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Kac-potential treatment of nonintegrable interactions
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We considerd-dimensional systems with nonintegrable, algebraically decaying pairwise interactions. It is
shown that, upon the introduction of periodic boundary conditions and a long-distance cutoff in the interaction
range, the bulk thermodynamics can be obtained rigorously by means of a Kac-potential treatment, leading to
an exact, mean-field-like theory. This explains various numerical results recently obtained for finite systems in
the context of “nonextensive thermodynamics,” and in passing exposes a strong regulator dependence not
discussed in these studies. Our findings imply that, contrary to some claims, Boltzmann-Gibbs statistics are
sufficient for a standard description of this class of nonintegrable interactions.
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[. INTRODUCTION to, the use of the Kac potential. We introduce a long-distance
cutoff in the interactions at some finite distanBe which
In studies of critical phenomena the range of the pairwiseenables us to use periodic boundary conditions and thus con-
interaction that couples the degrees of freedom is an imporsider homogeneous systems. We then find the energy density
tant consideration. For interactions that decay algebraicallyn the thermodynamic limit to scale as a powerRfather
at large distances, three classes of critical behavior may biaan of the system size, that is, we maintain extensitivity.
obtained. With the standard notatiar{r)~—1/r9", one By multiplying the pair interaction by the appropriate nega-
finds for system dimensionality<4 that the criticality may tive power of R we recover a well-define®—oc limit. In
be characterized ashort-rangefor o>2— 7, nonclassi- this way, by using standard metho@dscluding the conven-
cally long-rangefor d/2<o<2- 7, and classicalljjong-  tional canonical ensemblewe find an exact solution for the
range for 0<o<d/2, where 7, is the correlation-function free energy for all-d<o=<0, and so demonstrate the clas-
exponent in the corresponding system with short-range intersical nature of the criticality without resort to simulations or
actions[1,2]. The critical behavior matches at the borderingconjecture. These results have been announced previously
cases(e.g.,0—d/2 from above and belowwith additional ~ Ref.[14].
logarithms. However, forr<0 the interactions araoninte- Indeed, this is not surprising—the “infinitely long-range
grable, i.e., fd u(r)—, and so, under standard defini- and infinitely weak interactions” route to an explicit, ana-
tions, the thermodynamic limit does not exi¢See Refs. lytic (mean-field-like theory is well knowr{15-18. What is
[3-5] for rigorous treatments. new here is the connection between nonintegrable interac-
Nevertheless, recent studies have focused on this nonintgons and the much-studied “nonextensive thermodynam-
grable regime, typically using a finite system size to rendeics.” This connection rests on an additional result, namely
the total system energy finite. These results are then intethe demonstration thainy ordering of the limitsL,R—c°
preted as “nonextensive thermodynamid$], in which the  yields thesamefree energy. For the limit — < first, the free
system energgensityscales with some positive power of the energy is obtained directly from a Kac-potential treatant
system size, as do intensive variables such as temperatuteast foro<0; the casesr=0 is treated separatelywhile
Examples of such works include molecular-dynamics simuwhen the limitR— « is taken first, we obtain, as an interme-
lations of two- and three-dimensional systems with variantgliate step, a finite system with constant interactions propor-
of the Lennard-Jones potentiff,8], Monte Carlo simula- tional to 1L.%—i.e., without approximation we obtain mean-
tions of one- and two-dimensional Isifg,10] and Pott§11]  field-like interactions. Finally, in the limitRxL—co the
systems, and a numerical study of t¥ chain[12]. Monte  R-dependent prefactor multiplying the pair interactions may
Carlo simulations have also suggested classical critical bese regarded instead as a power lof This reproduces all
havior for a stochastic cellular automation with long-rangescaling results of nonextensive thermodynamics of which we
interactions in the regime<0 [13]. On the basis of these are aware, reducing the study of these systems to the appli-
numerical studies of finite systems, several authors bame  cation of standard techniques with Boltzmann-Gibbs statis-
jecturedthat “nonextensive criticality” should be classical tics. Furthermore, in the context of thermalized gravitational
[9,11,12. systems[19—21] our results provide what we believe is a
Here we present an alternate approach to nonintegrablgew, direct connection to a rigorous Kac-potential treatment.
interactions, quite similar to, and in certain cases equivalent While a finite free-energy density is obtained in fRg-
—oo |limit, the actual result depends explicitly on the cutoff
function To be specific, consider a fluid of densjtywith the
*Permanent address. pair interaction
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©, r<a summary of our main results, and some remarks on the con-
nection to work done in the area of gravitational systems.
1 w(r/R)
e —, r>a,0=r<d
u(r)= RI-7 1 ) Il. MATHEMATICAL TREATMENT
1 w(r/R) A. Thermodynamic limit with finite range

- ﬁ —g ., I>a, 7= d,
n r We begin by considering a fluid id spatial dimensions
_ o . ) . with the pair-interaction potential given by E€{), with fi-
where T=d+|‘7 IS |r}troduced tohav0|dhconfu5|?fn fW'th the hite Rand in the thermodynamic limit. Then fordr<d our
negative values ofg, and where the cutoff function ., results2) and(3) for the limit R— o follow immedi-

w(x)—taken t? Ee isotropir.:'for simplicity—degqys at least ately from the rigorous treatment of Lebowitz and Penrose
as fast as ¥~ " for positive &, with w(0) finite. The Els]' To see this. define
e L

R-dependent prefactors are chosen to preempt the divergen
of the energy in the limiR— . From this we obtain, in the d(X)=W(X)/XT , (4)
limits L,R—o0, the Helmholtz free-energy density
in which case Eq(1) becomesi(r>a)=—R 9¢(r/R), the
f(p, T)=&fo(p,T)~Ap?, (20 canonical Kac potential, witkp(x) satisfying the necessary
conditions for the proof given if18], cf. Egs. (1.219—
where & ---} represents the maximal convex envelope,(1.219 in this reference.

fo(p,T) is the hard-core free enerdwhich is strictly pro- It is also possible and usef(for the 7=d cas@ to under-
portional toT), and stand this result from the Mayer cluster or virial expansion
about a reference hard-core potenfi2?]. Specifically, the
%Sdf w()xd"1dx, O=r<d Mayer functionf(r)=e #“()—1 (not to be confused with
A= 0 3) the free-energy densitynay be decomposed as

1s,w(0), r=d. T(n=[o(r—a)—1]+6(r—ae PO-1], (5

HereSy= 27T (d/2) is the surface area of a unisphere.  Wwith 6(x) the Heaviside step function. The first square-
Up to a factor—kgT, A is just the second virial coefficient bracket term is the Mayer function for the hard-core potential
without the hard-core contribution. and the second term accounts for the attractions. Each irre-
The free energy thus obtained indeed depends explicitlglucible cluster of the virial expansion may be replaced with
on the cutoff functionw(x), at least forr<d, but does not asum of clusters in which the individual bonds are replaced,
depend on the system shape. We obtain quantitatively thi@ turn, with each of the hard-core and attraction bonds.
same result for a lattice ggBence also for Ising spin sys-  The hard-core bonds are independent of the cuRpffo
tems, cf. Ref.[22], Sec. I1B with the substitution of the the sum of diagrams containing only these bonds yields the
lattice hard-core free energy being the only modification. Inhard-core free energfvia Legendre transformationwhich
this context, we recall that the first application of the Kacis unaffected by the limiR—c. In what follows, we sum-
potential to spin systems is due to Bak&6]. marize the argument for why the attraction bond two-cluster
The dependence on details of the cutoff regulator has imis the only other term which survives thie—co limit.
portant implications when this solution is recast in the inter- The attraction bonds go te 6(r —a) Bu(r)=1/R%" " for
pretation of “nonextensivity.” For the nonperiodic case of large R (with 7<<d, for now). Each vertex that is free to
nonextensive thermodynamics, where the finite system siziategrate over space gives a factod w(r/R)/r"~R4"".
is used to regulate the energy, ek quantities will depend Consider first diagrams with only attraction bonds: the
on both boundary effects and the system shape, a point weth-order ring diagram(each vertex having exactly two
have not found mentioned in previous studies. Furthermorgyondg with n=3 hasn bonds andi—1 free vertices, and so
when periodic boundary conditions are employed and theanishes as R~ " for largeR. All other n=3 clusters have
interaction is cut off at some fraction of the system size, thea higher ratio of bonds to vertices, and so these also vanish
bulk thermodynamics will depend on precisely which frac-when all bonds are attractive.
tion is used, notwithstanding statements to the contféfy Replacing an attraction bond with a hard-core bond re-
(cf. our discussion in Sec. IV belgwThe remainder of the moves one factor of R%~7 but also kills one of the free
paper is organized as follows. In Sec. Il we present our mathvertex integrals, i.e., the integration region is constrained to
ematical treatment of the various limits which lead to thethe scale of the hard core. The net effect for ring diagrams is
results above. Next we present briefly the critical propertieshat they remain of the same order R and so vanish for
of these systems in Sec. lll. Since we can interpret our ren=3. For more complicated irreducible clusters, a situation
sults in the language of nonextensive thermodynamics, thisan arise where two vertices mutually constrained by hard-
connection is presented and discussed in Sec. IV, and variousre bonds are also connected by an attraction bond. In this
difficulties with nonextensive thermodynamics are broughtcase, replacing the attraction bond with a hard-core bond
to light, including the above-mentioned system-shape deperdoesincrease the order of the diagram by a fack .
dent “bulk” thermodynamics. Finally, we conclude with a However, this situation can only occur for diagrams with
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higher powers of R than the ring diagrams, and can never * w(|nL+r|/R)
bring them up to ordeR®. Consequently, all diagrams with Ue(F)=—
n=3 and at least one attraction bond vanistRas ».

Then=2 case is distinct as it has one bond and one free .
integral, so it provides aR? contribution wherer is understood to be less thdr2. As R becomes

large, the directf=0) interaction becomes negligible and
an increasingly large number of terms contribute to the sum.
o B G W(r/R) By use of the expansions
a,= lim - = dr
Rox 2Jr>a RIT7

(€)

RI-"ns [nL+r|7

. . o r(r+1)r?
_Bsdfoc |nL+r| =|nL| 1—H+W—~-- (10

= lim > w(x)x3" 7" 1dx
R /R and
=—BA, 6
p © InL+r| r
o _ w =w(|n|L/R)+sgn(n) =w’'(|n|L/R)
whereA is given in Eq.(3). R R
Thus the virial expansion reproducé®, apart from the r2
convex envelope. The failure of this otherwise exact method + ==W'(|n|L/IR) = - - -, (1)
to reproduce the Maxwell construction is that the virial ex- 2R

pansion relies on a homogeneous density and breaks dow
when this is not the case. Nevertheless, since it is exa
whenever the densitis homogeneous, the virial expansion
supplemented with the second lgaonvexity prescribes a

unique free energy, and so can be regarded as providing the | (r)=— E E (E) T w(n—L
rigorous result. © Ri=1 \nL R

there we assumev(x) to be analytic, we may rewrite
Ues(r) for largeR as

The utility of the virial-expansion method is that it applies
to the borderline case=d, where we cannot directly map to
the results of18]. The hard-core terms are unmodified, at-
traction bonds now go as 1/R and free vertex integrals

give The convergence of this series is guaranteed by the shape of
the cutoff functionw and its derivatives. Note that the lead-
ing sum for largeR is independenof the spatial separatian

L L?

+ —_—
o nR’ R2

| 1z

d d__
rzad rw(r/R)/r"~InR. () the correction terms are down by a factar/R)1~". In the
limit of large R, we may, in turn, express this sum as an
The sum of diagrams with=3 and at least one attraction integral
bond isO(1/InR) [provided there are no surviving resumma- 2 (o
tions of 1/(InR)" termg. Then=2 attraction bond diagram lim uey(r)=— ﬁf (R/nL)™w(nL/R)dn (13
gives the only remaining contribution R—ee 0
B[ me (x)x~7d (14)
a,= lim—— d% u(r =—17] W(X)X X.
2 e 2 Jisa ") LJo
. —BSy [~ For the borderline case=1, Eqgs.(9) and(12) have to be
= lim= = w(x)x ™ dx multiplied by (InR)~*. Furthermore, Eq(13) now requires a
Roe R lower integration limithn=1 (or any constantas a regulator.
= —185,w(0), ®) The pair interaction is then
2 0
which again leads to Eq§2) and(3). Interestingly, the bulk Ues(r)=— A Rf w(x)x " tdx (15
thermodynamics in this marginal case is not sensitive to the NRJur
details of the cutoff function. )
- 0
I_InR[w(O)In R+O(RY)]. (16)

B. Infinite range with finite system size

Now consider the same fluid system, but takiRg- In the limit R—~, we find the effective pair potential is
with finite L. For clarity, we begin by considering a one- again independent of the spatial separatianq(r)=
dimensional system with €7<1, in which the periodic —2L 'w(0).
boundary conditions lead to the effective pair potential (  The generalization of this treatment to higher dimension-
>a) alities is straightforward. For é-dimensional system of size
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Ly XLyX--- XLy, with periodic boundary conditions and  Thus, we have shown that, in the limit of infinite interac-
0=r<d, the effective pair potentialr¢&a) is tion range, all pair interactions are identical even in a finite
system, for any & r<d. For 7>d, on the other hand, the
T(nl, .oy sum in Egs.(9) and (17) is convergent and hence the
0 > W R R-dependent prefactor in(r) should be omitted. The first
= 2 ce = , term within the square brackets is then no longer negligible
RY7Tn=-=  ng=== r(Ng,...,Ng)" in the limit R—o, which leads to an effective interaction
17 that depends both onand onr and consequently to non-
trivial critical behavior. Interestingly, the criticaxponents
retain their classical values untit>3d/2, except for the
correlation-length exponent and the correlation-function
exponentz [1]. The critical temperature and other nonuni-
versal quantities exhibit a nontriviat dependence already
for 7>d, cf. Ref.[24] and references therein.

1

ueff(r): -

where

F(Nq, ... N =|r+nloxg+---+nglgXq (18

is the separation corresponding to thg (. . . ,ng) periodic

repeat, and thé{i are orthonormal vectors. In the limit of
infinite interaction rangeR, the direct interaction terngall
n;=0) becomes negligible compared to the sum and we find C. Lattice gas

the following generalization of Eq13):
99 d13 So far we have only discussed continuum fluid criticality.

Sy (= The generalization to a lattice g&and, of course, to the
Ueg(r)=— VJ’ w(x)x4" 1" 7dx (19 Ising ferromagnetresults in the same free ener@®) with

0 the appropriate lattice hard coffg(p). This may be seen
most directly in theR—oe first case, where the pair interac-
tions go to a constant. This derivation applies both for par-
ticles in a continuum or on a lattidéndeed, no specification
‘was madg and so the constant interactions are obtained in
- - , both cases. The final step of constructing the free energy
the limit R—o0, Ue(r)=—S4V~'w(0). Since a constant gom the decoupled energy and entropy reveals that the lat-

pair .interaction gives a configuration-indepgnd_ent €nerY¥ice hard-core free energy is the appropriate one to use in Eq.
density3u.4p2V, the energy and entropy contributions to the 2

free energy decouple, and one obtai{@3 directly in the
thermodynamic limit.
Instead of a “soft” cutoff provided by théanalytig func-

where S; has been introduced below Ed3) and V
=M1 ,L;. We note that the strength of this constant interac
tion is inversely proportional to the volume, just as one ex
pects for a mean-field-like systef@3]. For r=d one has, in

For theL—oe first limit, one must use a lattice generali-
zation of the Mayer expansion. Such an expansion would
. ) . - . give for noninteracting particles the lattice hard-core free en-
tion w(x), one can also introduce a “hard” cutoff at a dis- grqy The lattice sums for clusters with attraction bonds can

tanceR, which is equivalent to taking, saw(x)=0(1-X)  pe taken to integrals in the largR limit, and so the rest of
in Eq. (1). We start again witll=1 andr<d. The effective o continuum derivation applies.

pair potential can be written as

RIL D. Thermodynamic limit with a system-size-dependent range

1 1
- — (20) The final case we consider is that Rf<L—c°, the case
R 7 n==RL [nL+r| most directly applicable to “nonextensive thermodynam-
ics.” Consider a finite system with periodic boundary condi-
tions (with all dimensiond_;«L) and direct pair interactions
given by Eg.(1) for some finiteR. The periodic boundary
conditions give rise to the effective pair potent{alr). The
virial expansion for the pressure may then be obtained from

)H a finite-volume cluster expansion with the Mayer function
(21

ueff(r): -

where, for simplicity, we have takeR to be an integer mul-
tiple of L. For largeR, the n=0 term becomes negligible
compared to the sum and by use of the expangidh we
rewrite Ugg(r) as

2/R\ 7R (1
Ueﬁ(r):_t(t) E[—

n=1|n"

1

I.]2

T=exp(=Bue) — 1~ — Bugg for largeR. Since the effective
interaction is a sum of pair interactions, a simplg cluster
such as the irreducible three-cluster shown in Fig) tle-
The O(n~?) correction terms are again down by a factor composes into a large number of pair-interaction bond clus-
(R/L)™"* from to the leading surfcompare to Eq(12)]. As  ters[cf. Fig. 1(b)]. Note that, in order to avoid overcounting,
before, we end up with a constant effective interactionone end of every bond must remain in the original finite
limg_..Ue(r)=—2L"Y(1—7). For 7=1, the correction volume, but the other end may be taken to lie in any of the
terms decay only like 1/IR and limg_ . Ugq(r)=—2/L. periodic repeatgand these still contribute to the virial ex-
Since the case of general dimensionality can be treated alongansion as they are parts of an irreducible clyster

the same lines, we only mention the resulting values for the In spite of these complications, we remark that all hard-
constant pair potential: lig, .Ugsw(r) = —SqV~ Y/ (d—7) for core bonds are the same as in the previdus: ¢ first) case,
7<<d and limg_.Uen(r)=—S4/V for r=d. These results since they only appear in the direct interaction of the original
are all consistent with Eq2) with w(x)= 6(1—x). pair. Hence the hard-core bonds sum to the hard-core free

1+0
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following Eq. (6). Combining this with the hard-core contri-
bution gives the same free ener@ in theR,L— oo limit as
was found previously fot. or R going to infinity first. The
significance of this simultaneous limit towards nonextensive
thermodynamics will be discussed in Sec. IV.

Ill. CRITICAL BEHAVIOR

The critical properties of nonintegrable systems are

tion ug and(b) one contribution to the decomposition of this clus- standard procedures. For example, the critical density can be

ter into pair interactionsi(r).

energy regardless of whethérand R are simultaneously
taken to infinity, orL first.

Furthermore, alln-clusters withn=3 and at least one
attraction bond can be shown to still vanish R4 — .
First, all bonds still carry a factor of Bf~7 for largeR, as
before. Free vertices integrate to

de dirr- w(r/R)~Rd—Tf(L/R)d di% x~w(x) (22

for the direct interaction of the original pair, which goes as

RY"7 times a finite factor for larg&®. For a pair interaction

obtained froma*f(p,T)/dp%, =0, which reduces to the

temperature (and attraction independent condition

#*fo(p,T)/3p%|, =0. The critical temperature is then found
from 6% (p,Tc)/3p?|,. =0 which gives

-1

3*(Bfo)

kBTC: 2A &pz

(27)

P=pg

For a hypercubic lattice with lattice constamtthe lattice-
gas hard-core free energy i8f5°=pInp+(a 9—p)in(1
—alp). This results in the critical values

a%p.=1/2, kgT.=A/(2a% (28)

involving a neighboring replica, the vertex integration is the

same as above with a shift in the argumenivéf/R), where

T [see Eq(18)] goes roughly as+cL. The resulting vertex
integration will also scale aR®~", providedr+cL=<R.

SinceT increases for each increasingly remote replica, th

cutoff function w(x) will ensure that only a number

O((R/L)Y) of such bonds will contribute. Hence free vertex
integration with effective interaction bonds, while consider-

ably more complicated, still results in a factef ™" at large

for the lattice gas. Although the free energy for continuum
hard spheregdiametera) is not known exactly, a very good
approximation in three dimensions is nevertheless given by

éhe Carnahan-StarlingCS expression

p?vo(4—3pug)
(1=pvg)*

with vy=ma%/6 the volume of the hard sphere affl the

BF53p)=BF%p)+ (29)

R. Previous arguments from Sec. Il A then apply, and sqdeal-gas free-energy density. Using this fgryields a quin-

these terms all vanish wheR,L —oo.
The remaining two-cluster integral may be written as

a,= Iimg dr uen(r) (23
R—x r>a
- 42 ru \wiER
NZR';BTHI(H'—Z“’ . dxi>(~r—T (24)
- ” (mi+ 1)L w(r/R)
_ZIQdBTil;[l(n-—Z—DO niL; dXi) ro’ @9

where the sums cover all replicéend we have omitted writ-
ing the hard-core condition for clarityln going from Egs.

(24) to (25) the integrand variable changed framo r, con-

sistent with the definition of. The remaining integrals piece
together a single volume integral over all space, so

=
d% w(r/R)/r™
Rdfr r>a ( )

a,= lim

R—x

== BA, (26)

tic equation forp. with a unique positive roof25] and the
critical values

asp,=0.249 129,
(30)
kgT.=0.180 158\/a®

for the hard-sphere fluid.
The susceptibilityy, defined as the ratio of the isothermal
compressibility to the ideal gas compressibility,

F*(Bf)
ap?

x Hp,=p (3D)
exhibits near criticality the classical divergenge C. /t for
p=p. and positive reduced temperatutes(T—T.)/T,.
From Eq.(2) we find
-1
g

which results inC'©=1/2 for the lattice gas and¢S
=0.361569 for thel=3 hard-sphere fluid, approximated by
the CS expression.

Finally, the order parameter far<T, is given by

9*(Bfo)

9p2 (32

C+:<Pc
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adlp—pc=By-t (33)  box. Our exact solution presented in Sec. Il shows that this is
not correct forr<d, but that rather differertbulk thermody-
for t sufficiently small, with namics emerges for different cutoff distances and cutoff
functions.
19 6%f o/ 3p?] 12 In Ref. [29], rings of magnetic particles in a colloidal
_gdf T e (34) suspension have been studied numerically, where the non-
[0*o/dp*] magnetic part of the interactions has the above-mentioned
Pc

generalized Lennard-Jones form. The main results are heu-
This evaluates t@-C=3/2 andBS=1.13459. ristically interpreted in terms of nonextensive thermodynam-
ics by observing that the size dependence of the total energy
of the rings can be well described by a scaling law obtained
from the integrated interactiofwhich is essentially a mean-
As indicated in the Introduction, the main motivation for field-like approximation This scaling law is just what is
this work stems from the considerable attention systems wit@lso found within the ‘§-generalized thermodynamics™ of
nonintegrable interactions have received in the context oRef. [6], commonly referred to as Tsallig statistics, and
nonextensive thermodynamics. An essential aspect of thes@nsequently a dependencer=d+ o) is proposed for the
studies of nonextensivity is the use of the system size as thgo-called “nonextensivity parametert| appearing in this
regulator for the energy. Furthermore, the interactions aréormalism:q=1 (corresponding to Boltzmann-Gibbs statis-
not scaled by a negative power of the system size but leftics) for 7>d andq=2—d/r for 7<d. Also in Ref.[30] it
with strength of order unity. has been conjectured thais ad- and 7-dependent quantity
Our cutoff interaction with rang® can be interpreted for 7=d. It appears that these conclusions have been since
directly in terms of this nonextensive thermodynamics forrevised [10,31], and these systems are now classified as
R/L constant, which reproduces the system-size regulatofweakly violating” Boltzmann-Gibbs statistics, meaning
The negative power of multiplying our pair interaction is that q=1, whereas several thermodynamic quantities lose
eliminated by scaling the temperature according To their extensivity. Nevertheless, recent studies have continued
— L9 T in the Boltzmann factor{—TInL for r=d). The to exploreq#1 values forr=<d, citing an alleged natural
scaling of this system-size dependent “temperatutahd  connection between Tsallis statistics and nonintegrable inter-
consequently the free enedggnatches exactly the conjec- actions[32]. Our results show that the same energy scaling
tures of nonextensive thermodynamics, thus we have derivel®r 7<d may be obtained with the conventional valge
rigorously the primary conclusions of Ref8,8,11,12using =1.
only standard methods. We note that, despite what has been Inspired by the system-size dependence of the energy
suggested in Ref.26], neither the explicit free energy nor found in Ref[29], an Ising model with interactions decaying
exact results for the nature of the criticality were obtained inasr~7 (7=0) and free boundary conditions has been ana-
Refs.[9,11]. lyzed by mean-field methods in R¢f]. On the basis of the
Next we want to discuss some examples from the recentesulting values of the critical temperature fe+=0 and 7
literature and point out a few problems attached to the inter=d, it was thenconjecturedthat the mean-field prediction
pretation of nonextensive thermodynamics. First, a pervasivéor the critical temperature might hold for alkOr=<d. Our
notational problem in the nonextensive thermodynamics litexact result now demonstrates that this is indeed true, but
erature is the use of “long-range interactions” to mean non-+eveals in addition an awkward consequence of the boundary
integrable interactions. The former term already has a starsonditions adopted in Ref.9]: since the thermodynamic
dard meaning within the considerably more important clasdimit explicitly depends on the choice of the cutoff function,
of integrable interaction$27,28,1. The converse problem an inhomogeneous system with an inhomogeneous cutoff
also exists, where all integrable interactiofiscluding the  will lead to bulk thermodynamics that depends on shape
true long-range interactiopgre termed “short-range(see, of the system, which to our judgment constitutes an undesir-
e.g., Ref[29]). able feature of the nonextensivity formulation. We note that
Many papers addressing nonintegrable interactions havidiley and Joyce already observed in an early study of a spin
relied on numerical simulations of finite systems. In generalmodel with dipolar interaction.e., 7=d with anisotropy a
the required regularization of the interactions is carried ousystem-shape dependence of the zero-field susceptibility, and
either by imposing free boundary conditiofvghich leads to  absence of system-shape dependence for certain other ther-
an inhomogeneous systeor by adopting periodic boundary modynamic propertieg33]. Later, the free energy was rigor-
conditions and cutting off the interaction at half the systemously proven to be independent of system shape in this case,
size, being the maximum separation between the particlefoth for lattice systemf34] and fluids[35]. Also the exact-
For example, Curilef and Tsallig8] have performed ness of mean-field theory fehape-independefdrces in the
molecular-dynamics simulations of fluids th=2,3 dimen- limit 7—d+ has been obtained i{i83], essentially from an
sions with Lennard-Jones-like interactions, with an attractiveobservation similar to ours for generakG-<d, namely that
tail decaying liker =7 and 1=7=<2d. It is explicitly stated one divergent term dominates all other terms in the lattice
(Ref.[8], p. 271 that, in the thermodynamic limit, no physi- sum. However, for the case<d, we have been unable to
cal consequences emerge from (heomputationally conve-  find in the literature any mention of the system-shape depen-
nient”) adoption of a cutoff at half the size of the simulation dent thermodynamics that must result for all inhomogeneous

IV. NONEXTENSIVE THERMODYNAMICS
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systems with nonintegrable interactions and a system-sizéhat these correlations are correctly described by mean-field
dependent cutoff. theory.

Finally, we remark on the connection of these results to
gravitational systems, wherd=3 and r=1. Since the
masses of the particles and the gravitational coupling are

In summary, we have shown thétdimensional, periodic  presumably fixed, we are not at liberty to scale to infinitely
systems with nonintegrable, algebraically decaying interacweak interactions. However, following the nonextensive
tions, i.e., interactions of the form(r)~—1/r", with O0<7  thermodynamics formulations, we can consiéRerL for a
<d, are exactly described by mean-field theory, upon introfinite system and regard the prefactor in the pair interactions
duction of a cutoffR in the interaction range and the proper g5 belonging to a rescaled temperatiire L4~ "T=L2T. At
R-dependent rescaling of the interaction strength. This proofhe same time, we note that such a divergent temperature
holds for either order of limitfR—c andL—c (whereL is appears of limited practical use.

the Iinear_system sizgincluding the simultaneo_us limit, and The existence of a phase transition in these systems has
the resulting free energy depends on the details of the CUtOfBeen studied for fermionic particles in the context of

e e o ey o THemas-Eerm heorf19 20 Wost st ave onsiderd
plicit, exact results for the thermodynamics a’nd critical be_gravitationally interacting particles in a non-periodic, finite-

havior. In doing so, we show that nonintegrable interactionﬁs_|Ized system, cpncentratlng on th? asymptot_|c, gL,
do not requird 30,32 the application of generalizegistatis- ere they obtain nonextensivity in the /gartlcle numbér
tics. Furthermore, the explicit regulator dependence—cutoﬁ"":)th the energy per particle growing &' (in contrast to
length, cutoff shape, and even system shape for inhomogd~ for integrable interactions In Ref.[21] the energy den-
neous systems—is demonstrated, a topic which has bed#ies were suitably rescaled to enable the infinite-volume
mostly neglected in nonextensivity studies. limit, which presumably comes closest to what has been pre-
On an intuitive level, our findings for the case of finite Sented in the current work.
systems with infiniteR (Sec. 1l B) result from the divergence However, these studies differ from ours due to the fermi-
of the lattice sums over the periodic copies of the systen®nic character of the particles, which is used to regulate the
under consideration; these divergent sums then dominate tishort-distance behavior. Classical gravitational systems have
direct pair interaction, and are, to leading order, independergreviously been studied as w¢B9,40], again in a nonperi-
of the spatial separation between particles. A suitable noredic, finite-sized box, with various forms of short-distance
malization is indispensable for the existence of the thermoregulators. In this case the energy per particle scale, as
dynamic limit and—as we have pointed out—a regulator deessentially because the pair interaction, while decaying as
pending on the number of interactions rather than on th@ s has a minimum value for all particles that is proportional
system size emerges as the natural choice. The resulting &4 1/, due to the fixed system size. In contrast, our thermo-
fective pair interaction is then independent of the Spat'al:iynamic limit, L— o with fixed particle density, combined
separation, for & 7<d. . . with the long-distance power-law tails of the pair potential,
We haveT concentrated on both fIU|d_s and lattice 9gasegmplies an energy per particle growing &3 (or N1~ 79 for
However, since our method for tfie— first case demon-  generalr<d). Finally, we mention Ref[41] for a recent
strated how the effective interaction becomes independent Qtyiew of some interesting features of thermalized gravita-
spatial separation, our results immediately carry over to largggnal systems.
classes of other systems as w@lbviously, the critical prop-
erties obtained in Sec. Il explicitly refer to systems with a
one-component order parameteiThese include general
O(n) models XY, Heisenberg,...) andPotts models. In
this context we note that in earlier work the exactness of We wish to thank Professor Kurt Binder for a stimulating
mean-field theory in the limir—d+ has been found not remark, and Professor Michael E. Fisher and Professor Bob
only for the Ising modelif=1) [33] but also for the Husimi- Dorfman for helpful comments on the manuscript. We are
Temperley mean spherical modei-¢ ) [36]. indebted to Professor Michael Kiessling for enlightening us
Our explicit result of an analytic free energy, generalizedon the connection to gravitational systems and to Dr. Shubo
to the systems mentioned above, explains a number of niBanerjee for drawing our attention to Reff34,35. The hos-
merical results obtained for systems with nonintegrable in-pitality of the Condensed Matter Theory Group at the Jo-
teractions. This includes the molecular-dynamics simulationfiannes Gutenberg-Univerditilainz, where this work was
of systems with a generalized Lennard-Jones potential dignitiated, is gratefully acknowledged. B.P.V.-L. acknowl-
cussed in Sec. 1\[7,8], Monte Carlo simulations of one- edges support fronsonderforschungsberei@62. E.L. ac-
dimensional Isind9], Potts[11], and XY [12] models with  knowledges financial support from the Max-Planck-Institute
<1, and the scaling properties found in Refs.for Polymer Research, from the National Science Foundation
[29,10,37,13 In Ref.[38], a subleading term in the spin- (through Grant No. CHE 99-81772 to Professor M. E.
spin correlation function of the nonintegrable Ising chainFishep, and from the Department of Energy, Office of Basic
was considered and on the basis of Monte Carlo simulationEnergy Sciencegthrough Grant No. DE-FG02-98ER14858
of finite systems withr=0.50 andr=0.75 it was concluded to Professor A. Z. Panagiotopoujos
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