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Fluctuation effects in steric reaction-diffusion systems
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We propose a simple model for reaction-diffusion systems with orientational constraints on the reactivity of
particles, and map it onto a field theory with upper critical dimensipgn2. To the two-loop level, long-time
particle densityN(t) is given by thesameuniversal expression as for a nonsteric system, With) ~t %2 for
d<2. For slow rotations of the particles we find an intermediate regime whigne-t~%*, with the crossover
to the nonsteric asymptotics determined by the rates of rotations and reactions. Consequences for experiments
are discussedS1063-651X%99)50104-9

PACS numbds): 82.20.Fd, 05.40-a

Diffusion-controlled reactions are ubiquitous in nature model for steric reaction-diffusion—has the advantage that it
and span a wide range of phenomena—from chemical caczan be analyzed by field-theoretic renormalization group
talysis in cell biology to matter-antimatter annihilation in the (RG) techniques, allowing for precise predictions about the
early universe. In these processes the timéor a particle to  long-time kinetics. In spite of its simplicity the model con-
diffuse to its nearest neighbor is much larger than the chartains some very interesting information. In particular, for
acteristic timetg for the particles to react once in proximity. sufficiently slow internal rotations of the particles our results
As a result, large density fluctuations may develop at latgeveal that steric reactivity in dimensiorb<2 drives a
times, resulting in anomalous kinetics with universal scalingcrossover from a density decai(t) ~t~9* at large interme-
behavior[1]. diate times toN(t)~t~ 92 at later times(with logarithmic

Our understanding of diffusion-controlled reactions hascorrections ind=2).
advanced significantly in the last few years. Results obtained 1¢ define the model we partition configuration space into
by new theoretical approachetke renormalization group  celis Ar, and time into intervalst. The particles are repre-
methods{2] or mappings to integrable modd8]) can now  sented by spheres with an active spot that is either “up” or
be tested against high-quality experimental data, includingqown” with respect to a fixed reference direction, ané™
measurements on low-dimensional processes where effeqtsg ) denotes a sphere with the spot (gown) [9]. Thus,
from fluctuations are most pronouncpd]. However, little  the orientation of a sphere is restricted to two stateandB.
attention has been paid to the modeling of fluctuation effectsne numper ofA and B particles in the cells at a time step
in steric reaction-diffusion systems, i.e., systems where thg,at n=1,2,..., are given by the sets of cell occupation num-
reactivity between particles depends on their relative orienpgrg {a}nae and {b},.,, respectively. We assume that the
tation. Examples include diffusion-controlled enzyme reacypjicroscopic dynamics lead to Markov process[10] with
tions[5], effective reaction-diffusion models of protein fold- waiting time intervalAt, and assign probabilities that within
ing [6], as well as generic solution kinetics of molecules with y 4 particle in a given cell willreact (if the cell is non-
nonuniform surface reactivity7]. Here the chemically active empty), jump to a neighboring celith or without rotation

art of a reactant is located in a specific region, usually rep- . ~ ~ - . .
Eesented by amctive spot[7] on tt?e spherg modeling {hep(wnh ratesD;, andD respectively, or stayin the cellwith

reactant. Two particles react only if their active spots touchlotation (with rate D) or without In the continuum limit
signaling a successful “docking” for reaction. Despite the D, andDy, fold into one effective parameter that we refer to
importance of this class of processes, the theoretical effort sasD,,, with the continuum limit translational diffusion con-
far has been limited to estimating how the reaction ratestant denoted byD. Disregarding the influence of micro-
effectively decrease due to orientational constra[ms]. scopic rotations at first, we assume that two particles in a cell
The lack of a more comprehensive theory reflects themay react and annihilate with some raigonly if one isA
subtlety of the problem, which here makes a faithful treat-and the otherB, with 6, as an average over all possible
ment quite difficult. active (“spot-to-spot”) and nonactive encounters within the
In this Rapid Communication we propose rinimal time interval At. Since microscopic rotations in the time
model for steric reaction-diffusion systems, specifically, an-intervalAt may turn a nonactive encounter into an active one
nihilation processes. This model—in spirit an “Ising-type” we also assign a nonzero reaction reieto the cases where
both particles initially are of typd or B. The assignment of
values to the rate constants is immaterial, but clemglyvill
*Present address: Department of Physics, Bucknell Universityapproachd, for sufficiently fast microscopic rotations. Thus,
Lewisburg, PA 17837. to “optimize” effects from steric reactivity we assume that
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No<% 8y, and alsdD,,;/D<1. This limit of “slow” rotations d

is indeed realized in many experimental systé8is d—P(c,t)zE Re—cP(C’ )= 2 Re_oP(Ct). (2)
c’ c/

The model thus constructed is equivalent to a generalized
two-species annihilation system whekendB particles dif-  HereP(c,t) denotes the probability of a given configuration
fuse by translations and “flips,A«< B, and react according c=({a},{b}) at timet, andR./_. is the transition rate from
to [11]: statec’=({a}’',{b}") into c, determined byD, D, &y, and

No. We takeP(c,0) as a Poisson distribution, with averages

*o % denoted byn, o andny o for A andB particles, respectively.
AtA——0 A+B—0 In the absence of anisotropies or external fields we expect
that ny g=ny o, but for now we leave the initial densities
Mo unspecified.
B+B —— 0. (1) Following Refs.[13,14], the master equatiof®) can be

mapped onto a field theory in the continuum limit, with
Without rotations §,=0 andD,,=0) one immediately ob- and B particles described by scalar fieldsand b, respec-
tains the well-knownA+B—0 universality class for the tively. Introducing ¢=(a+b)/2, =(a—b)/2 (with conju-
asymptotic mean density,(t) =ny(t)~t~%[12,2. To ex-  gated fields defined without the factor Pf and correspond-
plore the more realistic case including rotations we consideing initial ~ densities Ny o=(N, 0+ Np)/2, Ny e=(Nao
the master equation —ny0)/2, we obtain the action

s= [ % dtﬁ(at—v2)¢+$<at—vz>w+pw+<xo+5o>$¢2+<xo—%)W

0 0

— A
+2No¢bpd+

ogegey M Dy O g 20002 Bl

- [ %, o8x0 +n, %01 3

where we have rescaled the time variafid¢—t, and where  with g* =h* =T'(e/2)~%(87)9? as the fixed point to which
p~D,ot/D. Using Eq.(3), the mean densities can be calcu- both rate constants flow. We are interested in the large-time
lated asn.(t)=(c(t))s (c=a,b), where()s denotes an av- mean densities,(t) andn,(t), which depend, in principle,
erage with respect to the acti@hThe rate constants, playing on the initial densitiesi, o andny o, and the bare rates,

the role of coupling constants, here become dimensionlesgnd §,, expressed throughg, ggr, and x. However, the
whend=2, suggesting this as the upper critical dimensiondensities cannot depend on the arbitrarily chosen s¢aied
above which mean field theoynormal reaction kinetics”  this implies a Callan-Symanzik equation

[1]) should be valid, a result confirmed by standard power

counting technique$l5|. Hence, we concentrate ah<2. Ne(t;9r,NRNa0,Npo: &)

These dimensions can be explored by using RG improved -

perturbation theory iml,=2 and then continuing the results = (k%) k™% Gr(t),NR(1);Tia o), Fp o 1) 4],
to d<2 via an e expansion. As seen in E@3), rotational

diffusion acts as a mass perturbation in theector, and for c=a,b, )

simplicity we focus on the “strong” steric limit where this
term is omitted, commenting on the general case as we g
along. % h*

Using dimensional regularization, divergences in pertur- Tr(t) = 9 Rr(t) = (6)
bation theory show up as polesér 2—d. Analogous to the 1+ (t/t%) <2’ 1+ (t/tF) 2’
single-species casA+A—0 [16], these poles can be re-
moved by simply renormalizing the rate constamtg:~Ag  and densitiedi, o(t) = («?t)¥’n_,, with c=a,b. The cross-
and 8,— Sg. The renormalized rate constants are defined byver times are given byti=(g*/5)%¢ and t}
primitively divergent vertex functions evaluated at an arbi-=(h*/\)?¢, respectively. The fact that the rate constants
trary momentum scale;, which is further used to define flow to the samefixed point couplingg* =h* has some un-
dimensionless bare and renormalized rajgsx~“6p, hy  expected consequences, and dramatically simplifies calcula-
=k~ “Ng, andgr=«" “0r, hg=«" “Ag, respectively. These tions as compared to the two-species cAseB— 0, with

ith running coupling constants

are related by the exact result No=0, a notoriously difficult problem within the RE].
h To calculate the mean densiting(t) andny(t), the per-
9o 0 (4)  turbation series has to be organized in such a way as to make

=—7—, hg= : : 97 . -
9r 1+go/g* Ro1+ ho/h* it well behaved when the initial running densities flow to
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infinity in Eq. (5). At tree level this can be done by simply with t;=tx andt,=txy, and withz=(\r— g)/(Ar+ SR).

“dressing” the initial densities, o (c=a,b) Equations(4) and (6) imply thatz—0 for large times, thus
killing the second term in the square bracket in Ep). By
/X an e expansion, using thdiy)=0 for equal initial densities,
X = X + + ... we thus obtain for large times,
\X 1] 1 In87—(5/2)
7 nom— _
2 " na(t):nb(t)zz 47T6+ 8 IR LI
and free propagatoiGy(t; —t,;p)= 6(t;—t,)e P11
X t—o, N#0, d<2. (14)

= ——— —L + ...
@  This result, which we have checked to the two-loop level,
In these diagrams a thifthick) line corresponds to a free yields the sameuniversal expression for the total density
(dresseflpropagator, with a cross representing an initial denN(t) =n,(t) + n,(t) as for a nonsteric systefil6]. The in-
sity. The dressed tree-level densitiegt)) and(b(t)) (with  clusion of rotational diffusion withp# 0 in Eq.(3) does not
averages taken only over tree-level diagrams solutions influence the expression in E(L4); sincep does not renor-
of the coupledclassicalrate equations malize, the long-time asymptotics of the theory stay the same
y [17]. The fact that the asymptotic density is blind to steric
el - 2 effects and exhibits not only the same decay exporet2
dt<a(t)>_ (Aoa(1)™F 6o(a(t))(b(V)), as a nonsteric system, but also the samplitudeis a strik-
(9) ing manifestation of universality in reaction-diffusion pro-
d 5 cesses.
ﬁ<b(t)>=_()‘0<b(t)> +oo(b(t)){a(t))), Equation (13) reveals how\, controls the universality
class of the model. In addition to the pole irglthere is a
which for equal initial densitiea, =N, o=ng yield the pre-  secondpotential divergence coming from thg integration,
diction due to the flowny— o under the RG. However, asg, flows,
z flows as wellunlesshy=0, and the asymptotic value af
determines the fate of the integral: for — 1 (z<—3) they
integral is finite (divergenj. If A\g=0 one has theA+B
—0 universality clas$2]. For this casg=—1<— 3 for all
This result is drastica”y Changed by ﬂUCtuationS, as retimes and the integra| diverges_ On the other handafw’
vealed by a loop expansion of the densities. To carry it ouh ,#0, z—0 and, accordinglyz>—% for large times, pro-
we need the dressed tree-level propagators which, for equalicing a well-behaved expansion. This gives e A—0
initial densities, can be calculated exactly. In #he) basis,  ynjversality class of Eq(14). Our results imply that even if
14 ng(Ag+ Sp)t,| B¢ N\o is arbitrarily small, the system will eventually behave as
M) if Xo= & (nonstericlimit). How long does it take for this to
1+ng(Ng+ Sty

No

1+ no()\0+ 50)t (10)

(a(t))=(b(t))=

Ge(p.t1—t2) = Bty tp) e Pt ! m h
happen? Since= — 3 is the critical value that controls the
ny dependence of perturbation theory, and thus the crossover

E=o. 4, (1) to the A+ A—0 universality class, it is natural to define a

crossover timet, such thatz(t,)=—3. Equation(6), to-

gether with the definition of, shows that

with A ,=2 andA ,=2\/(Ng+ Jp). At the one-loop level
there are two diagrams that contribute(is) (with () now
denoting a full average

1 T T T T T T T
X X :
™/ ok
_ = + F
<¢>l loop a < - '\ ;
(12 c'E
with a full (dashed line denoting a¢(y) propagator. After _25_
performing the momentum loop integrations and takimg
—o0, One obtains :
_3: 1 1 1 1 1 1 1

1 1
<¢>lfloop:§(877t)7d/2J'O dx xt~d2 In t

1 FIG. 1. Density decay obtained from a numerical simulation of
Xf dy[y2+2z2y??)(1—y)~ 92, (13 the moasteor equation in EQ) in d=1 with 10 cells. Heres=10
0 andn,=ng=3.5 particles/site.
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g*[1 3)\]% decay exponertslope of the curveschanges from-d/4 for
t,= [7()\—0— 30) (15  early times to—d/2 at late times, with crossovers consistent
with Eq. (15) (scaling with 1x2 for small\).
Sincet} <t,~t} for small\,, there is a large intermediate ~ The present model can be generalized to an arbitrary
time interval with a strong, dependence whei@ is close  number of orientationd\N by introducing the “particles”

to its fixed point vglueg*, vv_hile_ﬁR is sti_II smf_alll. A strong A;,...,Ay, and reactionsA,+A ﬂ) 0. This general-

ng dependence witljr~g* implies scaling with the expo- jzed system can be shown to belong to the same universality
nent —d/4 whenhg=0 (no rotation$ [2]. Since a smalhg  class as the preseNt=2 model as long as all rates, ; are
cann_ot change this_ behavior, it Wi|| algo be preS(_ent for _slownonzero[ﬂ]_ However, if one or several of the ratas, 4
rotational modes with o# 0. The inclusion of rotational dif- yanish, a different scaling behavior resuftaost probably
fusion with p#0 in Eq. (3) will decreaset,, but for suffi-  thet~d44 asymptotics of the A+ B” model, although this is
ciently smallp there will still be an intermediate regime with 4|l to be established

a strongn, dependence, supporting scaling with the expo- A recent breakthrough in preparing and monitoring low-
nent—d/4 [17]. We expect this property to hold generically, gimensional chemical reactions—using carbon nanotubes as

also for more realistic systems with continuous degrees Oéffectively one-dimensional “test tubeg'19,20—opens up
;reedomt. Ei’jﬂaltogi'h we alslo expec;c_ EII ds'g"lhar _crOfsove{he possibility to experimentally test our predictions. The
:‘?[Tl :‘]ér)ster'c S gtemi -ﬁsg-%erfﬁgez Wgrlf\gr?t(h)s essential elements to be present in a laboratory setup are that
problem is in Iproéress in-di : ) : (i) the reactions are sufficiently fast to ensure the diffusion-
: _da controlled conditiontg<tp, (ii) the reactants have a highly
7d\//;/hat causes the crossover from the'* decay .to_the anisotropic surface reactivity with sufficient slow rotational
t decay fpr smalkq? The most prot_>ab|e SCenario 1S thatdiffusion to make the system strongly steric, afiid) the
A. andB particles bgg'f‘ to Sﬁgrﬁgflhtg;née %nd B'”f_h € reactive products precipitate out of the system on a short
glons, at p_r(()j(/:zsds uring w ICtO A HdB reaction 1S time scale compared tt, and hence do not influence the
fomm;nh( etchag\féponoeh ntge k?n regions are kinetics[21]. An observation of the crossover behavior pre-
ormed, NOwever, — 0 reaction becomes unimpor-- yicteq in the present work would be extremely interesting as

:jant _and ?eA_JrA—r;O and"B+|B—>0 reactlt)lns b_ecor:ne it would exhibit a reaction-diffusion process supporting two
ominant despite the small value af, resulting in the  gigtinct time scales with different anomalous scaling.
—d/2 decay exponent.

Figure 1 shows the results of a numerical simulation of We thank M. Howard, Z. Res, G. Schte, and particu-
the master equatio(2) in d=1 [18]. The uppermost curve larly U. Tauber for enlightening discussions, and R. Sprik
corresponds tao=0 and 6=10 (A+B—0 model with de- and D. Ugarte for correspondence about the experimental
cay exponent-d/4), while the lowest curve corresponds to background. Support from the Budapest Workshop on Non-
the case with equal reaction rates §= 10, representing the equilibrium PhenomenéZ.K.), the Swedish Natural Science
asymptotic limit of equal rate constants as given in ).  Research CounciH.J), and the National Research Council
As predicted, for small values of (intermediate curveghe  (B.P.L) are acknowledged.
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