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Filler-induced composition waves in phase-separating polymer blends
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The influence of immobile filler particlepheres, fibers, platel¢ten polymer-blend phase separation is
investigated computationally using a generalization of the Cahn-Hilliard-G&kC) model. Simulation
shows that the selective affinity of one of the polymers for the filler surface leads to the development of
concentration waves about the filler particles at an early stage of phase separation in near critical composition
blends. These “target” patterns are overtaken in late-stage phase separation by a growing “background”
spinodal pattern characteristic of blends without filler particles. The linearized CHC model is used to estimate
the number of composition oscillations emanating from isolated filler particles. In far-off-critical composition
blends, an “encapsulation layer” grows at the surface of the filler rather than a target pattern. The results of
these simulations compare favorably with experiments on filled phase-separating ultrathin blend films in which
the filler particles are immobilized on a solid substra&1063-651X99)12111-1

PACS numbses): 64.75+0, 68.55.Jk, 47.54.r, 61.41+e

I. INTRODUCTION tions [6], crosslinking[7,8], etc.[9]) to perturb fluid phase
separation, but the investigation of geometrical perturbations

The bulk properties of miscible fluid mixtures are charac-is more recent. There have been numerous studies on the
teristically insensitive to their microscopic fluid structure perturbation of phase separation arising from the presence of
near the critical point for phase separation, where the propa plane wall, which is one of the simplest examples of a
erties are governed by large-scale fluctuations in the locajeometrical perturbation of phase separafibd—12. Mea-
fluid composition. Composition fluctuations occur similarly surements and simulations both show the development of
for most near-critical fluid mixtures, so that the properties of“surface-directed” composition waves away from plane
these fluids are subject to a “universal” description. This boundaries under the condition where one component has an
accounts for the success of simple mathematical models efffinity for the surface. The scale of these coarsening surface
critical phenomende.g., Ising modelg®*-field theory that  waves grows much like those of bulk phase-separation pat-
contain the minimal physics of these fluctuation processeserns[10—17. Recent simulation§18,19 and experiments
Although mixtures near their critical point are susceptible to[18,20—23 have shown that variation of the polymer-surface
external perturbations, the influence of microscopic heterointeraction within the plane of the film allows for the control
geneities tends to become “washed out” in the large-scalef the local polymer composition in blends phase separating
fluid properties, apart from changes in critical parametersn these patterned substratépattern-directed phase sepa-
describing the average properties of the fl(édg., critical  ration” [18]). Measurements have also indicated that the
temperature and composition, apparent critical exponentgolymer-air boundary of phase-separating blend films on pat-
etc). This situation changes, however, when the fluid mix-terned substrates can be strongly perturbed by phase separa-
ture enters the two-phase region. The fluid is then far frontion within the film[23—-25 and thermal fluctuations of the
equilibrium and perturbations can grow to have a large-scalgolymer-air boundary can also strongly influence the struc-
influence on the phase-separation morphology. Perturbationare of thin polymer filmg26].
in these unstable fluids can kenplifiedrather than washed In the present paper we focus on the consequences of
out at larger length scales. Inevitably, the theoretical descriphaving geometrical heterogeneities of finite extent in a
tion of this kind of self-organization process is complicatedphase-separating blend. The Cahn-Hilliard-Co6RHC)
by various nonuniversal phenomena associated with the deheory[27] for phase separation is adapted to describe phase
tails of the particular model or experiment under investiga-separation of a blend with spherical, cylindri¢éiber), and
tion [1]. The beneficial aspect of this sensitivity of phaseplatelike shaped filler particles. The extended dimensions of
separation and other pattern-formation processes to perturbtie fiber and platelet filler particles are taken to be much
tions is that it offers substantial opportunitiesdontrol the  larger than the scale of the phase-separation process. A vari-
morphology of the evolving patterns and leads to a greafble polymer-surface interaction is incorporated into the

multiplicity of microstructures. filler model in a fashion similar to previous treatments of
Many previous studies have considered the application ogplane surfacefl3—-15.
external influence&low [2] and gravitational3] fields, con- The paper is organized as follows. In Sec. Il we briefly

centration[4] and temperaturgs] gradients, chemical reac- summarize the CHC model to introduce notation, to define
the relation between model parameters and those of polymer
blends theory, and to explain modifications required for in-
*Permanent address: Department of Physics, Bucknell Universitygorporating immobile filler particles into the CHC simula-
Lewisburg, PA 17837. tions of phase separation. Section Il summarizes the results
TAuthor to whom correspondence should be addressed. of simulations for representative situations. Key phenomena
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are identified(i) Target composition patterns form in near-  For temperatures near the critical temperaflyethe free
critical composition blends(ii) Target patterns are a tran- energy can be expanded in powers of the composition fluc-
sient phenomenortiii) The scale of the target patterns de- tuation(r)= ¢(r) — ¢., giving the Ginzburg-Landa(GL)
pends on quench depth and molecular weigkit)  functional

Qualitative changes in the filler-induced composition pat-

terns occur when the surface interaction is neutral and when B dr 211421 1. 4
the blend composition is off-criticalv) Multiple filler par- FLy(D]=keT | T-[2xc(VP)"F 304"+ quy™+ -],
ticles induce composition waves exhibiting complex interfer- (2.9

ence patterns. Section IV provides a simple analytic estimate

of the scale of the target pattern based on the linearized CH@herex.= «(¢.). Neglected terms are either higher order in
theory, and these results are tested against simulations fgr or in \/coc\JT—T,, which is small near the critical point.
circular filler particles. In Sec. V, simulation results are com-Equation (2.1), in combination with Eq.(2.4), defines the
pared to experiments on ultrathin polymer films having silicawell-known modelB [30],

bead filler particles immobilized by the solid substrate on
which the films were casfUltrathin blend films are defined ¢ B 5 2 3
to be thin enough<£100 nm) to suppress phase separation ; #(11)=~MKeT/V)VH(k Vo= cyp—uy™) +{(r,0).
transverse to the solid substrdtesurface directed” phase (2.5
separation so that phase separation occurs quasi-two-

dimensionally in the plane of the substratAtomic force  Equation (2.5 is used to study the dynamics following a
microscopy measurements on the filled blend films are comguench to the two-phase regidi< T, wherec<0. In that
pared to the analytical predictions. Simulations of phasease, the CHC equation may be rescaled into the dimension-
separation in off-critical blend films are briefly compared toless form[31]

analogous experiments. Measurements on crosslinked blend
films are also considered. The final section discusses gener-
alizations of the present study to manipulate the structure of
phase-separating blends.

%Mr,t) =—VAV2Yt+ =¥+ ePp(rt) (2.6

by making the substitutions

IIl. THE MODEL
r—(|cl/xe) Y,
A. CHC equation
We present a brief discussion of the CHC mo@i—29 t—(MkgTc?/Viot, 2.7
to introduce notation and to explain the modifications re-
quired for incorporating filler particles. The modeling of the p— (ul[c|)V2p.
phase-separation dynamics is based on gradient flow of a ) .
conserved order parameteir t), Note that this amounts to rescaling space ®¢~, where
& is the thermal correlatizon length in the two-phase region,
d SF[ &] and time byr=D,/2(¢7)*, with Dy the collective diffu-
Eq&(r,t):MVz(w(r) +r), (2.3) sion coefficient. Here the noise terng(r,t) satisfies

(n(r,t))=0 and the relation
with ¢(r,t) equal to the local volume fraction of one of the
blend components. Incompressibility of the mixture is as- (n(r,)m(r' t'))y==V2s(r=r")s(t—t"). (2.9
sumed so that the local volume fraction of the second com- ) ]
ponent is 1 ¢. The mobility M is assumed to be spatially The only parameters left to spemfy the dynamics are the
uniform and independent of concentration and the free{conservegiaverage concentratiopiy=(¢)— ¢. and the di-
energy functionaF[ ¢] has the general form mensionless noise strength parameter

dr e=2u/(k%?c|4- D7), (2.9
F[¢(r)]=j7[%kBTK(¢)(V¢)2+f(d))—ﬂeq(b]. (2.2

Roughly speaking, the reciprocal efis a measure of the
: . .. quench depth. The parameterlso arises in discussions of
wheref(¢) is the bulk Helmholtz free energy per lattice site, the width of the critical region, and the connection between

v is the volume per lattice sité is Boltzmann's constant, thermal noise strength and the Ginzburg criterion was first
is temperature, and(¢) is a measure of the energy required noted by Bindef32].

to create a gradient in concentration. Higher-order gradient

terms are neglected. The chemical potential is givenuby

=dt/a¢| 4., which ensures thap(r) = ¢eqis the solution of B. Polymer blends

SF[ @1/ 84(r)=0. Finally, thermal fluctuations necessary to  For polymer blends we take the Flory-Huggiifd-) form

ensure a Boltzmann distribution @f(r) in equilibrium are of the Helmholtz free energy per lattice site,

included via the Gaussian random variabléhe average of FH

{ vanishes, and obeys the relation f(¢) :ﬂ n(i 1_¢In(ﬂ +yd(1— )
keT  Na Na/ Ng "\ 'Ng /| X '

(L(r,)Z(r' t"))y=—2MKgTV28(r—r')8(t—t"). (2.3 (2.10




5814

LEE, DOUGLAS, AND GLOTZER

PRE 60

Herey represents the monomer-monomer interaction energyinteraction energy due to the missing neighbors near the sur-

N; is the polymerization index of componeintand ¢ is the
volume fraction of componerA. For the coefficient of the

face[34] and chain connectivity35]. For studies of surface
critical phenomeng36,37 and surface dynami¢88,39 one

gradient term, we use de Gennes’ random-phase approximgypically keeps only these terms as a minimal model of phase
tion (RPA) result (neglecting the enthalpic contribution separation with boundaries.

[28),
1 2 2
e | (2.1

whereo, and og are monomer sizes of th& and B blend

There has been considerable attention given to the subject
of the appropriate dynamical equations for the surface
boundary condition$38]. We follow most authors and im-
pose zero flux at the boundarr};j¢,=0, which gives

n-V(VZy+y—y®)=0. (2.1

components, given in terms of the radius of gyration of the

ith componenRy; by o7=R3 /N
FH theory exhibits a critical point at

Ge=NEINY N,

xe=x(¢e, T =[NY?+NF?2/(2NaNg).  (2.12)

Consequently, the coefficients of the GL functional are de

fined ag[33]

c=2xc(1—x/xc),

4
u= §X§ \ NANB!

Kczlis[gi(l"' VNA/Ng) +o5(1+ VNg/Na)].
(2.13

For the second condition we impose that of local equilibrium
at the surface, namely,

n-Vy=h+gy. (2.18

While more sophisticated treatments are availablg, they
lead to dynamics which rapidly relax to equilibrium and sat-

isfy the above condition. The details of how we implement

Egs.(2.17 and(2.18 in simulations with a curved interface
are presented in Appendix A.

D. Simulation details

The equation of motion is solved using a standard central
finite difference scheme for the spatial derivatives, and a
first-order Euler integration of the time st¢40]. In all the
simulations, the lattice spacing is taken between 0.7 and 1.0
in dimensionless unitssufficiently smaller than any relevant
physical length scalesnd the time step is taken sufficiently

The phase-separation dynamics of polymer blends can thegimall to avoid numerical instability. In the present paper, all

be described by the dimensionless CHC equation witle-
termined by molecular parameters,

36v2f(x) 014
€= , .
,yS(X/XC_ 1)1/2Nl/2

where No=N and x=Ng/N,f(x)=(1+ x)38x, and vy is
the ratio of monomer size to lattice size,

[GA(1+ LX)+ o5(1+\x)]H2
= 2V1/3 )

Y (2.195

y simplifies toy= o, g/v**®for symmetric blends. Thus we

see that deep quenchegst x.) and high molecular weight

simulations are performed id=2 on lattices up to size
128, depending on the choice of mesh size. We note that
the CHC equation is known to exhibit quantitatively similar
pattern formation and coarsening kinetics in two and three
dimensions. Important differences between 2D and 3D simu-
lations can be expected in the late stage of phase separation,
however, where hydrodynamic interactions associated with
fluid flow can influence the evolution of the phase-separation
pattern (see the discussion in Ref25]). The particular
choice of 2D simulations is made because the experiments
considered below are for ultrathin blend films that should be
reasonably approximated as two-dimensiof#8] and, of
course, the results of the 2D simulations are computationally
less demanding and easier to visualize. The analytic theory

polymers effectively reduce the thermal fluctuations in thedeveloped below is notably not restricted to 2D, and filler

rescaled dynamical equations.

C. Surface energetics

particles of a general dimensionalifsods, sheets, sphejes
are considered. Further technical details about Cahn-Hilliard-
type simulations of polymer blends can be found in Ref.
[28].

In the presence of a surface, we add a local surface inter-

action energy to be integrated over the boundary,

Fs[¢]=Jde‘1x[hw+%g¢2+---]. (2.16

lll. ILLUSTRATIVE SIMULATIONS

In Fig. 1 we show the influence of an isolated, immobile,
circular filler particle on the development of the phase-
separation pattern of a blend film having a critical composi-

The coupling constarit in the leading term plays the role of tion. The thermal noise is small in these two-dimensional
a surface field which breaks the symmetry between the twsimulations €=10"%), corresponding to high molecular
phases, i.e., attracts one of the components to the filler suweight and/or a deep quendlow and high temperatures
face. The coupling constagtin the second term is neutral relative to the critical temperature for upper and lower criti-
regarding the phases, and results from the modification of theal solution type phase diagrams, respectiveipt an early
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FIG. 2. Composition waves resulting from different values of
thermal noisefa) e=10 2 and timet=21 in dimensionless units;
(b) e=10"5 and timet=33. The surface interaction parameters are
h=1.0 andg=0 for both, and the filler radius iR=5.6.

ure 2 shows two systems with equal surface interaction, but
with varying noise strengthga) e=10"2 and(b) e=10"°.
We see that the spatial extent of the target pattern is larger
for smaller e. Consequently, we expect deeply quenched
and/or high molecular weight polymer blends to be favorable
systems for observing filler-induced composition waves be-
cause of the relatively low thermal noise level typical of
FIG. 1. CHC simulation of the influence of filler particles on f[hese s'ystems and the relat'ively high viscosity of these flu-
polymer-blend phase separation in a critical composition blend!ds' Wh'c_h slows the dynamics an_d make_s meaSl_Jrements of
Calculations are performed =2 with e=10"5, g=1.0, andh m';ermedlate stage patterns possikdeg., via atomic force
=1.0. In the reduced units of CHC thedigf. Eq.(2.7)], R=5.6(or ~ Microscopy as discussed in Seq. ¥h Sec. IV, we use the
in explicit unitsR=3.96¢7). The target phase-separation patternslinearized CHC equation to estimate the extent of the com-
are well developed at early times, but fragment as the “back-POsition wave.
ground” spinodal phase-separation pattern coarsens to a scale We observe that the composition waves disappear when
larger than the filler particlécentral gray region in the figurewe  the particle radiuR becomes vanishingly small, and the per-
have verified that the scale of the phase-separation pattern in thigistent waves developing from planar surfaces are recovered
simulation grows with a nea’® power law over the time range for very large spherical particles. We then examine particles
indicated in the figure. This growth law is independent of spatialof sizes intermediate between these extreme limits and dur-
dimension and is characteristic of the intermediate stage of phas@g the intermediate phase-separation period in which the
separation in blends when hydrodynamic effects are not importantarget patterns are well developed. Figure 3 shows the
. . . angular-averaged composition profilgz), with z=r—R
stage of the phase-separg_tlon process, the filler particle C"%e radial distance from the surface of the filler particle. We
ates a spherical composition wave disturbance that ProPYhserve that the amplitude of the local composition fluctua-

gates a fe"_V “rings’_’ int(_) the phase-separating mgdium_ i_ntions becomes more developed and more sharply defined
which the filler particle is embedded. The target rings ini-\ iy increasing filler sizeR. In comparison to the planar

tially have the size of the maximally unstable “spinodal o ¢ .o R— ), the compositi : PP
Y i . . — ), position wave profile fdR=10 is

wavelength”\, obtained from the linearized theofg7]. As only slightly reduced in amplitude, whereas fa=3 the

the characteristic scale of the bulk phase-separation patte plitude is reduced to half that o’f the wall case. We also

coarsens to the size of the filler particle, the outer rings of tNge 4 that the radial extent of the target pattern is similar
“target” pattern become disconnected and increasingly bez "\ particle sizes

corrt1e ba_tbsqu;led into tfhteh backgt;_rtl)unbd spinodal p?(ttetrn. IT ft1e We next examine the influence of the surface interaction
perturbing infiuence of the particle becomes weak at a a&the formation of filler-induced target patterns. The impact

—

t=180

stage of the phase separation where the scale of the bac the symmetry-breaking perturbation of the filler particle

g_round phgs_e-separanon pattern excee_ds_ the filler partic the phase separation may be tuned through the surface
size. The finite extent of the filler thus limits the develop-

ment of the composition waves to a transient regime. The 1
assumption that the filler particles are immobile requires that
the scale of particle diffusion is small in comparison to the
scale of the phase-separation pattern. This situation may be 2\
realized for modest size particles=00 nm) in relatively 0
high viscosity blends and in the case of phase separation in
blend films where the particles are fixed to the solid substrate
(this latter case is discussed in Seg. V

The formation of target patterns can be described as com- A
position waves propagating into the bulk, unstable region 0 5 10 15 20 25
until they are overwhelmed by the developing background z=r-R
spinodal decomposition pattern. The rate of onset of spinodal FIG. 3. Typical angular-averaged radial composition profiles
decomposition is controlled by the strength of thermal fluc-y(z) for R=3,10, and» in an intermediate stage of phase separa-
tuations, hence the noise parametgslays a crucial role in  tion. Parameters used ane=0.1, g=0,e=10 2, and the time ig
determining the radial extent of the composition waves. Fig=25. Averages were taken over ten independent configurations.
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(a) h=2.0 (b) h=0.1

FIG. 4. Influence of surface interaction on filler-induced pattern
formation. The figures show intermediate-stage phase separation
(t=50) with thermal noisee=10 * and radiusR=9.6. Filler-
induced target pattern for a selective polymer interactianh
=2.0 and(b) h=0.1, and(c) a nonselective polymer interaction,
h=0. Note the tendency for the domains to align perpendicularly to
the neutral filler interface.

interaction parameterg andh. We focus our attention oh
since it has a predominant effect on the resulting pattern
formation.

_ Figure 4 shows CHC simulations of blend phase separa- g, 5. jjustrative CHC simulation of blend phase separation
tion for the case where one component strongly prefers th@jih many filler particles. Filler particles preferential to each phase
filler, weakly prefers the filler, and has no preference for theyre includedthe two filler types have a dark and light filler care
filler (h=0). The quench depth parameter and computatiomsimulation parameters are=80h=+1.0R=2.0, ande=10°.
times are identical in these images. We see that the targ@lote the interference pattern between these composition waves.
patterns do not form in the case of filler particles with a
(“neutral”) nonselective interaction, but rather there is a tendin lipid mixtures comprising living cell membranes, and
dency for the patterns to alignerpendicularlyto the inter-  these patterns mediate protein interactions, leading to attrac-
face. This type of compositional alignment, which we find istive or repulsive interactions depending on the “charge”
even more pronounced in the case of a planar surface, al$a3].) In the low noise limit it should be possible to obtain
occurs in block copolymer fluidgt1]. The perturbing influ-  novel wave patterns such as those found in reaction-diffusion
ence of the boundary interaction saturates with an increase efiodels with regularly spaced sources for wave propagation
h, as can be seen by comparison of the2.0 andh=0.1  [44], but we do not pursue this here. We do mention that the
cases. Below we demonstrate that the spatial extent of thgse of filler particles responsive to external fields could allow
target pattern depends logarithmically bn the manipulation of the large-scale phase-separation pattern

Target waves are a variety of spinodal pattern with a symif the external fields are used to align the filler particles.
metry set by the shape of the filler particle boundary. The
introduction of surface patterns on a solid substrate can simi- IV. ESTIMATION OF THE SPATIAL EXTENT
larly break the symmetry of thfe phase-separation process and OF THE TARGET PATTERNS
can be used to impart a particular “shape” to the spinodal
pattern[18,21]. A previous CHC simulation by us consid- In this section we derive an approximate analytical ex-
ered this “patterned-directed” phase separation in nearpression for the spatial extent of the composition wave pat-
critical composition blend film§18]. tern. Our method is based on the observation above that the

The blend composition can also have a large influence ogomposition wave propagates until it is overwhelmed by the
the character of the filler-induced phase-separation structurggowth of the bulk spinodal decomposition background pat-
in blends, particularly when sufficiently far off critical to tern. In the context of surface-directed spinodal decomposi-
suppress the spinodal instability. In this case we find a layetion, a qualitative explanation of this type of phenomenon
of composition enrichment“encapsulation layerj forms  was proposed by Ball and Essdi3], who argued that the
about the filler particle, but there are no target patt¢423.  early time dynamics can be adequately described by the lin-
This encapsulation layer grows in time, but appears to grovearized CHC equation, in which the composition wave and
slower thant®. A nonselective interactionn(=0) leads to the bulk spinodal decomposition add linearly. Both processes
the absence of encapsulation by the minority phase, and m¢ontinue independently until a local nonlinear threshold
nority phase nucleation occurs largely unaffected by thevalue of |¢|~ ¢ is reached, which then relaxes toward the
presence of the filler. We thus find that the development ogquilibrium valuey==*1.
target patterns requires the conditions of ordinary spinodal We test this conjecture numerically in the case of the filler
pattern formatior(i.e., “near” critical composition and the  inclusions. First, we simulate the CHC equation in bulk, with
existence of a heterogeneity to initiate the wave disturbanceno filler particle, and determine the tintg at which the

A representative example of the interference betweemoot-mean-square —concentratiofi®(t))Y?> reaches the
filler-induced rings at a nonvanishing filler concentration isthreshold valuej,=0.15 (our reason for this choice is given
shown in Fig. 5. Filler particles can each have an affinity forbelow). Next, we simulate the filled blenid the absence of
the different blend components so that the enriching phaseoisesolving for the pattern at timg), and then estimate the
(“charge”) can vary near the surface of the filler particle atradiusrg at which the composition wav@nvelopg exceeds
the core of the target waveSackmann has noted that com- ;. Finally, we perform the simulation withoth the filler
position enrichment patterns occur about membrane proteirgarticle and the thermal noise, and find the pattern to be
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well-characterized by the sizg, for a range of noise and 1
surface interaction parameters.

Based on these ideas, we next develop an analytic esti- v
mate of the spatial extent of the pattern using the linearized
CHC theory[27]. At early times the order parameter does 0

not deviate significantly from zero, and one linearizes Eq.
(2.6) to obtain

dup=—V2(Ki+ V) yp+ €2y, 4.1

) 5 ) o 0 10 20 30
whereky=1—3¢g. We apply this equation first to the deter- z=r-R

mination of the root-mean-square order paramefgsqt)

=(y(1)?)2, which characterizes the rate of growth of the
concentration fluctuations at very early times following a
guench to the two-phase region. Fourier transformation give

FIG. 6. Influence of particle shape on the development of filler-
directed composition waves at early time. Radial composition pro-
files ¢/(z) are obtained from the linearized CHC equation for sym-
Metric particles finite ind, directions, corresponding to platelet
fillers (d, =1), fibers @, =2), and spherical fillersd, =3). The
radius is R=10 and the surface interaction parameters hare
~ ~ . =0.005 andg=0. The reduced time is=25. The inset shows the
The structure facto8(k,t) = (#(k,t) ¢(—k,t)) is then approximate solutions of Eqg4.11) and (4.13 (dashed lines
compared to thel, =1 and 3 numerical solutions from the main
figure (solid lines.

ap(k, 1) =K2(k3—k?) g+ V2 (K, 1). 4.2)

e(ezkz(kg—kz)t_ 1)

S(k,t)=

20— KD) 4.3
(ko only on the coordinate perpendicular to the interface, which
#ms is found by integratingS(k,t) with respect tck, is a radial coordinate ird, dimensions. For example, a
spherical particle id=3 corresponds ta, =3, a cylindri-
5 d’ cal fiber is prescribed bgl, =2, and a platelet filler reduces
(¥o(0)= f (27T)3 S(k.b). (4.4) to the planar surface witth, =1. We can treat the generd|
case through thd, -dimensional Laplacian,
Following [13], we observe that the integrand is sharply
peaked abouk=k,/\2 and we approximate it by a Gauss- V2u(r) = (72_¢+ (d.—1) 99
ian. The integral is then readily evaluated to fiftol leading yir)= ar? 2 ar’
order in 1f)

4.7

yielding a fourth-order partial differential equation for Eq.

) e [T 12 d (4.2). The “source” for the composition wave comes from
(PP(1)=ee@o ot 2—d a2 the boundary conditions obtained by linearization of Egs.
Ko "I'(1+d/2)(8) (2.17 and(2.18, namely
(4.9
This result, when tested against simulations of the fully non- r-V(kg+ V%) y(R)=0 4.9

linear CHC, agrees well up t6?(t))?~(0.15), thus mo-
tivating our choice forj, indicated above.

Finally, we equatéy?(t,)) to i to determine the timg, - _
at which the bulk phase-separation process has reached the r-Vi(R)=h+gy(R). 4.9
nonlinear threshold. The resulting transcendental equatiofp;g provides a pseudo-one-dimensional system which can

for ty can be approximately solved by observing tla%te be readily integrated numerically.
>1 in low noise conditions, and that this ratio must be com-  The solutions ford, =1,2,3 presented in Fig. 6 illustrate

pensated primarily by the“s'? factor. Equating these two the influence ofd, on the composition wave pattern. In-

for conservation at the boundary, and

and then iteratively improving the estimatetgfyields creasingd, reduces the amplitude of the composition wave.
This feature can be understood to arise from the increasing

2 [P 2T (1+d/2)(8m)¥2\In(y?l€) volume occupied by the outer rings. The opposite situation

to~ k_gln <" In kd~2d : should hold forexteriorboundaries having these symmetries,

(4.6 SO that more coherent ring structures might be anticipated in
phase separation confined to these geometries, especially for
Next, we consider the linearized theory for the filled spherical cavities. It may prove interesting to examine phase
blend. We solve Eq4.1) for the exterior of the filler particle separation in the presence of fractal filler particléike
or fiber, and in the absence of thermal nofd®ee noise can fumed silica to determine whether geometry stabilizes or
simply be averaged out of the composition wave within thedestabilizes the phase-separation pattern and how the evolv-
linearized theory. We consider idealized filler particles that ing phase separation pattern accommodates the fractal
are symmetric and finite in some of their coordinates andoundary structure.
infinite (i.e., very large on the phase-separation pattern scale Returning to the analytical estimation of the target pattern
in the remaining coordinates defining the particle dimen-size, we expands(r) in a basis which diagonalizes the La-
sions. With such symmetry, the composition wave dependplacian. This amounts to performing a cosine transform for



5818 LEE, DOUGLAS, AND GLOTZER PRE 60

d, =1, a (o) Hankel transform ird=2, and a half-integer
Hankel tranform ind=3. The last can be reexpressed as a
Fourier cosine transform afi(r) rather thany. Here we
study the extremal cases df =1 and 3, and show that,
has only a minor effect on the pattern size.

First, we revisit thed, =1 case already addressed by Ball
and Essery13]. One can solve Ed4.1) with boundary con-
ditions via Fourier cosine transformation with respectrto
and Laplace transform with respecttiovith the result

FIG. 7. Comparison between the analytic estimate of the spatial
extent of the target pattern and the corresponding CHC simulation
at an intermediate stage of phase separation. Simulations are per-

K2 formed at noise level$éa) e=10 2 corresponding to modest mo-
T (4.10 lecular weight and shallow temperature quenckigse=10*, and
s[s—k(ko—k%)] (c) e=10"8, corresponding to high molecular weight mixtures and
. ) ) deep temperature quenches. The surface interattioth for all
for the casgg=0 (to which we restrict our attentioninvert-  cases; the radiug=5.6, and the times for each quench are chosen
ing the Laplace transform and using a Gaussian approximag correspond to when the spinodal pattern is fully develogad:
tion again to invert the Fourier cosine transform gives the =20, (b) t=30, and(c) t=40. The solid lines are the predictions

solution of Eq. (4.14.

P(k,s)=

l/fdlzl(z,t)*IJI(O,t)e*(Z/AAO)ZCOS(Z/?\o), (4.1)  approximate Iy and Inz, with typical values, which intro-
duces less than 10% error with the range of parameters con-

where  (0t)=(h/k3) J(8/mt)expkitid), Ng =ko/\2, sidered here, and thus we obtain
and where subdominant terms irt have been neglected. A
nonzero value ofg, while complicating Eq.(4.10, would
appear in this approximate solution only via the substitutio
h—h+gyy. Inthisd, =1 example, th&k dependence drops
out of the linearized equation, arm=r measures the dis-
tance from the wall.

For a given noise strength we have a time, at which
the local composition of one phase reacklgs For surface
interactionh we solve for the distance, out to which the

Zg~—2.5-8.5log e+ 4.6 loggh. (4.149

"A similar expression results fat=d, =3, with the primary
difference being a change of the lgg coefficient to—7.9.

Figure 7 shows a comparison of this estimate with the
simulations. We see that the analytic approximation provides
a good rough estimate of the spatial extent of the phase-
separation pattern, although it predicts a size typically one
oscillation larger than the outermost unbroken target.

We point out that the spherical composition waves are
apparent in the average composition profiles even in the
rather noisy looking ring patterns found in the late stage of

envelope ofi(r,ty) exceedsy,. This gives the approxima-
(4.1  targetpattern formation. In Fig. 8 we show a target pattern at
intermediate values of noise, as well as the radial average of

tion
1 1 | kg‘ﬂt o
Kt h V8 /|
the composition profile about the center of the target. Com-

Thus, the propagation front grows with a velocityg2at long  parison shows that the ring composition pattern persists in

times[13], and the terms in square brackets are the leadinghe radial average even after the target pattern appears visu-

correction to this long-time asymptotic behavior. ally to have broken up. This provides a possible explanation
The d, =3 composition profile may be obtained by ob- of the apparent overestimate of the target size in Fig. 7.

serving that Eqs(4.1) and(4.7) yield the same equation for

rgg =3(z,t) as for the composition profiley -1(z1). V. COMPARISON WITH EXPERIMENTAL RESULTS

Thus, we impose the boundary conditiofts leading order

in R/r) and follow the above derivation with the result

20% 2k8t0

While scattering measurements of the growth of compo-
sition waves are readily performed for a single plane bound-
R ary[11], these measurements become more difficult in filled

Ya, -1(z,1). (4.13
Y
WA A

v

z

l;de=3(Z=t)% R+ 7

Solving for the valuezy at which the composition wave en-
velope equals); leads to nearly the same expression as the
d, =1 case(4.12, with an additional — In(1+z,/R)/ K3 to
term in the square brackets. Typicalty<10R, k, is of or-

der unity, andt, ranges from 10 to 30, making this term

roughly a 10% Cor_recuon' . i i FIG. 8. Late-stage target pattern and corresponding radial com-

To compare with our simulations, we considgr=d | sition profile.(a) Filler-induced phase-separation pattern for an
=2. Forz, we simply take the arithmetic mean of the valuesjntermediate noise value af=10"2 at timet=35, h=1, andR
obtained ford, =1 andd, =3 (motivated by numerical so- —5 6. (b) Averaged radial profile about the center of the filler par-
lutions). Equation(4.6) for t, is substituted into Eq4.12to  ticle. Note that the ring composition pattern persists in the radial
obtain a prediction fog, in terms ofh, €, and,. Here we  average even after the target pattern appears visually to have broken
consider critical quenches withy,=0, orkg=1. Finally, we  up.
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blends where the filler particles are randomly distributed
within the blend. This situation is unfortunate, given the pre-
dicted transient nature of the composition wave patterns
when the particles are small. However, real space studies of
blend phase separation are possible in films sufficiently thin
(“ultrathin™ ) to suppress the formation of surface-directed
waves normal to the solid substrg#b|. Under the favorable
circumstances that one of the polymer components segre-
gates to both the solid substrate and the polymer-air bound-
ary of these nearly two-dimensional'ultrathin”) blend
films, phase separation is observed within the plane of the
film [24,25,49. The variation of the surface tension in the
film accompanying phase separation gives rise to film
boundary undulations that can be measured by atomic force
microscopy (AFM) and optical microscopyOM) [25,45.
The thickness of ultrathin blend films is typically restricted
to small values I(~=200 nm) and the height contrast of the
surface patterns tends to become larger in still thinner films
[23]. A film thickness in the range of 20-50 nm is often 2L-a ,
suited for observing well resolved phase-separation surface fig. 9. AFM image of phase-separation pattern in PS/PVME
patterns similar to those found in simulations of bulk blendspiend film with dilute concentration of filler particles dtop)
In the following we compare our results with those of a20 pm and(bottom) 100 um scale. The height undulations reflect
model blend utilized in ultrathin phase-separation studies recomposition variations within the film associated with surface ten-
ported elsewhere with silica beads added as the model fillegion variations/45]. Image contrast has been enhanced by a film
[46]. Notably, the filler particles in the experiments associatevashing procedure. From R¢#6].
strongly with the substrate, so they are relatively fixed in
place as in our simulations in Sec. lII. The data in Fig. 10 correspond to a shallow quench, and are
The spun-cast films are composed of a near-critical comeomparable to the intermediate stage, shallow quench simu-
position blend of polystyrene and pé&lynyl methyl) ether lation data in Fig. 3.
(PVME). The filler particles are silica beads having an aver- Next we directly compare the prediction of the linearized
age size of about 100 nm, as measured by direct imaging aheory to the AFM data. An exact solution o, —2(zt) is
the particles. This particular filler was chosen because of itgificult, but we can obtain a reasonable approximation to
tendency to be enriched by polystyrene, rather than PVMEzﬁde(z,t) by generalizing the method described above for

which enriches both the solid and air surfaces. In this Way,lp (z1). We estimateysy _,(2t) as a Gaussian deca
the filler particles are not competing with the solid or air 79 =14""/- d =21 y

surfaces for the enriching polymer. Phase separation wdsnction multiplied by the eigenfunction of the Laplacian in
achieved by annealing the film approximately 15° within thed=2 [rather thanird=1 as in the case of E¢4.11)]. In this
two-phase region, corresponding to a fairly shallow quench@PProximationsq —»(z,t) becomes a product of a Gaussian
Film topography(heigh) was measured by AFM. Further as in Eq.(4.11) and a Bessel functiody(27z/\p), and we
details of the experiment are provided in Ref6]. show a fit of this function to the AFM data in Fig. 10. The

Figure 9(top) shows the topography of the blend film at fitted value of the particle radiuR is 82 nm, which is com-
an intermediate stage of phase separation where we expect

<y,
A
Ko

circular filler-induced composition waves to be evident. The 1.5
pattern resembles the simulated patterns under similar ‘
qguench conditions. The symmetry of the film phase-

separation pattern is locally broken by the presence of the 10 ¢

filler particles, leading to the formation of ringlike concen-
tration wave patterns. Note that when observed on a larger
scale[Fig. 9 (bottom)], the phase-separation pattern far from
any filler particles resembles the typical spinodal decompo-
sition pattern observed in control measurements on the same
blends without filler.

It is apparent that the patterns in Fig. 9 are in a relatively
late stage of phase separation, where the rings are beginning 05 . . .
to break up along with the “background” phase-separation 0 1 2 3 4
pattern. The simulations above indicate that the target pat- .
terns are more persistently expressed in the radially averaged fiG. 10. Radial average of AFM height data centered about an
patterns, and in Fig. 10 we show the radial average of th@olated target pattern in Fig. 9. The scale of the damped oscillatory
AFM height data centered about a representative filler parprofile is reduced by the phase-separation scale determined by a
ticle. The target pattern in the radially averaged data extendsourier analysis of the AFM height data for the entire film. The
far beyond the ring feature apparent in the image in Fig. 9solid line is a fit to the data as described above. Data from[R6}.

¥(r/A)

05

00 |
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parable to the average particle radius obtained by optical
microscopy R~100 nm). The scale parameters of the
Gaussian and Bessel functions have been adjusted along with
the prefactor, which is set by the value mfz(z,t) asz

tends to zero. It is clear that the oscillatory pattern scale is on
the order of the background phase-separation pattern, and
that the linearized expression fgiy _,(zt) has the quali-

tative shape of the measured profile. Such qualitative agree-
ment is the best that can be expected from the linearized
theory, which strictly speaking should hold only at very early
times.

At still longer times, the phase-separation pattern eventu-
ally breaks up into droplets and little difference is observed
between the films with and without filler. Thus, the target
patterns induced by the filler particles are transient, as ob-
served in the simulations. Of course, the version of the CHC
model used here cannot reliably describe quantitative fea-
tures of these late-stage processes without the incorporation FIG. 11. Phase contrast microscopy image of phase-separation
of hydrodynamic interactions. pattern of a photocrosslinked blend. The scale of the image is 10

Under far-off-critical conditions and a selective interac- um. From[8]. Reproduced with permission from Marcel Dekker.
tion between the filler particles and one of the polymérs (
>0), the filler particles are “encapsulated” by a layer of the patterns in simulations based on the Cahn-Hilliard-Cook
favored polymer so that concentration waves do not developnodel and in measuremeni6] on ultrathin polystyrene/
The formation of droplets by nucleation or far-off-critical poly(vinylmethyl) ether blend films with silica filler par-
spinodal decomposition can also have the effect of breakingcles. In both the simulation and the experiment, the com-
the symmetry of the phase-separation process, but the patteposition wave patterns were found to be transient and the
formation is not generally the same as for critical composiiller is found to have a diminishing effect as the scale of the
tion mixtures. Recent measurements have reported the occyshase-separation pattern becomes larger than the filler par-
rence of filler encapsulation in a blend of polypropylene andicles. The propagation of composition waves is enhanced at
polyamine-6 with glass bead filler particlf8,42). Encapsu-  |ower thermal noise level so that the effect propagates to
lation occurs when the polypropylene-rich phase having thgarger distances for deeper quenches and higher molecular
selective interaction for the filler is the minority phase, butyeight plends. The finite size and the dimensionality of the
no encapsulation occurs when polypropylene is the majorityer particles are found in our simulations to have a similar

phase. This finding compares well with the simulation result%ffeCt in determining the stability of the composition wave

dlsguzse? In Sec. l'.vl'(. i h f het pattern at intermediate times. The composition waves be-
adiation €rossiinking provides another Source of Netero., e more stable for particles large in comparison to the

eneity that can be introduced readily in phase-separating, . ; -
f%lms tyMeasurements of irradiated hgtoregctive blé)nds ngmodal wavelength, and the concentration waves exhibited
y P y these larger particles are similar to planar interfaces. The

Pm ME art1r<1j IP? with a grossllnkalblsfgggM%ro%p S'[ti’]rene'composition waves about the filler particles are more stable
chioromethyl styrene random copoly SNOWINe = ¢4, particles extended at great distance along more direc-
formation of striking ring composition patterrﬁé?,48] and tions; i.e., surfaces are more stable than long cylinders,
we reproduce one of thesg patterns in Fig(ddmpare \.N'th . which are more stable than spherical filler particles. Our re-
Fig. 5. Furukawa[49] ha_s m_terpr_et(_ed these qbservatlons Nsults compare favorably with experiments on phase-
f[erms of a modgl by Wh.'Ch irradiation first brings the blend separating filled ultrathin blend films which are nearly two-

into the nucleation regime where droplets phase-separat imensional, and which contain a relatively low

20"0\?18,[0' byttPE etnr;[ra?ltlze Into tt_hle spc;nodal redgl_methwhere th oncentration of modest siZeadius=100 nm) filler beads
roplets act like the filler particles discussed in the present, .- the substrate.

pﬁp;anr. IT;]S IS a E’tla#]s'blbe tmiteirprdei;?imolrt] tOfinther qru?lltr?tlve Filler particles are an example of a perturbation of phase
(r)ng ? mer?te p%ire tIS, :‘Jr m SCHCCu i?n | ?ipne ﬁlseseparation by boundaridsterior to the fluid. It would be
easurements ectly o simuiations s Ceinteresting to investigate the influence of exterior boundaries

crossgllnklg[g;scl)r]np_?r:ts a norll.mll'.'al V|Sﬁpehlaslt|C|ty to the potlr)]/- of finite extent on phase separation. It seems likely that com-
mer bien - Ihe crossinking, which also Increases the i, \vaves within confined geometries should be more

molecular weight of PSCMS, and the increased elast|C|tS ble because of the decreasing surface area of the rings

both Ieaq us to expect a decrease in the thermal noise A ther from the surface. This should lead to well developed
thus an increased tendency to form target patterns. It als%r

; . ~and more long-lasting perturbations of the phase-separation
seems plausible to us that the crosslinks themselves provi 9 gp P P

the source of heterogeneity. inducing the development o ocess. The relation between boundary shape and phase-
sourc geneily, Inducing Vvelop eparation morphology should be very interesting for this
composition waves.

class of measurements. Phase separation within arrays of

V1. DISCUSSION filler .part|cles, where the distinction between interior and
exterior boundaries becomes blurred and where larger per-
The presence of filler particles in a phase-separating fluidurbations of the phase-separation process may be antici-
mixture is found to give rise to transient composition wavepated, should also prove interesting. The distinction between
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large and small and fixed and mobile filler particles should

lead to a range of new phase-separation morphologies since

the development of composition waves should lead to
changes in the filler-filler interaction that can influence the
subsequent development of the film structure. The utilization

of geometrically and chemically patterned surfaces and ad-

ditives offers many opportunities for the control of the ;

phase-separation morphology and resulting properties of @ (b)

blend films, and the study of these surface-induced phase- FIG. 12. A curved boundary passes through either adjacent or

Separation processes raises many interesting prob'ems g[pposite sides of a lattice unit cell. For both cases we express the
fundamental and practical interest. field and its normal derivative ak§,yo), the solid dot, in terms of

the values at the three vertices depicted by open circles. The dashed
line is the radius of the boundary arc.
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where / is the distance from the interior lattice site to
(X0,Yo) While @ is the angle between the radius and the
horizontal axis. For casg) the analogous expression is

Curved boundaries complicate the implementation of .y N o
boundary conditions in a spatially discretized simulation. In, j:(l g/)[cos’6¢,+lvj+5|.n 01l ~ hAx (A2)
the present work, we use a square lattice and simulate filler ’ (1-g/)(cosf+sing) +gAx
particles with circular, cylindrical, and spherical symmetry.

This requires a method of incorporating the boundary Condiint;?:r ggienr?'?r?lpfgéﬁggaé’;via srg?gnﬁ:zoa?/idizsg%i)d attothe
i inimi i , i
tions that minimizes the effects of errors caused by approxi upplement the Laplacian derived fr utside the bound-

mating curved boundaries by lattices. In this appendix we In thi X h i ; ¢
present our approach to this problem. ary. In this way we can impose the conservation requiremen

Generally, Eqs(2.127) and (2.318) are imposed by inclu- (2.17 for case(d) via
sion of ¢y and u=—V<y— ¢+ ¢ values at the lattice sites (11— . o
on the immediate interior of the boundawyithin the wall or i = (L= COtB) i 2 ¥ COLOI 1,1, (A3)
filler), which are determined from the boundary conditionswhile for case(b),
before each time step. We superimpose the circular boundary _
over the square lattice so that no lattice vertices lie along the _ cosé siné
boundary. Consequently, every interior point corresponds to Kii™ coso+ sin0“i+1'j+cosa+ singMiit1:
one of two possibilities, shown as the lower left corners of
Figs. 12a) and 12b). The boundary condition at the point In simulations with thermal noise we assume a separation of
(Xo,Yo) (shown as a black dpis not set at the interior lattice time scales between thermal fluctuations and order-parameter
site but rather at the intersection of the boundary and th&ariations(as described ifi15]), and simply supplement the
radius passing through the interior lattice site. above conditions with the conservation law for fluctuations
In both cases of Fig. 12, we use the three vertices showat the boundaryt - »=0, wherev is the noise current derived
as open circles for the discretized representatiogi(ed,Y,) from =V -».

APPENDIX: BOUNDARY CONDITIONS
ON A CURVED SURFACE
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