addedVSABj) yet, surprisingly, violation
primitive Bjerrum theories, DHBj and MSABj—which in-

clude neither hard-core nor dipole-ion interactions—satisfy
Gillan’s bound for all p*, T*) values tested: see Fig. 4. On
the other hand, all three PMSA theories turn out to violate
Gillan’s bound in significant regions of the{, T*) plane,
including nearly the entire vapor branches of the coexistence 7 | -~ >
curves.

As regards the MSABj and DHBj theories, the more-or- g6l
less vertical “excess contour lines” in Fig. 4 reveal the mag-
nitude of nonviolation in the density-temperature plane: they
are loci on which Gillan’s upper bound exceeds the corre-
sponding approximate reduced free energy densifa® by
the indicated amounts, ranging fronx@0 # up to 0.1. The
associated coexistence curves are also shown and one me
notice that the excess contours undergo a jump in curvature 0.02t—vnl vl vl ol ol
on entering the corresponding two-phase region: this results 10 10 10 107 px 001 01 1
from the coexistence prescription analogous to B®).

Figure 5 shows the effects of incorporating dipole-ion sol- k|G, 6. Test of the PMSA theories against Gillan's free energy
vation (DI) and excluded-volumeCS) terms. Note that re- pound. All theories fail at low temperatures and densities: see the
moving the excluded-volume terms from these BjDICS theowiolation boundaries, solid for PMSA@he preferred theobyand
ries produces only slight shifts in the excess contours at highashed for PMSAL. The coexistence curve and critical point are
densities and low temperatures. those predicted by the PMSA3.

Ty T

0.08+ PMSAL

MSA3

)
il

|

0.04}
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TABLE I. Some critical-point parameters for various theori€$:;; u., the reduced energy per particle;
X.=(4mp¥IT*)Y2 the(overal) Debye parameter; andl; .= (4mp/T*)2 the screening parametéNote
that the values quoted foq; in [5] correspond here t®,. and that the Ebeling association consfdm] was
used throughout.

DH +CS +Bj +BjCS +BjDI +BjDICS
T 0.0625 0.063 0.0625 0.064 0.057, 0.052
U ~0.25 —0.24% —0.43% ~0.43% —0.444 ~0.453
Xe 1 0.93% 3.013 3.281 2.466 2.424,
X1 1 0.93% 1 0.938 1.122 0.93%
MSA +CS +Bj +BjCS +BjDI +BjDICS
T 0.085 0.078 0.085 0.078 0.082 0.072
U —0.414 ~0.335 -0.415 -0.378 —0.444, —-0.414
Xe 2.414, 1.522 2.72% 2.04G, 3.072 2.208
X1 2.414, 1.522 2.414 1.53% 2.450, 1.485
PMSAL PMSA2 PMSA3
T 0.073 0.074 0.074
Ue ~0.374, ~0.426 ~0.426
Xe 1.981, 2.049, 2.032

of Gillan’s bound is still completely avoided; the unphysical and Levin and Fishef5]. Of course, the factop,(p,T) in
DHBj “banana” coexistence curvén Fig. 4), on the other Eq.(4.15 is also to be determined via the law of mass action
hand, immediately points to the significance of pairing, while(4.5). For theories of the fornf4.3), one can further write
satisfaction of Gillan’s bound is surprising here because the

coexistence curve is S0 unconvincing. U= (a3T* 2/p*)((9f_eX/0—,T*):uion+uDI’ (4.17)

C. Pairing theories vs energy bounds where the “basic” expressions for the electrostatic contribu-

Testing the pairing theories against the bounds of Totsujfon u'*" are now given by the natural generalizations of Egs.

and Onsager yields mixed results. For a window of temperal3-D and(3.3), namely,
tures that includes the critical region, namely, 0815

<0.5, all the theories embodying ion association satisfy the DH( ;) T)— —(p1/p)X1 il
energy bounds. We also find a surprising level of agreement U™ e, T)= 2(1+x,) (4.18
among the various theories as to the value of the critical

energy per particle: see Table I. At low temperatures, how- MSA B 1

ever, some of the MSA-based theories violate Totsuji's u™(p, T)=—=(p1/p)[1+X1—(1+2xy) 2]/X1-(4 19

bound. Moreover, at moderate temperatufEs%0.5) all of

the pairing theories violate fundamental thermal stability re=or reference, we also quote the explicit result 66t fol-
quirementdas discussed in the next sectipfor some of the  |owing from the treatment of Fisher and Levin in leading
approximations, this is also accompanied by violation of theyrder[48]. Defininga, anda, as in Eqs(4.8) and(4.9) [5],
Totsuji and Onsager bounds, as explained below. one finds

Now the energy for a general pairing theory follows from

Eq. (4.2 via the thermodynamic relatiofi.4) and the mass

. : aa’ (kay)?
action law(4.5), etc., which leads to YOl _ 21 P2 i (4.20
2a3 p [3+3kay+(kay?]’ :
3T*2
T — P2 i i i
u(p,T)= f Xp, T+ — uy(T), (4.19 Thg corresponding expressions for the PMSA theories are
(p p* JT* (p p ? omitted for the sake of brevity.
whereu,(T) is given by 1. Low temperatures: Violation in MSA pairing theories

For T*<0.015, evaluation ofi(p,T) reveals violations of
Ux(T)=T*[dInK(T)/dT*]. (4.16 the Totsuji bound for most of the MSA theories. The reason
turns out to be literally the same as for the pure MSA: in the
But this can be recognized simply as the mean energy of aorresponding Bj, BjCS, BjDI, and BjDICS theories, as well
single (+,—) bound pair since the corresponding internalas in the PMSAI(althoughnot PMSA2 and 3 theory, the
configurational partition function for a pair is embodied in mass-action pairing predicted by E¢.5 becomes exponen-
the association constakt(T)—see the text above E¢.4)  tially small asT* —0 [49]. As a result, all these theories
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bounds wherm* — 31— andp is large enough. Once noticed
numerically, this behavior can be understood analytically by
evaluating the factou,(T) in Eq. (4.19 using Eq.(4.16
with K=KBJ(T). To that end recall, first, the well known
fact [5] that K®(T) vanishes linearly, say asgj(1—2T*),
when T* —3— (and remains identically zero fof*>3).
Consequentlyu,(T) diverges to—« as —3/(1—2T*) in

this limit. However, the factop,(p,T) in Eq. (4.195 must be

;/:,Zf N evaluated via the mass action l#&5) and is proportional to
DHBjDICS critical point \;:\\ g KBJ(T); this gives
061 (T*=0.0525) N
T*=0.07 NS 2.2 2
- GMSA& 1 qu P71 T*2 dK Cgj 71 p* <0, (4.21)
PMSA3 — U= T~ T a3 , .
0.8 . . . : p 2 4py, daT* 8a® v,
107 1072 0.1 1 10
X =Kkpd as T*—3—, so thatp,—0 and p;—p. Note that the

vi(p,T), defined via Eq(4.4), depend on the theory under
FIG. 7. Plots of configurational energy isotherms for variousqnsideration. One finds thaiBj/8a3:11.6: this is large

theories afT* =0.07, which temperature liesboveall DH-based  gnough so that the pairing terfd.21) by itself yields a vio-
estimates ofT; but below all MSA-based values. The scalloped lation of Onsager's bound whefin DHBj theory p*
sections of the latter isotherms thus represent the two-phase regior&

S. *DHBj_ Bk~ %MSABj__
As regards the theories, recall that GMSA is equivalent to MSACS Pons =0.39 or (for MS.ABJ) P’ = Pons ]_0'64'. HOW._
and note that thet implies the BjDICS extensions of the basic evgr, as the Ot.her terms in E@L.19 ar?.also neggnve, vio- .
theories. At largex=«pa all isotherms have been cut off at the Iauon; must arise at even .Iower densities. One finds numeri-
hard-sphere close packing density. For reference, the critical poir@!lY, in fact, that the violations occur at or belg=<0.3 in

of the DHBJDICS theory(whereT* =0.052) has been marked. all the theories with pairing governed by Bjerrum’s associa-
tion constant.

revert to their ion-only form(i.e., MSA or MSACS and One expects Ebeling’s choidé®(T) which provides a
violations occur; see Fig. 1. A similar loss of pairs occursmatch to the exact RPM second virial coefficient and never
whenT* —0 in the DHBjDI and DHBjDICS(butnotDHBj  Vvanished5, 14,44—in contrast to the singular vanishing of
or DHBJCY) theories, and so these theories revert to the corK®(T) at T* =1—to fare better. Nevertheless, Ebeling’s as-
respondingnonviolatingDH and DHCS theories. These re- sociation constant leads to Onsager and Totsuji bound viola-
sults are independent of whether one uses the Ebeling dions in the regionT* =0.7-1.0—although only in those
Bjerrum association constant or any other reasonabléheories which explicitly allow for the excluded volume ef-

partition-function-like form, as discussed below. fects. The PMSA3 treatment, furthermore, falls into this
same category of violation; however, PMSA1 and 2ruxd
2. Moderately low temperatures because the excluded-volume terms there do not affect the

In the temperature range 0.023* <0.5, which includes de%f?hc’f paliritr)g. st d ibed t {10 b N
T, all the pairing theories described in the present study € violations just described turn out to be symptoms

; - , .-of a more serious weakness of both the Bjerrum and Ebelin
satisfy the Totsuji bound, and hence, Onsager’s as well. Flg'ssociation constants. as we will now der]nonstrate. 9

ure 7 depicts energy isotherms for the pairing theories af
T*=0.07. The plotted isotherms have been cut off for large
X=kpa at the hard-core packing limjp} . =v2. Figure 7 D. Violations of thermal stability

also shows the location of the critical point of the o pursue further the origins of the Totsuji and Onsager
DHBIDICS theory, which may be regarded as a referencenergy bound violations at* = 0.5, consider the energy iso-
point in reading Table I. The table lists the various critical chores shown in Fig. 8. The two densitigs=0.03 and 0.1
energies and Debye parameters. As mentioned, there is a fajgye been chosen for display because they bracket the criti-
measure of agreement among the different pairing theoriegy| density; similar behavior is seen at higher and lower den-
regarding the energy at criticality even though other params;jties. For the pure DH and MSA theories, included in Fig. 8
eters vary quite strongly. for reference purposes|p,T) rises monotonically withr:
this implies a positive constant-volume configurational spe-
cific heat,CS°"(p,T). (Note that outside the two-phase re-
Violation of the energy bounds are found again, as mengion these two energy isochores are identical to those for
tioned above, ahigher temperatures in the range*=0.5, DHCS and GMSA, respectively.
some 6 to 10 times greater than the estimatesTfor The Now the positivity of thetotal constant-volume specific
reason for this surprising fact, however, is quite differentheat is a thermodynamic necessity dictated by the second law
from the cause at low temperatures: it transpires, indeed, th25]. For a classical particle system, however, the configura-
the form of the association constant is now crucially impor-tional contribution must be separately nonnegative: this fol-
tant. lows either, thermodynamically, by regarding the kinetic and
In fact, any theory with pairing governed by Bjerrum’s configurational degrees of freedom as thermally distinct sys-
association constant violates both the Totsuji and Onsageems or, from statistical mechanics, by expressing

3. Violations at moderate and high temperatures
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-0.1 — R : ; : -0.1 The problem withu,(T) arises because the defining rela-
| l p*=003, K™ tion (4.16 does not actually yield the physically anticipated
thermodynamic mean valubl], say, (e,(r))x, which in
—03 the Bjerrum picture of association would be
U
-0.5 R
<82(r)>K=4wf eo(r)e Pe20r2dr/K(T), (4.22
a
-0.4] -
== with association constant
-0.6 PMSé/l,;::' R
Lo o e 1-07 K(T):47rf e PeaDr2qr, (4.23
-0.8 + _ a
1 1 *=0.1, KB - . L .
T y Ut us L 09 The reason for the failure is simple: the Bjerrum cuteffs

B T E— e o oe 1 taken to be temperature dependght], explicitly, RB(T)
T =a/2T* for T*<3[5,13). In general, such temperature de-

. _ pendence leads to the difference
FIG. 8. Energy isochores at =0.03 and 0.Xnote shifted ver-

tical scaleg for the basic DH and MSA theories and for various
pairing theories—solid lines for those based on DH, dashed lines 2 AmrR2e-¥T*R
for MSA based. Ebeling’s association constant is employed for all — Uy(T)—(e)k=—F =
plots excepting the four bracketed isochores $dr=0.1 labeled Da K(T)
KB, which use Bjerrum’s expressiofwhich vanishes af* = 3). o ) )
The PMSA isochores are shown as dot-dashed curves. The plo¥éhich is negative wheneveR(T) decreases a$ rises and
labeled3u® and u5® representompleteion pair associatiorfp, ~ Which diverges wherK(T)—0. The Ebeling association
:O, P2:%P)y while ugj and ugb are Corresponding Sing'e_pair en- constant can a|SO be Wl'ltten |n the fOI(I4123) but W|th the
ergies implied by the mass-action law. Except for these plots, théargeT asymptotic formRE(T) —a~a/12T** [5], which is
isochores have been cut off beldli =0.03 because by then the quite accurate onc€* =0.3. We must conclude that neither
extrapolation belowl? into the two-phase regions loses all signifi- the Ebeling nor the Bjerrum association constants can be
cance. [Note that, for the approximations considered here,regarded as representing even an “effective” partition func-
uPH(p, T) =uP"(p,T) and uMSA(p, T)=u®MSA(p,T) outsidethe  tion for an isolated ion pair as is required by or implicitly
respective two-phase regiofsee Sec. Il A 3] assumed in the standard theories of associdfgse].

As suggested by Fig. 8, the unphysically large values of
C%"(p,T) as a mean-square energy fluctuation which is necu,(T) lead to negative specific heats over large regions of
essarily positive at finite positive temperatures in any nonthe (p,T) plane when eitheKE%(T) or K®(T) is employed.
trivial system[50]. Fortunately for our primary focus on the critical region, the

However, a quick perusal of Fig. 8 shows that the  violations of thermal stability are confined in all cases to
pairing theory isochores—the solid and dashed curves repréd* =0.12>2T; (and for the PMSA theories t&* =0.35.
senting DH- and MSA-based theories, respectively, and th@t densities below* =0.01-0.020.6p7 the pairing is suf-
dot-dash plots for PMSAL and 3—display regions whereficiently weak that the predicte@S""(p,T) always remains
u(p,T) decreasessT increases. In other words, all the pair- positive—although it does display an unphysical oscillation.
ing theories predict negative constant-volume specific heatnce violations arise at a givéh moreover, they persist to
and violate the second law. the highest densities.

The reason is not far to seek. In the limit of complete  Of course, certain features are specific to the choice of
pairing (i.e., p;=0, p,=3p), all the approximate theories association constant. As remarked earli€?(T) “switches
under consideration predict, via E@.15, that the energy off” abruptly at T* =%, where a nonphysical latent heat is
should be simply that of independent dipolar pairs: this corimplied for all p>0; aboveT* =% pairing is lost and no
responds to the plots labelda’ and 7u5” in Fig. 8 which  yiolations remain. WhetKE%(T) is used in DH- and MSA-
are derived from Eq(4.16 and the Bjerrum and Ebeling based theories with excluded-volume terms, violations re-
forms for K(T). But, as is evident from the figure, both main at the highest temperatures.
usi(T) andu5™(T) exhibit pronounced maxima in the inter-  What might be a cure for these pathologies? It is clear
val T*=0.12-0.13 and then fall sharply & increases, from Egs. (4.22—(4.24 that the unphysical behavior of
dropping below u8(0)=u5?0)=—-1 at T*=0.22, and u,(T) can be avoided if one fixes the cutoff in E¢.23 at,
0.21y, respectively. It is this behavior that leads to the de-say R=\a, so definingk*(T). Furthermore, for any fixed
creasing regions in the overall excess energy isochores with>1, the lowT behavior ofK*(T) still matchesk=(T) to
incomplete pairing. But such a variation 0§(T) is physi- all orders inT* [5,27]. In addition, the choice ok may be
cally nonsensical since, clearly, the configurational energyptimized by requiring that the deviatigtK =/K*) —1|=6
e,(r)=—0q?/Dr of a bound pair cannot fall below the con- remain less than a specified level up to as high a temperature
tact value—g%/Da (which, in turn, can be achieved in equi- as possible. Thus one finds that=3.4 provides 1% preci-
librium only at T=0). sion (6=0.01) up toT*=0.11.

kTZd—R 4.2
81”47 (4.29



56 CRITIQUE OF PRIMITIVE MODEL ELECTROLYTE THEORIES 6579
One can then check thabneof the pairing theories em- that is valid over the full range of temperatufgsd up to
ploying KMT) with A=3.4 violates the energy bounds or moderate densities excluding, of course, the solid plsdse
thermal stability for any realizable thermodynamic state,Such a treatment will be presented elsewHe&.
(p,T). In addition, the qualitative conclusions regarding the
violation and nonviolation of the Gillan free-energy bound
remain unchanged. Indeed, usiKg%(T) causes only insig-
nificant shifts of the free-energy excess contours from those M.E.F. is grateful for the stimulus provided for this work
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