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Critique of primitive model electrolyte theories
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~Received 12 May 1997!

Approximate theories for the restricted primitive model electrolyte are compared in the light of Totsuji’s
lower bound for the energy~an improvement over Onsager’s!, Gillan’s upper bound for the free energy, and
thermal stability requirements. Theories based on the Debye-Hu¨ckel ~DH! approach and the mean spherical
approximation~MSA!, including extensions due to Bjerrum, Ebeling, Fisher, and Levin, and Stell, Zhou, and
Yeh ~PMSA1, 2, 3! are tested. In the rangeT* 5kBTDa/q2&10Tc* .0.5, all DH-based theories satisfy Tot-
suji’s bound, while the MSA possesses a significant region of violation. Both DH and MSA theories violate
Gillan’s bound in the critical region and below unless ion pairing and the consequent free-ion depletion are
incorporated. However, the PMSA theories, which recognize pairing but not depletion, fail to meet the bound.
The inclusion of excluded-volume terms has only small effects in this respect. Finally, all the pairing theories
exhibit negative constant-volume specific heats whenT* *2Tc* .0.1; this is attributable to the treatment of the
association constant.@S1063-651X~97!03212-1#

PACS number~s!: 05.70.Ce, 64.70.2p, 82.60.Hc, 82.60.Lf
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I. INTRODUCTION

The liquid-gas phase transition in electrolytes is of curr
interest because of puzzling experiments and theoretica
forts to understand them. For recent reviews, see@1–3#. The
primary model used is the restricted primitive model~RPM!
consisting of two oppositely charged, but otherwise identic
sets ofN15N2 hard spheres of diametera and charge per
particle6q, immersed in a medium of dielectric constantD
~to represent the solvent! and volumeV. We will restrict our
attention to the RPM ind53 dimensions and use the re
duced temperature and density

T* 5kBTDa/q2 ~1.1a!

and

r* 5a3r, ~1.1b!

wherer5(N11N2)/V[N/V; the Debye inverse screenin
length

kD5~4pq2r/DkBT!1/2, ~1.2a!

with

x5kDa5A~4pr* /T* !, ~1.2b!

the reduced Helmholtz free energy density

f̄ ~r,T!52FN~V;T!/VkBT, ~1.3!

and the reduced configurational energy per particleu defined
via

~Nq2/Da!u~r,T!5UN2 3
2 NkBT, ~1.4!

*Present address: Polymers Division, National Institute of St
dards and Technology, Gaithersburg, MD 20899.
561063-651X/97/56~6!/6569~12!/$10.00
t
f-

l,

whereFN andUN5VkBT2(] f̄ /]T) denote the total free en
ergy and~internal! energy.

Recent theory@2–8# has focused on two approaches
approximating the free energy of the RPM, based on eit
Debye-Hückel ~DH! theory @9# or the mean spherical ap
proximation~MSA! @10–12#. Many years ago Bjerrum@13#
proposed to improve DH theory by including ion pairing v
‘‘chemical association.’’ Later, Ebeling and Grigo@14# com-
bined ion-pairing with an MSA expression for the ionic fre
energy; more recently, Levin and Fisher@5# and Stell and
co-workers@8# explored further extensions of the MSA. O
the other hand, Fisher and Levin@4, 5# supplemented DH
theory not only with ion pairing and excluded-volume term
but also included the solvation free energy of the electrica
active ~1,2! dipolar ion pairs. Currently, this class of DH
based theories seems to give the best, albeit semiquantita
account of the RPM in the critical region as judged by co
parison with simulations performed by various authors@2, 5#.
It may be remarked that the simulation estimates forTc* and
rc* have been changing at an alarming rate@2~b!#. Neverthe-
less, the MSA-based theories yield approximations forTc*
(*0.073) that are significantlyhigher than those based o
the DH approach (Tc* &0.056), which in fact agrees muc
better with the simulations (Tc* 50.048– 0.056)@2, 5, 8, 15#.

At a purely theoretical level, however, one cannot be c
tent since,a priori, there seem no clear grounds for prefe
ring the DH-based theories—apart from their more direct a
intuitive physical interpretation—rather than the more mo
ern ~and fashionable! MSA-based theories which—sinc
they entail the pair correlation functions and the Ornste
Zernike ~OZ! relation—give the impression of being mor
firmly rooted in statistical mechanics. On the other hand
has recently been shown that the DH theories yield pair c
relations satisfying the OZ relation in a very natural w
@16#. Furthermore, both theories have an essentially me
field character despite which, in contrast to typical me
field theories for lattice systems,neither has any known
Gibbs-Bogoliubov variational formulation or similar basi
How, then, might the two approaches be distinguished?
-
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6570 56ZUCKERMAN, FISHER, AND LEE
Now Blum and his co-workers have, in various plac
@17–20#, enthusiastically sung the praises of the MSA for t
RPM, asserting that the theory ‘‘is asymptotically correct
the limit of high density and infinite charge’’ or ‘‘high
screening parameter~Debye length going to zero!.’’ Further-
more, ‘‘unlike the DH theory, it@the MSA# satisfies the exac
Onsager bounds for the Helmholtz free energy and the in
nal energy’’ @17, 18# ~in the same asymptotic limit! and the
‘‘internal energy of the MSA is an exact lower bound’’@19#.
As reported below, these claims cannot be sustained: h
ever, they do suggest that one might usefully assess
compare the MSA and DH theories, and their various ext
sions, by checking their predictions against previously dev
oped bounds for the internal energy and Helmholtz free
ergy. That task is undertaken here.

Indeed, as discussed more fully in Sec. II, several bou
have been established. The well-known Onsagerlower
bound for theconfigurational energyof the RPM was de-
rived in 1939@21#; less heralded is an improvement due
Totsuji some forty years later@22#. For thefree energy, Ra-
saiah and Stell@23# proved that the hard-core free ener
provides anupper bound, while Gillan @24# developed a
much stronger upper bound embodying the idea of~1,2!
pairing into dipoles@2, 4, 5, 13, 14#. Finally, we note that
thermodynamic stability with respect to temperature requ
the positivity of the specific heat at constant volume@25#.

We will focus particularly on the Totsuji and Gilla
bounds applied in the region of the predicted gas-liq
phase transition and critical point. We find that DH theo
and all its augmentations alwayssatisfyTotsuji’s ~and On-
sager’s! bound providedT* &10Tc* .0.5. On the other hand
the MSA actuallyviolatesthe Totsuji bound in a significan
region of the (r,T) plane where coexistence is predicte
unless the theory is suitably augmented.

In the light cast by Gillan’s bound, the two approach
rest on a more equal footing. As already shown by Gil
@24#, the MSA ~in its usual form! fails badly forT* &0.08;
but the same is true for the original DH theory~even when
supplemented by excluded-volume terms@2, 4, 5#!. Only
when both basic theories are augmented by ion-pairing c
tributions and by allowing for the associated depletion of
free-ion screening do they satisfy the Gillan bound.
against the hard-core electrostatic effects, included inboth
DH and MSA treatments, the presence or absence of spe
excluded-volume terms has small effect numerically a
does not affect the satisfaction of the bound. However,
recent PMSA~or pairing-MSA! theories of Stell and co
workers @8# violate Gillan’s bound apparently because th
do not account appropriately for the free-ion depletion.

The main lesson is the crucial importance of the clus
ing of ions into dipolar pairs at low temperatures. Of cour
this has been appreciated heuristically for a long time@13#
and was quantitatively demonstrated in 1983 by Gillan@26#
in calculations for the RPM which showed that the vapor
T* &0.053 consisted mainly of~1,2!, (21,22), (31,
32!,..., neutral clusters and~21,12!, ~11,22!, ~31,22!,
and ~21,32! singly charged clusters, with relatively fa
fewer free monopoles,~1! and~2!. The present work, how
ever, seems to be the first purely analytic demonstration
the thermodynamic necessity for including clustering, i
plicitly or, perhaps, explicitly, in approximate theories.
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The recognition of~1,2! ion pairing requires the speci
fication of the correspondingassociation constant K(T).
Ever since Bjerrum’s original proposal@13#, this has been a
matter of confusion and contention~see, e.g.,@2, 4#!. Never-
theless, in the low-temperature region of principal inter
here, sayT* &0.08.1.5Tc* , Bjerrum’s cutoff form and
Ebeling’s more sophisticated expression agree to wit
1.8% or better@4, 5, 13, 14# and, along with other cutoff
forms, have identical asymptotic expansions in powers ofT*
@5, 27#. For practical purposes, therefore,K(T) might be re-
garded as known ‘‘exactly.’’ At higher temperatures, whe
pairing should be~and is predicted to be! much weaker, it is
natural to surmise that different treatments of associa
would prove inconsequential. However, this proves false.
deed, for all the previous pairing theories@4, 5, 7, 8, 13, 14#
we find that the constant-volume configurational spec
heat becomesnegative~violating thermodynamics@25# and
statistical mechanics! in the regionT* 50.1 to 0.5, see Sec
IV. The source of this serious problem is found in the pr
posed behavior of the association constant. Initial steps
wards amelioration are indicated, but the issue will be p
sued in more detail elsewhere@28#.

It should be mentioned that we also examine the gene
ized MSA ~GMSA! @7, 12# and variants of the MSA thermo
dynamics derived from the~approximate! pair correlation
functions by routes other than the standard energy equa
@11#; these are discussed in Sec. III. Other even less real
models for electrolytes exist, including the one-compon
plasma with hard cores@29# and the corresponding ‘‘dense
point limit’’ @11~c!#; however, we address here only th
RPM.

The explicit comparisons of the DH and MSA theori
without allowance for ion pairing are presented in Sec. I
below. In Sec. IV the theories that include descriptions of
pairing are assessed, including the PMSA theories@8#.

II. BOUNDS FOR THE ENERGY AND FREE ENERGY

A. Configurational energy bounds

The first rigorous lower bound for the configurational e
ergy of the RPM seems to be due to Onsager@21#. It is
essentially a consequence of the positivity of the total el
trostatic potential energy density and, with the notation
Eq. ~1.4!, yields

u~r,T!>uOns521. ~2.1!

More transparent derivations~but only for a system with a
neutralizing background that is of less concern to us he!
have been presented by Lieb and Narnhofer and by Ro
feld and Gelbart@30#. Totsuji, in 1981@22#, improved on
Onsager’s result for the RPM by writing the energy as
integral over the ionic pair correlation functions and showi
that the presence of the hard-core repulsions implies an
per bound on the correlation functions. He thence establis

u~r,T!>uTot520.960. ~2.2!

Although the improvement is by only 4.0%, it has significa
consequences.
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56 6571CRITIQUE OF PRIMITIVE MODEL ELECTROLYTE THEORIES
As remarked by Totsuji, one may usefully compare the
bounds with the electrostatic or Madelung energies of
ionic crystal; for the NaCl~sc! and CsCl~bcc! structures one
has@31#

uNaCl.20.8738 and uCsCl.20.8813. ~2.3!

One may reasonably suppose that the latter represent
best possible lower bound and so we will also invoke it
testing approximate theories for the RPM.

B. Gillan’s free-energy upper bound

Gillan @24# has developed a convincing, but not fully rig
orous, upper bound on the Helmholtz free energy of
RPM, which incorporates the idea of ion pairing. The pu
hard-core free energy actually provides a rigorous up
bound@23#, but Gillan’s bound is lower except for extreme
low densities (r* &1025) where the limiting behavior is
well understood. Here we utilize only Gillan’s bound, whic
is derived with the aid of the Gibbs-Bogoliubov inequali
by employing a sequence of truncated reference syste
The calculation finally incorporates paired~1,2! ions or di-
poles by using a reference system of oversized, spheric
capped cylinders with modified Coulomb interactions. T
last step of Gillan’s argument relies on a comparison of
approximate analytical expression for the pressure of a
tem of such spherocylinders with computer simulation e
mates@32, 33#: the approximate formula appears to provide
bound on the true results. A search of the more recent lit
ture concerning this system~e.g., Refs.@34–37#! indicates
that the original simulations have withstood the test of tim
„However, Frenkel@38# has observed that at high densiti
and for~length!/~diameter! ratios larger than needed here, t
simulations—and, certainly, the analytic approximation
miss an isotropic-nematic fluid transition that is to be e
pected.… We thus believe that Gillan’s bound is valid.

To display the bound explicitly, we write the diameter a
the chosen@24# center-to-center distance of the spherocyl
ders asas5(11d)a and put

l[~5p/24!ras
35~5p/24!~11d!3r* . ~2.4!

If f̄ id(r,T) is the ideal-gas free energy density, we then ha
@24#

2 f̄ ~r,T!<2 f̄ id~r,T!1 1
2 rF~r,T!, ~2.5!

F~r,T!5122pr* 2
1

T*
2 18

5 l
12 2

5 l

~12l!22 ln L~r,T!,

~2.6!

L~r,T!5T* ~12l!$12exp@2d/T* ~11d!#%. ~2.7!

We will adopt d50.3, which Gillan found optimized the
bound for most values ofT.
e
n

the

e

r

s.

lly
e
n
s-
i-

a-

.

-

-

e

III. BASIC THEORIES FOR THE RPM:
COMPARISON WITH BOUNDS

A. DH and MSA without pairing

1. DH theory

Debye-Hückel theory@9# ~here referred to as ‘‘pure’’ DH
theory, since explicit dipolar pairing is not included! is the
oldest theory for electrolytes still in current use. The theo
entails two approximations: first, the pair correlation fun
tions gi j (r i2r j ) are represented by naive Boltzman
factors—with the charge,qj , multiplied by the average elec
trostatic potential atr j when an ion of chargeqi is fixed at
r i—ignoring higher order correlation effects, and, seco
these Boltzmann factors are linearized, which is valid only
the limit of low density, small charge, or high temperatu
~For a modern discussion, see McQuarrie@9#.! The thermo-
dynamics predicted by DH theory depends only on the sin
parameter,x5kDa. The appearance of the hard core dia
etera demonstrates that DH theory takes account of the e
trostatic effects of the hard cores; however, the original
pure DH theory did not treat the excluded-volume effects
the hard cores~and so reduced to a theory for an ideal g
mixture in the limit of vanishing chargeq→0!. Nonetheless,
excluded volume contributions may be included naturally
adding to the free energy a suitably chosen pure hard-c
term @4, 5#; see below. In the DH critical region, such term
have a relatively small effect.

2. The MSA and variants

The other ‘‘basic’’ theory we consider, the mean spheri
approximation@10#, is defined by a closure of the Ornstein
Zernike relation in which thegi j (r ) vanish inside the hard
core, while the direct correlation functionsoutsidethe hard-
core exclusion zone are approximated by the Coulombic
tentials. Waisman and Lebowitz@11# solved the MSA ex-
actly for the RPM; that is, they determined the correlati
functions which, in principle, yield the thermodynamics. T
electrostatic free energy again depends only onx5kDa, but
it and the overall free energy depend strongly on the theo
ical route taken—via, in particular, the energy, pressure
compressibility relations. Since very different results are o
tained, we review them briefly. The standard MSA therm
dynamics almost invariably discussed in the literature e
ploys the energy route; but as a result,no excluded-volume
hard-core terms are generated. Typically this problem is
overcome by adding in appropriate terms ‘‘by hand,’’ just
for DH theory @4, 5#. In light of this fact, the conceptua
advantage sometimes claimed for the standard MSA in c
parison to DH theory~see, e.g.,@8~b!#!, namely, that the
former treats the hard cores in better fashion, seems str
inconsequential. Note also that the density-density corr
tion functions Grr(r ) and also charge-charge correlatio
functions Gqq(r ) that satisfy the Stillinger-Lovett second
moment-condition follow from DH theory„again contrary to
@8~b!#… when properly generalized@16#.

The pressure route to MSA thermodynamics~which we
will denote MSpA! generates a different approximation fo
the electrostatic excess free energy, along with the Per
Yevick-pressure-equation hard-core free energy. It is in
esting that, like the ordinary energy-route MSA thermod
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6572 56ZUCKERMAN, FISHER, AND LEE
namics, the MSpA yields both a critical point and the ex
DH limiting laws; early on, however, Waisman and Lebo
itz @11~c!# dismissed it as inferior. By contrast, the compre
ibility route yields no electrostatic contribution, but gene
ates only the Percus-Yevick-compressibility-equation fr
energy for uncharged hard spheres. Finally, note that
thermodynamics of the generalized MSA or GMSA~which
is designed so that all three routes to the thermodynam
agree! @7, 12#, is identical to the ordinary, energy-route MS
combined with the Carnahan-Starling~CS! approximation
for the pure hard-core free energy@39#.

3. Hard cores

Since the RPM consists of hard spheres, it is certa
desirable to include an account of the excluded volume
fects in any approximate theory. As we have seen, the
principal approximations, DH and MSA, require the inse
tion of hard cores terms ‘‘by hand,’’ and two other theorie
MSpA and GMSA, entail two different hard-core approx
mations. For the sake of convenience and uniformity, th
we will employ the CS hard core approximation@39# in the
calculations reported here forall theories that recognize ex
cluded volume effects. The corresponding theories will
denoted DHCS, MSACS, and MSpACS, while the notati
DH, MSA, and MSpA will be reserved for the ‘‘pure’’~elec-
trostatics only! theories. We have, however, checked th
other approximations for the pure hard-core contributio
yield qualitatively similar results.

It is worth mentioning that although hard-core terms
not contribute directly to the internal energy~since their con-
tribution to the energy of allowed configuration
vanishes—as correctly reflected by the CS approximatio!,
theydo influence the overall internal energy picture. Spec
cally, for the basic theories, as we shall see, they affect
ternal energy isotherms by altering the coexistence curve
the augmented, pairing theories, they enter by changing
degree of pairing.

B. Assessment of basic theories

1. DH configurational energy

For pure DH theory~with neither pairing nor hard-core
effects! the configurational energy assumes a particula
simple form, namely,

uDH~r* ,T* !52x/2~11x!. ~3.1!

Evidently the energy of DH theoryviolates none of the
boundsfor any values ofr andT; see Eqs.~1.2!, ~2.1!, and
~2.2!. Furthermore,uDH remains above the crystal value
~2.3! as is apparent in Fig. 1. The contrary statements
Blum and co-workers@17–19# that uDH violates Onsager’s
bound perhaps mistake the Debye-Hu¨ckel limiting law
~DHLL !—i.e., truncation of DH theory to lowest order inx,
which no one should take seriously forx*0.3; see Fig. 1—
for the full DH theory propounded in@9#.

Strictly, the dependence ofuDH on the single parameterx
given in Eq.~3.1! can be correct only in single-phase regio
of the (r,T) plane. Below the critical temperature~as defined
by the theory at hand! the energy in the coexistence region
always a weighted sum of the values in the two phases, sa
t
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andb. In fact, if the energies per particle areua andub and
the densitiesra5ra(T) andrb5rb(T), one finds

u~r* ,T* !5
ra~rb2r!ua1rb~r2ra!ub

r~rb2ra!
, ~3.2!

so thatu varies linearly with 1/r. Thus the main DH plot in
Fig. 1 is restricted toT>Tc

DH , and similarly for the other
theories. However, including phase coexistence accordin
Eq. ~3.2! cannot induce bound violation, since a weight
sum of two acceptable values also satisfies the bound: se
inset in Fig. 1 where the solid curves depict DH isother
for T<Tc

DH .
Regarding the effects of hard cores, one finds that

only changes in DHCS theory occur in the two-phase regi
belowTc

DHCS: the energy isotherms are shifted from those
pure DH theory since the coexistence curve differs. T
dashed curves in the inset to Fig. 1 show the rather sm
effects: the shifts mainly reflect the expected lowered de
ties on the liquid branch of the coexistence curve. Natura
these changes cannot induce any violation of Totsuji’s bo
or of the crystal limits.

2. MSA configurational energy

Now Blum and Bernard@17,18# have claimed the energ
of the~pure! MSA, is ‘‘asymptotically correct.’’ However, as
can be seen in Fig. 1, the MSA reduced excess ene
namely@40#,

uMSA~r* ,T* !52@11x2~112x!1/2#/x, ~3.3!

asymptotically approaches the Onsager bound of21 butvio-
lates the Totsuji boundfor x>xT.1200 ~as Totsuji noted
originally @22#!. Furthermore,uMSA lies below the crystal
values forx>xX.125.

FIG. 1. The configurational energy per particle for the Deby
Hückel ~DH!, mean spherical approximation~MSA! and related
theories above criticality, for comparison with lower bounds. Fo
description of the bounds and the theories, see the text. The
shows isotherms forT<Tc for the DH and DHCS theories as soli
and dashed curves, respectively.~Here and below, CS denotes us
of the Carnahan-Starling approximation for the excluded-volu
effects.!
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In fact, even in the absence of Totsuji’s result, it is hard
make sense of the claim@17,18# that the MSA energy is
asymptotically correct for the RPM in the limit of largex by
virtue of its approach to Onsager’s bound. Agreement wit
bound is hardly proof of correctness@41#. Furthermore, the
limit x→` at fixed density impliesT* ;T/q2→0; but at
low temperatures, one expects crystalline phases to ap
for r* &rmax* 5& ~for fcc sphere packing! @2# and these are
not described by any of theories under consideration.

It is worthwhile to interpret more explicitly the valuesxT
and xX , where violation by the pure MSA~no hard cores!
occurs. On the liquid side of the coexistence curve,xT cor-
responds to violation whenT* <0.012.(0.14)Tc*

MSA and
xX corresponds toT* <0.035.(0.41)Tc*

MSA . ~The first vio-
lation temperature here is estimated with the aid of a lo
temperature asymptotic analysis of the pure MSA coex
ence curve@42# while the second follows directly from a
numerical evaluation.! The solid curves in Fig. 2 demon
strate the effects.

The inclusion of hard-core terms~‘‘by hand’’ ! in the pure
MSA changes the liquid-side coexistence curves m
strongly than in DH theory. Thus for the MSA with CS term
or, equivalently, for the GMSA, the violations shift to muc
lower ratios ofT/Tc

GMSA: this is clearly evidenced by th
dashed coexistence isotherm shown in Fig. 2 forT*
50.030.(0.38)Tc*

GMSA ~with Tc*
GMSA.0.0786@7,43#!.

3. MSpA configurational energy

The energy according to the MSpA is@11#

uMSpA52 1
3 @12~12A112x!/x

12 ln~11x1A112x!222 ln 4#, ~3.4!

which, in the single-phase region, also depends only on
parameterx. As evident from Fig. 1, however, this violate
the Totsuji and Onsager bounds atxT.6.5 andxO.7.1, re-

FIG. 2. Comparison of the MSA energy with bounds forT
<Tc at multiples ofT* 50.01 up toTc* .0.0858~solid curves!. The
dashed curve shows theT* 50.03 isotherm for the GMSA for
which, presumably, violations occur only at much lower tempe
tures.
a

ear

-
t-

e

e

spectively. These results provide ample justification for
disparaging evaluation of the pressure-route thermodynam
for the MSA. For the remainder of this paper, we thus om
the MSpA.

C. DH and MSA free energies

In the pure theories~in which Bjerrum ion pairing is not
explicitly included! we find that both DH theory and the
MSA violate Gillan’s free energy upper bound. The enti
vapor branches of both coexistence curves, as well as
sides of the DH critical region, are in violation. As shown
Fig. 3, the violations remain when hard-core excluded v
ume corrections are included. The DHCS and GMSA tre
ments exhibit very similar features, for the low densities
interest. Note that in Fig. 3 we follow the coexistence p
scription for the free energy corresponding to Eq.~3.2!. Note
also that non-violation on one branch of the coexisten
curve ~as on the GMSA liquid side! is at best a qualified
virtue since the construction of the coexistence curve
pends on the free energies onboth sides. In light of these
results it is clearly imperative to examine theories which
low for ion pairing.

IV. ASSESSMENT OF ION-PAIRING THEORIES

A. Bjerrum and beyond

To compensate for the effects of the DH linearization
the electrostatic Boltzmann factor, Bjerrum@13# postulated
association of ‘‘free’’ ions of ~residual! density r1 into
‘‘bound’’ neutral dipolar pairs of densityr2 so that the over-
all density is

r5r112r2 . ~4.1!

In terms of the ideal-gas free energy densityf̄ j
id(r j ,T)

5r j@12 ln(Lj
3jrj /zj)# with mean thermal de Broglie wave

lengthsL j (T) and internal partition functionsz j (T) @5#, we
may then write the total free energy density as@4, 5#

-

FIG. 3. Comparison of the free energies predicted by the DH
and GMSA theories in the density-temperature plane with Gilla
upper bound. The bound is violated below the solid and das
curves, respectively. For comparison, the associated coexist
curves with tie lines and critical points are also plotted.



m
he
/

s

b
-

ce

se
A

-

ed

-
an
e

d
th

-

d

i-

a

ling
t

e
s
ute

this

rst
ant

n.

ing

d
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f̄ 52 f̄ 1
id~ 1

2 r1!1 f̄ 2
id~r2!1 f̄ ex~r1 ,r2!, ~4.2!

with the excess free energy density

f̄ ex~r1 ,r2!5 f̄ HC~r1 ,r2!1 f̄ ion~r1!1 f̄ DI~r1 ,r2!,
~4.3!

where ~i! f̄ HC denotes the pure hard-core/excluded-volu
terms,~ii ! f̄ ion represents the electrostatic contribution of t
free ions, while~iii ! f̄ DI denotes the dipole-ion interaction
solvation terms@4, 5#. As mentioned, we take heref̄ HC to be
of Carnahan-Starling form@39# with the dipoles treated a
effective spheres of diameters2521/3a @16#.

Chemical equilibrium among the1 and2 free ions and
dipolar pairs is imposed via the equalitym252m1 of the
chemical potentials. If the association constant is defined
K(T)5L1

3 L2
3 z2 /z1z2L2

65z2 ~see@5#! and the reduced ex
cess chemical potentials are

m̄ j
ex[m j

ex/kBT5 ln g j52~] f̄ ex/]r j !, ~4.4!

with r15r25 1
2 r1 andg15g25g1 , then the mass action

law states

r2

r1r2
5K̃~T;r1 ,r2![K~T!

g1g2

g2
. ~4.5!

The optimal expression forK(T) is a matter for debate
@4, 5#—and will be discussed further below. For referen
purposes we adopt Ebeling’s form@5, 14, 44# which guaran-
tees an exact representation of the RPM’s electrostatic
ond virial coefficient when one uses DH theory or the MS
~but not the MSpA! for f̄ ion(r1). Note that forT* <0.05
.Tc* the difference betweenKEb and Bjerrum’s original pro-
posal KBj is less than 0.01%; it rises to 3.0% atT*
5Tc*

MSA.0.0858, in accord with the Introduction.
Bjerrum’s original theory@13# amounts to the approxima

tion

DHBj: f̄ ex. f̄ ion. f̄ DH~x1! with x15k1a, ~4.6!

where k1
254pq2r1 /DkBT represents the inverse squar

Debye length for thefree ions alone, while as usual@9#,

f̄ DH~x!5@ ln~11x!2x1 1
2 x2#/4pa3. ~4.7!

Friedman and Larsen@45# later found that the predicted co
existence curve was unphysical. More recently, Fisher
Levin @2, 4, 5# elucidated the peculiar ‘‘banana’’ shape of th
DHBj coexistence curve~see Fig. 4 below! and showed it
became worse when excluded-volume terms were adde
e.g., in DHBj CS theory. However, they also estimated
dipole-ion solvation term as@5#

f̄ DI5r2~aa1
2/a2

3T* !ṽ2~x2!, x25k1a2 , ~4.8!

ṽ2~x!53@ ln~11x1 1
3 x2!2x1 1

6 x2#/x2'x2/12,
~4.9!

wherea15(1.0-1.3)a is the mean dipolar size, or1/2 ion
separation, whilea2.1.16198a represents the effective elec
trostatic exclusion radius@5#. ~Note that all the results given
e

y

c-

d

as,
e

here usea15a and a251.16198a.! The resulting DHBjDI
theories lead to sensible coexistence curves~see Fig. 5 be-
low! that agree fairly well with current simulations@5, 2~b!#.

At an earlier stage, Ebeling and Grigo@14# combined
Bjerrum pairing with the MSA by replacingf̄ DH by @7, 11#

f̄ MSA~x!5@216x13x222~112x!3/2#/12pa3,
~4.10!

with x⇒x1 again evaluated atr1 . They also added
excluded-volume terms. The resulting MSABj an
MSABjCS[EGA @8~b!, 14# theories yield fully acceptable
coexistence curves@5# but, as mentioned, the predicted crit
cal temperatures are significantly too high@2~b!, 5#.

Recently, Zhou, Yeh, and Stell~ZYS! @8# have extended
Ebeling’s approach by using the MSA in conjunction with
‘‘reference cavity theory of association’’@46#. Their pairing
mean-spherical approximationsor PMSA theories may be
described by

PMSA: f̄ ex5 f̄ MSA~x!1 f̄ CS~r!1r2~T,r!ln~g1g2 /g2!,

~4.11!

wherex5kDa is now evaluated with thetotal densityr and
f̄ CS represents the single-component Carnahan-Star
form, evaluated atr5r112r2 ~i.e., bound pairs are no
treated as geometrically distinct objects!. Note thatr2 is here
to be determined from Eq.~4.5! once K, g1 , and g2 are
specified~see below!; hencer2 is an explicit algebraic func-
tion of the arguments stated in Eq.~4.11!. The use of only
the total density~in place of the free ion densityr1! results in
an analytically simpler, more explicit formulation; but, in th
light of the original DH and Bjerrum arguments, it seem
rather unphysical since neutral bound pairs cannot contrib
to screening in a direct way. Furthermore, as we will see,
approach entails a significant cost in accuracy.

The specification of the PMSA may be completed by fi
noting that ZYS also adopt Ebeling’s association const
KEb(T) @5, 14, 44#. Then, for the activity coefficients,g1

[g2 and g2, ZYS propose three levels of approximatio
First,

PMSA1: ln g152~] f̄ MSA/]r!T[m̄MSA~T,r!,

g251, ~4.12!

which neglects dipole-ion contributions@cf., Eq. ~4.11!#.
Second, dipole-ion interactions are introduced by replac
the approximationg251 by

PMSA2: lng25@2~11x!A112x2224x2x2#/T* x2,

'2x2/4T* @11O~x!#; ~4.13!

see @8~b!#, Eq. ~4.11!. Finally, the dumbbell-shaped har
cores of a dipolar ion pair are incorporated@8~a!# by using
the CS cavity-value contact function and incrementing lng2
by

PMSA3: D ln g25 ln@2~12h!3/~22h!#, ~4.14!

whereh5pr* /6.
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56 6575CRITIQUE OF PRIMITIVE MODEL ELECTROLYTE THEORIES
PMSA3 is the preferred theory of ZYS and yield
(Tc* ,rc* ).(0.0745, 0.0245). PMSA1 and PMSA2 giv
~0.0748, 0.0250! and ~0.0733, 0.0229!, respectively. TheTc
values are still significantly higher@8~b!# than the DH-based
estimates, namely,Tc* .0.052– 0.057@2, 5, 47#, while the
simulations suggestTc* .0.048– 0.055@2~b!, 15#.

B. Pairing theories vs Gillan’s bound

Comparison of the pairing theories with Gillan’s free e
ergy bound is mainly encouraging. We find that theories t
incorporate association in the Bjerrum chemical picture,
which the free ion density isdepletedby pairing ~i.e., r1
5r22r2!, never violate the bound. Indeed, even the m
primitive Bjerrum theories, DHBj and MSABj—which in
clude neither hard-core nor dipole-ion interactions—sati
Gillan’s bound for all (r* , T* ) values tested: see Fig. 4. O
the other hand, all three PMSA theories turn out to viol
Gillan’s bound in significant regions of the (r* , T* ) plane,
including nearly the entire vapor branches of the coexiste
curves.

As regards the MSABj and DHBj theories, the more-o
less vertical ‘‘excess contour lines’’ in Fig. 4 reveal the ma
nitude of nonviolation in the density-temperature plane: th
are loci on which Gillan’s upper bound exceeds the cor
sponding approximate reduced free energy density2 f̄ a3 by
the indicated amounts, ranging from 631024 up to 0.1. The
associated coexistence curves are also shown and one
notice that the excess contours undergo a jump in curva
on entering the corresponding two-phase region: this res
from the coexistence prescription analogous to Eq.~3.2!.

Figure 5 shows the effects of incorporating dipole-ion s
vation ~DI! and excluded-volume~CS! terms. Note that re-
moving the excluded-volume terms from these BjDICS th
ries produces only slight shifts in the excess contours at h
densities and low temperatures.

FIG. 4. Pure Bjerrum pairing theories tested against Gilla
free-energy bound. The solid and dashed ‘‘excess contours’’
labeled by the magnitudes by which the DHBj and MSABj reduc
free energies, respectively, fall below the upper bound~see text!.
Note the associated coexistence curves and the unrealistic
nana’’ shape of the DHBj prediction@2, 4, 45#.
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By contrast, the solid curve in Fig. 6 marks the bounda
of the region inside which the PMSA3 free energy violat
Gillan’s bound. The coexistence curve is also shown.~Note,
however, that the coexistence prescription was not used
to compute the violation boundary within the two-phase d
main.! The region of violation found for PMSA2 is nearl
identical, while that for the PMSA1 theory is slightly large
extendingabove the corresponding critical point,Tc

PMSA1;
see the dashed curve in Fig. 6.

In conclusion, the violations of Gillan’s bound found pr
viously and seen here for the PMSA theories demonst
convincingly that association of oppositely charged ions i
dipolesalong witha concomitant depletion of free ions an
their screening effects is a crucial element in the critic
region behavior of the RPM. Gillan’s bound also serves
highlight interesting contrasts between DH- and MSA-bas
theories: the MSA coexistence curve shifts only sligh
when pairing is added~MSABj! yet, surprisingly, violation

s
re
d

a-

FIG. 5. Comparison of BjDICS free energies, which incorpora
dipole-ion solvation and Carnahan-Starling excluded-volume ter
with the Gillan bound, as in Fig. 4.

FIG. 6. Test of the PMSA theories against Gillan’s free ene
bound. All theories fail at low temperatures and densities: see
violation boundaries, solid for PMSA3~the preferred theory! and
dashed for PMSA1. The coexistence curve and critical point
those predicted by the PMSA3.



;

6576 56ZUCKERMAN, FISHER, AND LEE
TABLE I. Some critical-point parameters for various theories:Tc* ; uc , the reduced energy per particle
xc5(4prc* /Tc* )1/2, the~overall! Debye parameter; and,x1c5(4pr1c* /Tc* )1/2, the screening parameter.~Note
that the values quoted forxc in @5# correspond here tox1c and that the Ebeling association constant@14# was
used throughout.!

DH 1CS 1Bj 1BjCS 1BjDI 1BjDICS

Tc* 0.0625 0.0613 0.0625 0.0615 0.0574 0.0525
uc 20.25 20.2411 20.4315 20.4378 20.4443 20.4533
xc 1 0.9315 3.0135 3.2811 2.4661 2.4240
x1c 1 0.9315 1 0.9386 1.1229 0.9315

MSA 1CS 1Bj 1BjCS 1BjDI 1BjDICS

Tc* 0.0858 0.0786 0.0858 0.0787 0.0821 0.0723
uc 20.4142 20.3358 20.4157 20.3781 20.4442 20.4148
xc 2.4142 1.5221 2.7213 2.0408 3.0729 2.2083
x1c 2.4142 1.5221 2.4142 1.5319 2.4509 1.4850

PMSA1 PMSA2 PMSA3

Tc* 0.0733 0.0748 0.0745
uc 20.3740 20.4266 20.4265
xc 1.9814 2.0494 2.0329
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of Gillan’s bound is still completely avoided; the unphysic
DHBj ‘‘banana’’ coexistence curve~in Fig. 4!, on the other
hand, immediately points to the significance of pairing, wh
satisfaction of Gillan’s bound is surprising here because
coexistence curve is so unconvincing.

C. Pairing theories vs energy bounds

Testing the pairing theories against the bounds of Tot
and Onsager yields mixed results. For a window of tempe
tures that includes the critical region, namely, 0.015&T*
&0.5, all the theories embodying ion association satisfy
energy bounds. We also find a surprising level of agreem
among the various theories as to the value of the crit
energy per particle: see Table I. At low temperatures, ho
ever, some of the MSA-based theories violate Totsu
bound. Moreover, at moderate temperatures (T* *0.5) all of
the pairing theories violate fundamental thermal stability
quirements~as discussed in the next section!; for some of the
approximations, this is also accompanied by violation of
Totsuji and Onsager bounds, as explained below.

Now the energy for a general pairing theory follows fro
Eq. ~4.2! via the thermodynamic relation~1.4! and the mass
action law~4.5!, etc., which leads to

u~r,T!5
a3T* 2

r*
]

]T*
f̄ ex~r,T!1

r2

r
u2~T!, ~4.15!

whereu2(T) is given by

u2~T!5T* 2@d lnK~T!/dT* #. ~4.16!

But this can be recognized simply as the mean energy
single ~1,2! bound pair since the corresponding intern
configurational partition function for a pair is embodied
the association constantK(T)—see the text above Eq.~4.4!
l
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and Levin and Fisher@5#. Of course, the factorr2(r,T) in
Eq. ~4.15! is also to be determined via the law of mass act
~4.5!. For theories of the form~4.3!, one can further write

uex5~a3T* 2/r* !~] f̄ ex/]T* !5uion1uDI, ~4.17!

where the ‘‘basic’’ expressions for the electrostatic contrib
tion uIon are now given by the natural generalizations of E
~3.1! and ~3.3!, namely,

uDH~r,T!5
2~r1 /r!x1

2~11x1!
, ~4.18!

uMSA~r,T!52~r1 /r!@11x12~112x1!1/2#/x1 .
~4.19!

For reference, we also quote the explicit result foruDI fol-
lowing from the treatment of Fisher and Levin in leadin
order@48#. Defininga1 anda2 as in Eqs.~4.8! and~4.9! @5#,
one finds

uDI52
aa1

2

2a2
3

r2

r

~ka2!2

@313ka21~ka2!2#
. ~4.20!

The corresponding expressions for the PMSA theories
omitted for the sake of brevity.

1. Low temperatures: Violation in MSA pairing theories

For T* &0.015, evaluation ofu(r,T) reveals violations of
the Totsuji bound for most of the MSA theories. The reas
turns out to be literally the same as for the pure MSA: in t
corresponding Bj, BjCS, BjDI, and BjDICS theories, as w
as in the PMSA1~althoughnot PMSA2 and 3! theory, the
mass-action pairing predicted by Eq.~4.5! becomes exponen
tially small asT*→0 @49#. As a result, all these theorie
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revert to their ion-only form~i.e., MSA or MSACS! and
violations occur; see Fig. 1. A similar loss of pairs occu
whenT*→0 in the DHBjDI and DHBjDICS~but not DHBj
or DHBjCS! theories, and so these theories revert to the c
respondingnonviolatingDH and DHCS theories. These re
sults are independent of whether one uses the Ebelin
Bjerrum association constant or any other reasona
partition-function-like form, as discussed below.

2. Moderately low temperatures

In the temperature range 0.015&T* &0.5, which includes
Tc* , all the pairing theories described in the present stu
satisfy the Totsuji bound, and hence, Onsager’s as well.
ure 7 depicts energy isotherms for the pairing theories
T* 50.07. The plotted isotherms have been cut off for la
x5kDa at the hard-core packing limitrmax* 5&. Figure 7
also shows the location of the critical point of th
DHBjDICS theory, which may be regarded as a referen
point in reading Table I. The table lists the various critic
energies and Debye parameters. As mentioned, there is a
measure of agreement among the different pairing theo
regarding the energy at criticality even though other para
eters vary quite strongly.

3. Violations at moderate and high temperatures

Violation of the energy bounds are found again, as m
tioned above, athigher temperatures in the rangeT* *0.5,
some 6 to 10 times greater than the estimates forTc* . The
reason for this surprising fact, however, is quite differe
from the cause at low temperatures: it transpires, indeed,
the form of the association constant is now crucially imp
tant.

In fact, any theory with pairing governed by Bjerrum
association constant violates both the Totsuji and Onsa

FIG. 7. Plots of configurational energy isotherms for vario
theories atT* 50.07, which temperature liesaboveall DH-based
estimates ofTc* but below all MSA-based values. The scallope
sections of the latter isotherms thus represent the two-phase reg
As regards the theories, recall that GMSA is equivalent to MSA
and note that the1 implies the BjDICS extensions of the bas
theories. At largex5kDa all isotherms have been cut off at th
hard-sphere close packing density. For reference, the critical p
of the DHBjDICS theory~whereTc* 50.0525! has been marked.
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bounds whenT*→ 1
22 andr is large enough. Once notice

numerically, this behavior can be understood analytically
evaluating the factoru2(T) in Eq. ~4.15! using Eq.~4.16!
with K5KBj(T). To that end recall, first, the well known
fact @5# that KBj(T) vanishes linearly, say ascBj(122T* ),
when T*→ 1

22 ~and remains identically zero forT* . 1
2!.

Consequently,u2(T) diverges to2` as 2 1
2 /(122T* ) in

this limit. However, the factorr2(r,T) in Eq. ~4.15! must be
evaluated via the mass action law~4.5! and is proportional to
KBj(T); this gives

r2

r
u25

r1
2g1

2

4rg2
T* 2

dK

dT*
'2

cBj

8a3

g1
2

g2
r* ,0, ~4.21!

as T*→ 1
22, so that r2→0 and r1→r. Note that the

g i(r,T), defined via Eq.~4.4!, depend on the theory unde
consideration. One finds thatcBj /8a3.11.6: this is large
enough so that the pairing term~4.21! by itself yields a vio-
lation of Onsager’s bound when~in DHBj theory! r*
.rOns*DHBj.0.39 or ~for MSABj! r* .rOns*MSABj.0.64. How-
ever, as the other terms in Eq.~4.15! are also negative, vio-
lations must arise at even lower densities. One finds num
cally, in fact, that the violations occur at or belowr* &0.3 in
all the theories with pairing governed by Bjerrum’s assoc
tion constant.

One expects Ebeling’s choiceKEb(T) which provides a
match to the exact RPM second virial coefficient and ne
vanishes@5, 14, 44#—in contrast to the singular vanishing o
KBj(T) at T* > 1

2—to fare better. Nevertheless, Ebeling’s a
sociation constant leads to Onsager and Totsuji bound vi
tions in the regionT* .0.7-1.0—although only in those
theories which explicitly allow for the excluded volume e
fects. The PMSA3 treatment, furthermore, falls into th
same category of violation; however, PMSA1 and 2 donot
because the excluded-volume terms there do not affect
degree of pairing.

All the violations just described turn out to be symptom
of a more serious weakness of both the Bjerrum and Ebe
association constants, as we will now demonstrate.

D. Violations of thermal stability

To pursue further the origins of the Totsuji and Onsag
energy bound violations atT* *0.5, consider the energy iso
chores shown in Fig. 8. The two densitiesr* 50.03 and 0.1
have been chosen for display because they bracket the
cal density; similar behavior is seen at higher and lower d
sities. For the pure DH and MSA theories, included in Fig
for reference purposes,u(r,T) rises monotonically withT:
this implies a positive constant-volume configurational s
cific heat,CV

conf(r,T). ~Note that outside the two-phase r
gion these two energy isochores are identical to those
DHCS and GMSA, respectively.!

Now the positivity of thetotal constant-volume specific
heat is a thermodynamic necessity dictated by the second
@25#. For a classical particle system, however, the configu
tional contribution must be separately nonnegative: this
lows either, thermodynamically, by regarding the kinetic an
configurational degrees of freedom as thermally distinct s
tems or, from statistical mechanics, by expressin

ns.
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6578 56ZUCKERMAN, FISHER, AND LEE
CV
conf(r,T) as a mean-square energy fluctuation which is n

essarily positive at finite positive temperatures in any n
trivial system@50#.

However, a quick perusal of Fig. 8 shows thatall the
pairing theory isochores—the solid and dashed curves re
senting DH- and MSA-based theories, respectively, and
dot-dash plots for PMSA1 and 3—display regions whe
u(r,T) decreasesasT increases. In other words, all the pa
ing theories predict negative constant-volume specific h
and violate the second law.

The reason is not far to seek. In the limit of comple
pairing ~i.e., r150, r25 1

2 r!, all the approximate theorie
under consideration predict, via Eq.~4.15!, that the energy
should be simply that of independent dipolar pairs: this c
responds to the plots labeled1

2 u2
Bj and 1

2 u2
Eb in Fig. 8 which

are derived from Eq.~4.16! and the Bjerrum and Ebeling
forms for K(T). But, as is evident from the figure, bot
u2

Bj(T) andu2
Eb(T) exhibit pronounced maxima in the inte

val T* 50.12– 0.13 and then fall sharply asT increases,
dropping below u2

Bj(0)5u2
Eb(0)521 at T* 50.222 and

0.219 , respectively. It is this behavior that leads to the d
creasing regions in the overall excess energy isochores
incomplete pairing. But such a variation ofu2(T) is physi-
cally nonsensical since, clearly, the configurational ene
«2(r )52q2/Dr of a bound pair cannot fall below the con
tact value2q2/Da ~which, in turn, can be achieved in equ
librium only at T50!.

FIG. 8. Energy isochores atr* 50.03 and 0.1~note shifted ver-
tical scales! for the basic DH and MSA theories and for variou
pairing theories—solid lines for those based on DH, dashed l
for MSA based. Ebeling’s association constant is employed for
plots excepting the four bracketed isochores forr* 50.1 labeled
KBj, which use Bjerrum’s expression~which vanishes atT* 5

1
2!.

The PMSA isochores are shown as dot-dashed curves. The
labeled 1

2 u2
Bj and 1

2 u2
Eb representcompleteion pair association~r1

50, r25
1
2 r!, while u2

Bj andu2
Eb are corresponding single-pair en

ergies implied by the mass-action law. Except for these plots,
isochores have been cut off belowT* 50.03 because by then th
extrapolation belowTc* into the two-phase regions loses all signi
cance. @Note that, for the approximations considered he
uDH(r,T)5uDHCS(r,T) and uMSA(r,T)5uGMSA(r,T) outside the
respective two-phase regions~see Sec. III A 3!.#
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The problem withu2(T) arises because the defining rel
tion ~4.16! does not actually yield the physically anticipate
thermodynamic mean value@51#, say, ^«2(r )&K , which in
the Bjerrum picture of association would be

^«2~r !&K54pE
a

R

«2~r !e2b«2~r !r 2dr/K~T!, ~4.22!

with association constant

K~T!54pE
a

R

e2b«2~r !r 2dr. ~4.23!

The reason for the failure is simple: the Bjerrum cutoffR is
taken to be temperature dependent@51#, explicitly, RBj(T)
5a/2T* for T* < 1

2 @5,13#. In general, such temperature d
pendence leads to the difference

q2

Da
u2~T!2^«2&K5

4pR2e2a/T* R

K~T!
kBT2

dR

dT
, ~4.24!

which is negative wheneverR(T) decreases asT rises and
which diverges whenK(T)→0. The Ebeling association
constant can also be written in the form~4.23! but with the
large-T asymptotic formREb(T)2a'a/12T* 4 @5#, which is
quite accurate onceT* *0.3. We must conclude that neithe
the Ebeling nor the Bjerrum association constants can
regarded as representing even an ‘‘effective’’ partition fun
tion for an isolated ion pair as is required by or implicit
assumed in the standard theories of association@5,52#.

As suggested by Fig. 8, the unphysically large values
u2(T) lead to negative specific heats over large regions
the (r,T) plane when eitherKEb(T) or KBj(T) is employed.
Fortunately for our primary focus on the critical region, th
violations of thermal stability are confined in all cases
T* >0.12.2Tc* ~and for the PMSA theories toT* *0.35!.
At densities belowr* 50.01-0.02,0.6rc* the pairing is suf-
ficiently weak that the predictedCV

conf(r,T) always remains
positive—although it does display an unphysical oscillatio
Once violations arise at a givenT, moreover, they persist to
the highest densities.

Of course, certain features are specific to the choice
association constant. As remarked earlier,KBj(T) ‘‘switches
off’’ abruptly at T* 5 1

2 , where a nonphysical latent heat
implied for all r.0; aboveT* 5 1

2 pairing is lost and no
violations remain. WhenKEb(T) is used in DH- and MSA-
based theories with excluded-volume terms, violations
main at the highest temperatures.

What might be a cure for these pathologies? It is cl
from Eqs. ~4.22!–~4.24! that the unphysical behavior o
u2(T) can be avoided if one fixes the cutoff in Eq.~4.23! at,
say R5la, so definingKl(T). Furthermore, for any fixed
l.1, the low-T behavior ofKl(T) still matchesKEb(T) to
all orders inT* @5,27#. In addition, the choice ofl may be
optimized by requiring that the deviationu(KEb/Kl)21u[d
remain less than a specified level up to as high a tempera
as possible. Thus one finds thatl.3.4 provides 1% preci-
sion (d50.01) up toT* .0.11.
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One can then check thatnoneof the pairing theories em
ploying Kl(T) with l.3.4 violates the energy bounds o
thermal stability for any realizable thermodynamic sta
(r,T). In addition, the qualitative conclusions regarding t
violation and nonviolation of the Gillan free-energy bou
remain unchanged. Indeed, usingK3.4(T) causes only insig-
nificant shifts of the free-energy excess contours from th
displayed in Figs. 4 and 5 whenT* &0.1.

Nevertheless, merely replacingKEb(T) by Kl(T) leads to
significant inaccuracies in the thermodynamics athigher
temperatures. Thus, a more thoughtful approach is esse
to providing a reasonable approximate theory of the R
ien

s.
,

e

tial

that is valid over the full range of temperatures@and up to
moderate densities excluding, of course, the solid phase~s!#.
Such a treatment will be presented elsewhere@28#.
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@35# H.-L. Vörtler and J. Heybey, Mol. Phys.51, 73 ~1984!.
@36# D. Levesque, J. J. Weis, and J. P. Hansen, inMonte Carlo

Methods in Statistical Physics, edited by K. Binder~Springer,
Berlin, 1979!.

@37# P. A. Monson and M. Rigby, Chem. Phys. Lett.58, 122
~1978!.

@38# D. Frenkel, J. Phys. Chem.91, 4912 ~1987!; see also, D.
Levesque and J. J. Weis, inThe Monte Carlo Method in Con
densed Matter Physics, 2nd ed., edited by K. Binder~Springer,
Berlin, 1995!.

@39# ~a! N. F. Carnahan and K. E. Starling, J. Chem. Phys.51, 635



e

it

th

r,

m
se

o
re

ys.

6580 56ZUCKERMAN, FISHER, AND LEE
~1969!; ~b! for mixtures, see G. A. Mansooriet al., ibid. 54,
1523 ~1971!; ~c! G. Jackson, Mol. Phys.72, 1365~1991!; ~d!
for the corresponding Helmholtz free energy, see also R
@16#.

@40# See Eq.~5! in Ref. @11~a!#.
@41# For completeness we mention that Refs.@17# and@18# also cite

the HNC approximation and compare the MSA favorably to
in particular, for the one-component plasma~OCP!, which
consists of point particles. For the OCP, a lower bound on
energy has been established@30#. In the strong coupling limit,
q2r1/3/T→`, it has been shown by H. Gould, R. G. Palme
and G. A. Este´vez, J. Stat. Phys.21, 55 ~1979!, that the OCP
energy computed via the MSA approaches this bound asy
totically; the same seems true for the HNC approximation,
K.-C. Ng, J. Chem. Phys.61, 2680~1974!. However, the rel-
evance of these observations to the reliability or accuracy
the HNC and MSA for the OCP model again seems obscu

@42# See Eqs.~9.8! and ~9.9! of Ref. @5# but note the following
f.

,

e

p-
e

f
.

corrections:~a! In Eq. ~9.8! the coefficient26& in the cor-
rection factor should be218; ~b! in Eq. ~9.9! the right-hand

side should read (e3/81pT* 3)e21/T* @12
9
2 T* 1•••#.

@43# M. M. Telo da Gama, R. Evans, and T. J. Sluckin, Mol. Ph
41, 1355~1980!.

@44# W. Ebeling, Z. Phys. Chem.~Leipzig! 238, 400 ~1968!. For
explicit expressions forKEb(T), see@5# Eqs.~6.5!–~6.7!.

@45# H. L. Friedman and B. Larsen, J. Chem. Phys.70, 92 ~1979!.
@46# Y. Zhou and G. Stell, J. Chem. Phys.96, 1504 ~1992!; 96,

1507 ~1992!.
@47# M. E. Fisher and B. P. Lee, Phys. Rev. Lett.77, 3561~1996!.
@48# See Eqs.~7.12! and ~7.13! of @5#.
@49# See Eqs.~9.15!–~9.18! of @5#.
@50# See, e.g., in Ref.@25~b!#, Sec. 19-2.
@51# O. Halpern, J. Chem. Phys.2, 85 ~1934!.
@52# N. Davidson,Statistical Mechanics~McGraw-Hill, New York,

1962!, Chap. 7.


