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Fluctuation effects in steric reaction-diffusion systems
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We propose a simple model for reaction-diffusion systems with orientational constraints on the reactivity of
particles, and map it onto a field theory with upper critical dimensiondc52. To the two-loop level, long-time
particle densityN(t) is given by thesameuniversal expression as for a nonsteric system, withN(t);t2d/2 for
d<2. For slow rotations of the particles we find an intermediate regime whereN(t);t2d/4, with the crossover
to the nonsteric asymptotics determined by the rates of rotations and reactions. Consequences for experiments
are discussed.@S1063-651X~99!50104-9#

PACS number~s!: 82.20.Fd, 05.40.2a
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Diffusion-controlled reactions are ubiquitous in natu
and span a wide range of phenomena—from chemical
talysis in cell biology to matter-antimatter annihilation in th
early universe. In these processes the timetD for a particle to
diffuse to its nearest neighbor is much larger than the ch
acteristic timetR for the particles to react once in proximity
As a result, large density fluctuations may develop at l
times, resulting in anomalous kinetics with universal scal
behavior@1#.

Our understanding of diffusion-controlled reactions h
advanced significantly in the last few years. Results obtai
by new theoretical approaches~like renormalization group
methods@2# or mappings to integrable models@3#! can now
be tested against high-quality experimental data, includ
measurements on low-dimensional processes where ef
from fluctuations are most pronounced@4#. However, little
attention has been paid to the modeling of fluctuation effe
in steric reaction-diffusion systems, i.e., systems where
reactivity between particles depends on their relative ori
tation. Examples include diffusion-controlled enzyme re
tions @5#, effective reaction-diffusion models of protein fold
ing @6#, as well as generic solution kinetics of molecules w
nonuniform surface reactivity@7#. Here the chemically active
part of a reactant is located in a specific region, usually r
resented by anactive spot @7# on the sphere modeling th
reactant. Two particles react only if their active spots tou
signaling a successful ‘‘docking’’ for reaction. Despite th
importance of this class of processes, the theoretical effo
far has been limited to estimating how the reaction ra
effectively decrease due to orientational constraints@7,8#.
The lack of a more comprehensive theory reflects
subtlety of the problem, which here makes a faithful tre
ment quite difficult.

In this Rapid Communication we propose aminimal
model for steric reaction-diffusion systems, specifically, a
nihilation processes. This model—in spirit an ‘‘Ising-type
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model for steric reaction-diffusion—has the advantage tha
can be analyzed by field-theoretic renormalization gro
~RG! techniques, allowing for precise predictions about t
long-time kinetics. In spite of its simplicity the model con
tains some very interesting information. In particular, f
sufficiently slow internal rotations of the particles our resu
reveal that steric reactivity in dimensionsd<2 drives a
crossover from a density decayN(t);t2d/4 at large interme-
diate times toN(t);t2d/2 at later times~with logarithmic
corrections ind52).

To define the model we partition configuration space in
cells Dr , and time into intervalsDt. The particles are repre
sented by spheres with an active spot that is either ‘‘up’’
‘‘down’’ with respect to a fixed reference direction, and ‘‘A’’
~‘‘ B’’ ! denotes a sphere with the spot up~down! @9#. Thus,
the orientation of a sphere is restricted to two states,A andB.
The number ofA andB particles in the cells at a time ste
nDt, n51,2,..., are given by the sets of cell occupation nu
bers $a%nDt and $b%nDt , respectively. We assume that th
microscopic dynamics lead to aMarkov process@10# with
waiting time intervalDt, and assign probabilities that withi
Dt a particle in a given cell willreact ~if the cell is non-
empty!, jump to a neighboring cellwith or without rotation
~with ratesD̃tr and D̃ respectively!, or stay in the cellwith

rotation ~with rate D̃ rot) or without. In the continuum limit
D̃ rot andD̃tr fold into one effective parameter that we refer
asD rot , with the continuum limit translational diffusion con
stant denoted byD. Disregarding the influence of micro
scopic rotations at first, we assume that two particles in a
may react and annihilate with some rated0 only if one isA
and the otherB, with d0 as an average over all possib
active ~‘‘spot-to-spot’’! and nonactive encounters within th
time interval Dt. Since microscopic rotations in the tim
intervalDt may turn a nonactive encounter into an active o
we also assign a nonzero reaction ratel0 to the cases where
both particles initially are of typeA or B. The assignment of
values to the rate constants is immaterial, but clearlyl0 will
approachd0 for sufficiently fast microscopic rotations. Thu
to ‘‘optimize’’ effects from steric reactivity we assume th
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l0!d0 , and alsoD rot /D!1. This limit of ‘‘slow’’ rotations
is indeed realized in many experimental systems@8#.

The model thus constructed is equivalent to a general
two-species annihilation system whereA andB particles dif-
fuse by translations and ‘‘flips,’’A↔B, and react according
to @11#:

A1A ——→
l0

0” A1B ——→
d0

0”

B1B ——→
l0

0” . ~1!

Without rotations (l050 andD rot50) one immediately ob-
tains the well-knownA1B→0 universality class for the
asymptotic mean density:na(t)5nb(t);t2d/4 @12,2#. To ex-
plore the more realistic case including rotations we cons
the master equation
u-
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dt
P~c,t !5(

c8

Rc8→cP~c8,t !2(
c8

Rc→c8P~c,t !. ~2!

HereP(c,t) denotes the probability of a given configuratio
c[($a%,$b%) at time t, andRc8→c is the transition rate from
statec8[($a%8,$b%8) into c, determined byD, D rot , d0 , and
l0 . We takeP(c,0) as a Poisson distribution, with averag
denoted byna,0 andnb,0 for A andB particles, respectively
In the absence of anisotropies or external fields we exp
that na,05nb,0 , but for now we leave the initial densitie
unspecified.

Following Refs.@13,14#, the master equation~2! can be
mapped onto a field theory in the continuum limit, withA
and B particles described by scalar fieldsa and b, respec-
tively. Introducingf[(a1b)/2, c[(a2b)/2 ~with conju-
gated fields defined without the factor of1

2!, and correspond-
ing initial densities nf,0[(na,01nb,0)/2, nc,0[(na,0
2nb,0)/2, we obtain the action
S5E ddxE dtF f̄~] t2¹2!f1c̄~] t2¹2!c1rc̄c1~l01d0!f̄f21~l02d0!f̄c2

12l0c̄cf1
l01d0

4
f̄2f21

l02d0

4
f̄2c21

l02d0

4
c̄2f21

l01d0

4
c̄2c21l0f̄c̄fc G

2E ddx@nf,0f̄~x,0!1nc,0c̄~x,0!#, ~3!
ime

nts

ula-

ake
to
where we have rescaled the time variable,Dt→t, and where
r;D rot /D. Using Eq.~3!, the mean densities can be calc
lated asnc(t)5^c(t)&S (c5a,b), where^ &S denotes an av-
erage with respect to the actionS. The rate constants, playin
the role of coupling constants, here become dimension
when d52, suggesting this as the upper critical dimens
above which mean field theory~‘‘normal reaction kinetics’’
@1#! should be valid, a result confirmed by standard pow
counting techniques@15#. Hence, we concentrate ond<2.
These dimensions can be explored by using RG impro
perturbation theory indc52 and then continuing the resul
to d,2 via an e expansion. As seen in Eq.~3!, rotational
diffusion acts as a mass perturbation in thec sector, and for
simplicity we focus on the ‘‘strong’’ steric limit where thi
term is omitted, commenting on the general case as we
along.

Using dimensional regularization, divergences in pert
bation theory show up as poles ine522d. Analogous to the
single-species caseA1A→0 @16#, these poles can be re
moved by simply renormalizing the rate constants:l0→lR
andd0→dR . The renormalized rate constants are defined
primitively divergent vertex functions evaluated at an ar
trary momentum scalek, which is further used to define
dimensionless bare and renormalized ratesg0[k2ed0 , h0
[k2el0 , andgR[k2edR , hR[k2elR , respectively. These
are related by the exact result

gR5
g0

11g0 /g*
, hR5

h0

11h0 /h*
, ~4!
ss
n
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with g* 5h* 5G(e/2)21(8p)d/2 as the fixed point to which
both rate constants flow. We are interested in the large-t
mean densitiesna(t) andnb(t), which depend, in principle,
on the initial densitiesna,0 and nb,0 , and the bare ratesl0
and d0 , expressed throughhR , gR , and k. However, the
densities cannot depend on the arbitrarily chosen scalek, and
this implies a Callan-Symanzik equation

nc~ t;gR ,hR ;na,0 ,nb,0 ;k!

5~k2t !2d/2nc@k22;g̃R~ t !,h̃R~ t !;ña,0~ t !,ñb,0~ t !;k#,

c5a,b, ~5!

with running coupling constants

g̃R~ t !5
g*

11~ t/td* !2e/2
, h̃R~ t !5

h*

11~ t/tl* !2e/2
, ~6!

and densitiesñc,0(t)5(k2t)d/2nc,0 , with c5a,b. The cross-
over times are given by td* 5(g* /d0)2/e and tl*
5(h* /l0)2/e, respectively. The fact that the rate consta
flow to thesamefixed point couplingg* 5h* has some un-
expected consequences, and dramatically simplifies calc
tions as compared to the two-species caseA1B→0, with
l050, a notoriously difficult problem within the RG@2#.

To calculate the mean densitiesna(t) andnb(t), the per-
turbation series has to be organized in such a way as to m
it well behaved when the initial running densities flow
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infinity in Eq. ~5!. At tree level this can be done by simp
‘‘dressing’’ the initial densitiesnc,0 (c5a,b)

~7!

and free propagatorsG0(t12t2 ;p)5u(t12t2)e2p2(t12t2)

.
~8!

In these diagrams a thin~thick! line corresponds to a fre
~dressed! propagator, with a cross representing an initial de
sity. The dressed tree-level densities^a(t)& and^b(t)& ~with
averages taken only over tree-level diagrams! are solutions
of the coupledclassicalrate equations

d

dt
^a~ t !&52~l0^a~ t !&21d0^a~ t !&^b~ t !&!,

~9!
d

dt
^b~ t !&52~l0^b~ t !&21d0^b~ t !&^a~ t !&!,

which for equal initial densitiesna,05nb,05n0 yield the pre-
diction

^a~ t !&5^b~ t !&5
n0

11n0~l01d0!t
. ~10!

This result is drastically changed by fluctuations, as
vealed by a loop expansion of the densities. To carry it
we need the dressed tree-level propagators which, for e
initial densities, can be calculated exactly. In thef-c basis,

Gj~p,t12t2!5u~ t1,t2!e2p2~ t12t2!S 11n0~l01d0!t2

11n0~l01d0!t1
D Dj

,

j5f,c, ~11!

with Df52 andDc52l0 /(l01d0). At the one-loop level
there are two diagrams that contribute to^f& ~with ^ & now
denoting a full average!:

^f&12 loop

~12!

with a full ~dashed! line denoting af~c! propagator. After
performing the momentum loop integrations and takingn0
→`, one obtains

^f&12 loop5
1

2
~8pt !2d/2E

0

1

dx x12d/2

3E
0

1

dy@y21z2y2z#~12y!2d/2, ~13!
-

-
t
al

with t1[tx and t2[txy, and withz[(lR2dR)/(lR1dR).
Equations~4! and ~6! imply that z→0 for large times, thus
killing the second term in the square bracket in Eq.~13!. By
an e expansion, using that^c&50 for equal initial densities,
we thus obtain for large times,

na~ t !5nb~ t !5
1

2 F 1

4pe
1

ln 8p2~5/2!

8p
1¯ G t2d/2,

t→`, lÞ0, d,2. ~14!

This result, which we have checked to the two-loop lev
yields the sameuniversal expression for the total densi
N(t)5na(t)1nb(t) as for a nonsteric system@16#. The in-
clusion of rotational diffusion withrÞ0 in Eq. ~3! does not
influence the expression in Eq.~14!; sincer does not renor-
malize, the long-time asymptotics of the theory stay the sa
@17#. The fact that the asymptotic density is blind to ste
effects and exhibits not only the same decay exponent2d/2
as a nonsteric system, but also the sameamplitudeis a strik-
ing manifestation of universality in reaction-diffusion pro
cesses.

Equation ~13! reveals howl0 controls the universality
class of the model. In addition to the pole in 1/e, there is a
secondpotential divergence coming from they integration,
due to the flown0→` under the RG. However, asn0 flows,
z flows as wellunlessl050, and the asymptotic value ofz
determines the fate of the integral: forz.2 1

2 (z<2 1
2 ) they

integral is finite ~divergent!. If l050 one has theA1B
→0 universality class@2#. For this casez521,2 1

2 for all
times and the integral diverges. On the other hand, forany
l0Þ0, z→0 and, accordingly,z.2 1

2 for large times, pro-
ducing a well-behaved expansion. This gives theA1A→0
universality class of Eq.~14!. Our results imply that even if
l0 is arbitrarily small, the system will eventually behave
if l05d0 ~nonstericlimit !. How long does it take for this to
happen? Sincez52 1

2 is the critical value that controls th
n0 dependence of perturbation theory, and thus the cross
to the A1A→0 universality class, it is natural to define
crossover timetz such thatz(tz)52 1

2 . Equation ~6!, to-
gether with the definition ofz, shows that

FIG. 1. Density decay obtained from a numerical simulation
the master equation in Eq.~2! in d51 with 105 cells. Hered510
andnA

05nB
053.5 particles/site.
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tz5Fg*

2 S 1

l0
2

3

d0
D G2/e

. ~15!

Sincetd* !tz;tl* for small l0 , there is a large intermediat
time interval with a strongn0 dependence whereg̃R is close
to its fixed point valueg* , while h̃R is still small. A strong
n0 dependence withg̃R;g* implies scaling with the expo
nent2d/4 whenh̃R50 ~no rotations! @2#. Since a smallh̃R
cannot change this behavior, it will also be present for sl
rotational modes withl0Þ0. The inclusion of rotational dif-
fusion with rÞ0 in Eq. ~3! will decreasetz , but for suffi-
ciently smallr there will still be an intermediate regime wit
a strongn0 dependence, supporting scaling with the exp
nent2d/4 @17#. We expect this property to hold genericall
also for more realistic systems with continuous degrees
freedom. By analogy, we also expect a similar crosso
from n(t);t2d/4 to the usual mean-field behaviorn(t)
;t21 for steric systems in dimensionsd.2. Work on this
problem is in progress.

What causes the crossover from thet2d/4 decay to the
t2d/2 decay for smalll0? The most probable scenario is th
A and B particles begin to segregate intoA- and B-rich re-
gions, a process during which theA1B→0 reaction is
dominant (2d/4 decay exponent!. OnceA andB regions are
formed, however, theA1B→0 reaction becomes unimpo
tant and theA1A→0 and B1B→0 reactions become
dominant despite the small value ofl0 , resulting in the
2d/2 decay exponent.

Figure 1 shows the results of a numerical simulation
the master equation~2! in d51 @18#. The uppermost curve
corresponds tol50 andd510 (A1B→0 model with de-
cay exponent2d/4), while the lowest curve corresponds
the case with equal reaction ratesl5d510, representing the
asymptotic limit of equal rate constants as given in Eq.~6!.
As predicted, for small values ofl ~intermediate curves! the
n.

th

nd
-

of
r

f

decay exponent~slope of the curves! changes from2d/4 for
early times to2d/2 at late times, with crossovers consiste
with Eq. ~15! ~scaling with 1/l2 for small l!.

The present model can be generalized to an arbitr
number of orientationsN by introducing the ‘‘particles’’

A1 ,...,AN , and reactionsAa1Ab ——→
la,b

0” . This general-
ized system can be shown to belong to the same univers
class as the presentN52 model as long as all ratesla,b are
nonzero@17#. However, if one or several of the ratesla,b

vanish, a different scaling behavior results~most probably
the t2d/4 asymptotics of the ‘‘A1B’’ model, although this is
still to be established!.

A recent breakthrough in preparing and monitoring lo
dimensional chemical reactions—using carbon nanotube
effectively one-dimensional ‘‘test tubes’’@19,20#—opens up
the possibility to experimentally test our predictions. T
essential elements to be present in a laboratory setup are
~i! the reactions are sufficiently fast to ensure the diffusio
controlled conditiontR!tD , ~ii ! the reactants have a highl
anisotropic surface reactivity with sufficient slow rotation
diffusion to make the system strongly steric, and~iii ! the
reactive products precipitate out of the system on a sh
time scale compared totD and hence do not influence th
kinetics @21#. An observation of the crossover behavior pr
dicted in the present work would be extremely interesting
it would exhibit a reaction-diffusion process supporting tw
distinct time scales with different anomalous scaling.
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