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Fast and accurate coarsening simulation with an unconditionally stable time step
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We present Cahn-Hilliard and Allen-Cahn numerical integration algorithms that are unconditionally stable
and so provide significantly faster accuracy-controlled simulation. Our stability analysis is based on Eyre’s
theorem and unconditional von Neumann stability analysis, both of which we present. Numerical tests confirm
the accuracy of the von Neumann approach, which is straightforward and should be widely applicable in
phase-field modeling. For the Cahn-Hilliard case, we show that accuracy can be controlled with an unbounded
time stepAt that grows with timeé asAt~t“. We develop a classification scheme for the step expamemtd
demonstrate that a class of simple linear algorithms gived/3. For this class the speedup relative to a fixed
time step grows witlN, the linear size of the system, Bigln N. With conservative choices for the parameters
controlling accuracy and finite-size effects we find that an 818t¢ice can be integrated 300 times faster than
with the Euler method.
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I. INTRODUCTION inefficient in their time integration. The standard Euler inte-
gration of the Cahn-Hilliard(CH) and Allen-Cahn(AC)

A starting point in the analysis of coarsening systemsgcoarsening models for conserved and nonconserved dynam-
such as the phase-separation dynamics following a quendbs, respectively, is known to be unstable for time staps
from a disordered to an ordered phase, is the characterizatietbove a threshold fixed by the lattice spaciwy—this is the
of the asymptotidate-time behavior. Most coarsening sys- “checkerboard” instability[2]. This imposes a fixed time
tems exhibit asymptotic dynamical scaling with the characstep irrespective of the natural time scale set by the physical
teristic length scalé.(t) given by the size of individual or-  gynamics. The domain walls move increasingly slowly, for
dered domains. The growth lalw~t" is determined by only  example, the CH equation yields asymptotic domain wall
a few general features, such as conservation .Iaws and theyocitiesy ~ gl /gt ~t 23, Consequently, a fixed time step
nature of the order parametisee Ref[1] for a review. For  1oqts in ever-decreasing amounts of domain wall motion

conserved Cahn-Hilliard equations describing phase separa—er step and eventually becomes wastefully accurate.

; _+1/3 : Had i ;
the scaling state is difioitto obtain analytically. Indsd. the, 14€alb: one would like a stable integration algorit,

ing ) y Y- ' = “which would allowaccuracyrequirements rather thastabil-
very existence of scaling has only been demonstrated EMPIT limitations to determine the integration step size. Re-
cally in simulations and experiments. Consequently, com™Y 9 P )

puter simulations of coarsening models, especially phasec:_ently, Eyre proved the existence of unconditionally gradient

field models such as the Cahn-Hilliard equation, play arotable algorithm:éessenti_ally a strict nonincregse in fre_e en-
essential role in our understanding and characterization di'9y for every possible time stgf8], and provided explicit
late-stage coarsening. examples of stable_ steps for both C_ZH and AC _dynarﬁﬁosél.
These simulations face several restrictions. To accuratelyhe present work is concerned with developing these meth-
resolve the asymptotic structure it is necessary to evolve ur2ds in two directions: clarifying and expanding the class of
til late times so that.(t)>w, wherew is the domain wall unconditionally stable algorithms and deriving the accuracy
width. However, to avoid finite-size effects we must halt thelimitations on these algorithms.
simulation whenL(t) is some fraction of the system size ~ Our main results for stability are the following. We have
Lsys- Additionally, to resolve the domain wall adequately thedetermined the parameter range for which Eyre’s theorem
lattice spacing\x must be sufficiently small compared to the proves unconditional gradient stabilitpec. Il A), and we
domain wall widthw. Very large lattices of linear size present Eyre’s theorem in Appendix A. We have also deter-
Lsys/AXx are necessary to satisfy all of these requirementsmined the parameter range that is unconditionally von Neu-
Ax<w<L(t)<Lgs. Accurate studies of the scaling state mann(vN) stable, that is, linearly stable for any size time
require us to evolve large systems to late times. step(Sec. Il B. The latter range is a superset of the former,
Unfortunately, current computational algorithms are veryand neither appear to have been previously determined. We
have also performed numerical tests of stability in dimension
d=2 (Sec. I Q and found that the vN stability condition

*Electronic address: bvollmay@bucknell.edu appears to be sufficient for identifying unconditionally gra-
"Electronic address: andrew.rutenberg@dal.ca; URL: http:/dient stable steps. Specifically, for the parameterless form of
www.physics.dal.caf adr the CH equatiorisee Ref[1])
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2ETTs st bR E e v To understand the limitations imposed on even stable al-
a5 R-I-E - -0 -t gorithms by accuracy, we study in Sec. Ill the truncation
1eecececscssecscssessd error for the CH equation for general numerical algorithms,
..........::::::2222 . . .
eeeeceecees000000000 gnd determine how these terms scale y\{lth time to all orders
LR EEEed 0 in At (Sec. Il D). We develop a classification scheme for
ecccaaasaca06006000 such algorithms based on the lowest orgaf AtP at which
® ®© © 0 06006006 0 0OO0OOOO O . . . . .
SIS EH 4323 truncation error fails to follow its optimal scaling, and show
IS SESNEEN that this term limits the accuracy of the algorithm at late
olsceeeceseees60660660 times (Sec. 1l A). Our analysis leads to the conclusion that
0 1 2 a, 3 4 accuracy requires a time step
At~12(P—1)/3p (4)

FIG. 1. For time steps parametrized as in ER) the dark
shaded region indicates parameters for which Eyre’s theorem . .
proves unconditional gradient stability, while the light shaded re-for the CH model. The algorithms in Eq2) have p=2,

gion corresponds to unconditional von Neumadfinearly) stable ~Meaning the error becomes suboptimaOgt\t?), the lead-
steps. The open circles denote steps that are numerically gradielitd error term. This result is consistent with our numerical
stable under all of our tests, as described in Sec. Il C, while thé@bservations. Our simple analysis for the natural time step,
black circles indicate parameters that were found numerically not t&q. (3), corresponds to th@=o class. We are unable to

be gradient stable. identify any such “perfect” algorithms for the CH case; they
may be impossible for any nonlinear problem.
dip=—VYV2ph+ p— ¢°), (1) Next, we turn to the question of practical advantage. Vari-

ous computational algorithms have been developed to miti-
gate the impact of instabilities by increasidd by a fixed
factor compared to the simplest Euler discretization. For ex-
~ ) ~ e ample, the cell-dynamical scher@DS) [6] exploits univer-
Driar T AtVL(1—a1) driart(1—a2) Vodriadl sality to choose a free energy that is convenient in terms of
= bt AV — 2 di— a, V2 + &3 2 numerical stability. More re_cently, Fourier sp_ectral methods
é [~ad=a,V et 4] @ [7,8] have been shown to increase the maximiimby an
- o impressive two orders of magnitude. However, these meth-
that may be solved for the updated fig, . efficiently by g5 still require fixed time steps and so cannot adjust to the
means of fast Fourier transfor(RFT). The various stability naturally slowing CH dynamics.
conditions for these steps are depicted in terma,ohnda, In Sec. IV we determine the relative advantage of integra-
in Fig. 1. The .stab|I|fty conditions do not depgnd on the lat-tjgn by algorithms such as E€2) compared to the conven-
tice type or dimension, on the volume fraction, or on thetional Euler method. For a reasonably conservative choice of
form of the lattice Laplacian. This implies, for example, thataccuracy requirements, we find for an 83192 lattice
these algorithms could be combined with adaptive meshcyrently feasible for a Linux workstatipmvith Ax=1 that
techniquegsee, for example, Ref5]) for independent con- 4y ynconditionally stable methods can integrate up to finite-
trol of spatial and temporal discretization. Figure 1 suggestsjze effects roughly a factor of 300 times faster than possible
that the unconditional vN stability conditions, which are yith the Euler method. The advantage of unconditionally
widely applicable and relatively easy to analyze, may proiaple steps increases with larger system sizes: for lattices of
vide a reasonably accurate proxy for unconditional gradienfinear sizeN we show the relative advantage in speed is of
stability. We have also determined the analogous stabilityrgerN/in N, regardless of the spatial dimension of the sys-
conditions for the AC equation. _ . tem. This means that as computational power continues to
When stability is not the limiting factor, practical limits jncrease, unconditionally gradient stable algorithms will be-
are still imposed byaccuracy To maintain the domain wall  -5me even more valuable.
profile to a given accuracy, a time step should be chosen so e present a summary and outlook for future develop-
that the wall only moves a fraction of its widthin a single  ants and applications in Sec. V.
step. For a scaling system with~t", wheren<1 generally,

the passage time scales likew/v ~w/L~t"" at late times.
Then the natural time step should scale as

there exists a class of semi-implicit steps

Il. STABILITY

The parameterless form of the CH equation for a con-
At~ 7~t17 ", (3)  served scalar fielil] is

For CH dynamican=1/3 andAt,,,,~t?3, while for AC dy- hp=V2u, ®)
namicsn=1/2 andAt,,~tY% However, we show that these _ _ o

stable algorithms are still not capable of accurately simulatherex is the local chemical potential given by

ing coarsening using the natural time scale—despite their

stability. For example, accuracy limits the stable CH steps _ oF 6
given above to “only” At~t3, pOO= S5h(X) ©®
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andF[ ¢] is the free-energy functional, taken here to be  are denoted byp,. »;, With ¢, o, reserved to represent the
exact field obtained by integration of E(L) over the time
F[¢]EJ dIX[1(V $)2+ 1 ($2—1)2]. (7) ~ stepAt. We choose our parametrization such that=a,
=az=1 corresponds to the Euler update, E9), while a;
=a,=az=0 is the fully implicit step. Fora;#1 we have,
motivated by Eyre, a mixed nonlinear term with=s®n<3
that combines implicit and explicit terms.
It is useful to sort algorithms described by EGO) into
three categories based on how they are implemented numeri-
Gib=—pu=V2h+ d— . (8) cally. First, wherlagzl we havelinear direct steps, where
the equation forg,, A; is linear and has spatially uniform
For dissipative dynamics such as the CH and AC equaeoefficients so the updated field can be found efficiently, and
tions, a discrete time stepping algorithm is defined to bewith no additional memory requirements, by FFT methods
gradient stableonly if the free energy is nonincreasing, [9,10]. Second, wheraz#1 but m=2 then the implicit

F[ é.a<F[ ¢,], for any field configurationp,. The other equation remains linear ith,, », but no longer has spatially
requirements for gradient stability, e.g., that stable fixeduniform coefficients. Eyre outlines an iterative procedure for
points must correspond to minima &f or that F should  solving these equatiorig], so we call thesdinear iterative
increase without bound for largg, are already manifest in steps. Insisting on convergence of the iterative procedure re-
the discretized forms of these equations. Gradient stabilitgtricts this class to a subset of parameter values. Finally, for
may reasonably be regarded as the ultimate stability criterioa;# 1 andm+ 2 the update equation i®nlinear For some
for the CH equation. parameter values the nonlinear equation can lead, unphysi-
Unconditional gradient stabilityneans that the conditions cally, to multiple solutions.This occurs for both the fully im-
for gradient stability hold forany size time stepAt  plicit case a,=a,=a3;=m=0, and the Crank-Nicholson
e[0,°). Since unconditionally stable steps are our primarycase a;=a,=az=1/2, m=0, whenever At exceeds a
concern, we will henceforth use “stable” or “unstable” to threshold valud3]. Generally, the nonlinear equations re-
refer to the behavior for arbitrarily largit. That is, stable quire solution by the Newton-Raphson meth8dL0], which
implies unconditionally stable, while a fixed time-step algo-is complicated to implement in two or more spatial dimen-
rithm such as the Euler step may be referred to as unstable sions. For some parameter values this can be demonstrated to

The second term i represents a double-well potential with
equilibrium values¢p==*1, and Egs.(5)—(7) combine to
give Eq.(1). The parameterless form of the AC equatjdh

is

conditionally stable. be absolutely convergertes shown beloyy so nonlinear
The Euler time discretization of the CH equation is steps provide a viable option—though not one we have ex-
plored numerically.
b=t AtV C) The step parametrization for the AC equation analogous
to Eq.(10) is

The Euler update is “explicit” since the field at the earlier
time step ;) explicitly determines the field at the next time ~ —(1—a)Atd —(1-a,)AtV2%
step (P4 a1)- Itis also unstable for values dft that exceed Proac VAt P s 2 Proa

a lattice-dependent threshollif ,, .~ Ax* [2]. The fully im- +(1—ag)At[ p"p

plicit time step is obtained by replacing with u; A in Eq.

(9), and is, like the Euler step, accurateQ¢At). Other time = ¢+ a At +a,AtV 2 —agAt ey, (11
steps, which involve splittinge into parts evaluated atand ) ) . - ]
att+At, are generally called semi-implicit methods. which we include because the theoretical stability analysis

Remarkably, Eyre[3,4] proved that appropriate semi- follows nearly identically for the CH and AC equations, and
implicit parametrizations can lead to stable update steps fdhe stability regions are given by the same shaded regions of
both CH and AC equations. To explore these possibilities, if19- 1.
is useful to introduce a general family of such steps for the
CH equation in an arbitrary spatial dimension: A. Unconditionally stable steps from Eyre’s theorem

~ ~ ~ Eyre’s theorem(see Appendix Ashows that an uncondi-
by art (1—ap)AtVZh g+ (1—ay) AtV4 ey, o tionally gradient stable algorithm results, for both CH and
—(1—ag) AtV ¢Mge AC equations, if one can split the free energy appropriately
3 t At into contractiveand expansiveparts,F=FC+FE, and treat
=¢t—alAtV2¢t—azAtV4¢t+asNV2¢t3- (10)  the contractive parts implicitly and the expansive parts ex-
plicitly. That is, the CH equatioi) is discretized as

This reduces to Eq(2) for a;=1. For each of the three _

terms on the right-hand side of E¢l) there generally are Byt AVZug, y = i+ AV, (12

both explicit and implicit contributions to Eq.10), and this

will be exploited to construct stable dynamics for any sizewhile the AC equatior(8) is discretized as

At. For all values of the parametesisandm this step gives

~ . L. ~ C _ E
a solutiong,, o, that isO(At) accurate. The implicit terms Groart Atugy p = b= Aty (13
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where u= 9F*/ ¢, for lattice sitei, and whereV? implies
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Eyre also presents a technique for identifying stable linear

a lattice Laplacian. The necessary condition on the splittinglirect algorithms[3], which relies on the fact tha#? is
is the same for both equations and may be stated by intrdsounded. It exceeds unity only slightly in the CH equation

ducing the Hessian matrices
I°F

" (92FE
ij_my

" ﬁZFC
1 agiag”

Mi Capiagy’ 14

E C

wherei,j denote lattice sites. First, we must have all eigen
values of ME nonpositive and all eigenvalues M€ non-
negative. Second, as shown in Appendix A, Xgf;, equal to
the smallest eigenvalue M and)x,iax the largest eigenvalue
of ME, we need

=

E <
max 2

N

(19

)\min-

This also automatically satisfies the convexity requiremen
for ME, sincel,;,<0.

To identify the appropriate splittings, it is useful to break
the free energy, Eq(7), in its lattice-discretized form, into
three partgneglecting the irrelevant constavit4 term:

F=—23 %(p?. FO=2 §<V¢>>?,

FO=2 %rﬁf‘, (16

with corresponding Hessian matriced®. First, M
=— &, Where §;; is the Kroneckers function, has all ei-
genvalues equal te 1. Next,M{?=(—V?);; is the negative

and only in the interior region of a curved interface due to
Gibbs-Thompson effectigll]. Therefore the eigenvalues of
M®) have an effective upper bound, approximately three. If
we then takeFE=a;FM+F® (soaz=1 anda,=0) the
eigenvalues oME are of the form—a,+ 3¢12 and satisfy
Eq.(15) for ¢?<1 if a,=7/2. Any valuea,<0 will give the
same result, since negative valuesagfcan only decrease
the eigenvalues ofME. These choices implyF¢=(1
—a;)F®+(1-a,)F®, which has the necessary non-
negative eigenvalues for the rangeagfanda, given above.
Therefore we can identify a class of gradient stable direct CH
and AC steps as
a;=7/2, a,<0, az=1. (19

This gives the dark gray shaded region in Fig. 1. These rep-
resentsufficientrestrictions on the, to satisfy the conditions
for Eyre’s theorem; however other values of tliemay be
gradient stable as well.

Eyre provided specific step examples for all three imple-
mentation categories: a nonlinear step, vath=1, a,=ags
=0, andm=0, a lineariterative step withm=2 and the
samea; as the nonlinear step, and a linadirect step with
a;=3, a,=0, andaz=1 [3,4]. The nonlinear step is the
example presented earlier in this section, and its gradient
stability follows from Eyre's theorem. However, it is not
clear to us that Eyre’s theorem can be directly applied to the
iterative steps, and in fact we find Eyre’s proposed iterative
method to be numerically unstable, as described in Sec. Il C.
Finally, thea, value in the direct step violates EL8), so

of the lattice Laplacian, which can always be diagonalizedhis case does not follow from Eyre’s theorem.

by going to Fourier space. It immediately follows that the
eigenvalues oM(?) are strictly non-negative(Even for ir-
regular spatial discretizations, thé(®) eigenvalues must be
non-negative. Finally, M{¥=3¢75;, which has strictly
non-negative eigenvalues as well. We parametrize the spli
ting via

3
FE=> aF®,

=1

3
|=C=21 (1—a)F® 17
<
which results in the general CH step, E#j0), and AC step,
Eqg. (11), whenm=0.

Now to obtain bound, since the sum of matricés,
=M®+M@+M® has eigenvalues bounded by the sum
of the bounds, the minimum eigenvalue Mf satisfies\ iy,
=—1. Therefore Eq.(15) is satisfied by ensuring\E .,
<-1/2.

One example that satisfies these conditions is the splittin
FE=F® andFC=F®@+F®) sincef = —1 satisfies Eq.
(15) andM has strictly non-negative eigenvalues. This pro-
vides a gradient stable nonlinear step wih=1 and a,
=az=0. This case was identified by Ey{&], who noted

B. Unconditional von Neumann stability

Since Eyre’s theorem provides, in principle, only a subset

tc_)f the possible gradient stable steps, complementary ap-

proaches for determining stability are desirable. In this sec-
tion we extend vN linear stability analydi8,10] to arbitrary
time steps, which we call unconditional vN stability. Since
any gradient stable algorithm is likely also linearly stable,
the von Neumann analysis would appear to identiSuper-
set of possibly gradient stable algorithms: in principle, the
vN analysis could also identify some unwanted nonlinearly
unstable algorithms. As shown in Fig. 1, though, the VN
stability boundary corresponds quite well with the numeri-
cally determined gradient stability line. This leads us to sug-
gest that the approach of imposing unconditional vN stability
on a broadly parametrized class of semi-implicit algorithms,
followed by numerical checking, could be fruitfully adapted
¢ a wide variety of applications.

We analyze the general step, Ef0), for linear stability
around a constant phask= ¢,. It is important to realize
there arephysical and therefore desirable, linear instabilities
in the continuum CH and AC equations. Therefore it is im-

that the convexity requirement for the splitting guaranteegportant to distinguish between these and the unphysical in-

absolute convergence of the Newton-Raphson method.

stabilities induced by the numerical implementation. Take
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d(x,t)= o+ n(x,t), and linearize the CH equatidf) in » 0<Li—Ri=(—N)[—1— N+ 3¢>§]. (27)
to getp=—V2(V2y+ n—3¢2n). Fourier transform this to . . N
get This reduces to the spinodal condition, E2R). Note that all
the parametersa( ,a,,as,m) are absent from Eq27), so
M= — MO+ K3) 7, (19  We cannot interfere with the spinodal condition. This evi-
dently follows from having a first-order accurate step. Next,
kSE 1— 3¢,g_ (200 we check forf,>—R,, which gives

Here Ny is the eigenvalue of the Laplacian and is nonposi- 2a,—1-[(3—m)(2a3— 1)+ m]¢5+\(2a,—1)>0.
tive, with Aymin=<A\<0 (note that\,=—k? in the con- (28)
tinuum). The minimum value\ i, depends on the lattice,
spatial dimension, and specific form of the Laplacian. Simi-
larly, for the samep linearize the AC equatiofB) in % and
Fourier transform to get

If we choosea,<1/2, then since\, <0 we get &;—1
—[(3—m)(2a;—1)+m]$3>0. For a,>1/2 we obtain a
lattice-dependent condition, that is, our inequality would
contain\ gmin -

7=+ K2) 7. 1) _We choose to restrict ourselves to latticelependensta-

K kTR0l K bility conditions as these are more practical: they carry over

The physical instability for both Eq€19) and (21) occurs into any lattice or spatial dimension. For this purpose we
for takea,<1/2. This gives the VN stable conditions

—Me<k3, (22) a,<1/2,

which corresponds in the CH equation to spinodal decompo- 1+max{0,(3—m)(2az—1)+m]
sition [1]. We stress that while these Fourier modes are lin- &= 2 )
early unstable, the dynamics of spinodal decomposition is

gradient stableand represents a physical decrease of the freiVe have let¢3 vary in the late-time asymptotic range of

(29

energy, which is why it must be retained. $2<[0,1], where Gibbs-Thompson-induced supersaturation
We now linearize and Fourier transform our general CHhas been ignored, and have imposedagrthe most restric-
step, Eq.(10), as above to get tive value that results. For this reason algorithms near the

stability boundaries should be avoided at early times.

[1-MAt{(a1— 1) —A(1-ap) For direct steps, wittas=1, the second condition in Eq.

204 _ _ (29) becomesa;>2. This gives the lightly shaded region in
FAo(17ag) 3=m e Fig. 1. The Euler update, witla,=a,=az=1, is clearly
=[1-NAt{a;+ @+ ¢ unstable since,>1/2 anda;<2. For linear iterative steps,
with m=2, Eq.(29) becomes;>maxX1/2a3;+ 1]. The sta-
X[—3agt+m(ag—1)]} ] 7 (23 pility condition of the general nonlinear step cannot be fur-

ther simplified from Eq.(29), but the special casen=0

Writing this as givesa;>max1/2,3a3—1].

_ There is another special case for which the stability con-
1+AtL =[1+AtR , 24 . .
[ sl I 24 ditions can be imposed, namely, whem=0 anda;=a,
the von Neumann stability criterion is =az=a. In this case the vN condition, E{28), becomes
|1+ AL >[1+AtR], (25 (1-2a)[—1+3¢5+\]>0. (30

which implies that small deviations from the constant solu-The term in square brackets is again the spinodal condition
tion evolve to decrease in magnitude. We want to impose thignd should be positive for all physically stable modes, so for
stability condition for allk and arbitrary positive At. For ~ a<1/2 both VN stability conditions reduce to the spinodal
large At, Eq.(25) implies|£,|>|R.|. The left-hand side of condition. However, these steps, which include the marginal
Eq. (25) can be made to violate the inequality for smal Crank-Nicholson Casea(= 1/2) and the stable fU”y |mp||0|t

unless£,=0. Combining these conditions we have step @=0) suffer from having multiple solutions to the non-
linear implicit equation whenevekt exceeds some thresh-
Ly> Rl (26)  old, making them unsuitable.

Regarding Eyre’s proposed steps, introduced at the end of
which is anecessary and sufficiembndition for uncondi- Sec. Il A, we note that the direct step is VN stable, the itera-
tional linear stability. This condition applies &l first-order  tive step is marginal for vN stability, and the nonlinear step,
time steps that can be expressed in the form given by Egvhich was gradient stable by Eyre's theorem, is also vN

(24). stable.
We examine the linear stability condition in two steps. The linearization for the general AC step, Efjl), results
First, £, >Ry : in the same linearized equati¢23) but with the substitution
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—\At—At. Since —\ =0, the VN stability analysis for 0.3 y R
the AC equation is identical and also results in E2§). N R

C. Numerical stability tests \

The vN stability analysis yields a considerably larger pa- 0.1
rameter range for stable steps, E2p), than those which are
provably stable by Eyre's theorem, e.g., E§j8). Here we
determine numerically which step parametrizations are gra-
dient stable, for purposes of comparison with the theoretical
results. We focus primarily on direct steps, watg= 1, since 0.03 , ,
these are an important practical class of steps. We consider o 100 1000 10000
only symmetric quenches of the CH equation in this section, t
with (¢)=0.

The primary result, shown in Fig. 1, is obtained as fol- FIG. 2. Plot of the free-energy densityvs time (thick solid
lows. We evolved a uniformly distributed 20 array of line) approaching the asymptotic-t~** decay, as evolved with a
direct CH steps with the parameter valuese (0,4) and Euler update withAt=0.01 in a 1024 system. At five distinct
a,e(—22) ona 512 |attice to a final timet ... We take deparFure timedy, separqted by factors of 4, we show the free
lattice spacingAx=1 here and throughout. At regular inter- energies that result from;angletlme stepAte(O_,lo 000), plotted _
vals during the evolution we tested a single direct step with/S!= ta™At. The dotted lines correspond to using a common semi-
0<At<10' This step was only used for stability testing, MP/iCit algorithm (;=1,3,=0, a5=1) for the single step, while
and did not contribute to the time evolution. Steps larger thartmhe th'n solid Enes CO_rreSpond “js'“g'e steps with a VN stable direct
At=10' were not employed to avoid spurious roundoff er- algorithm @, =3, 8,=0, andaz=1).
ror effects. Any system thatver increased its free energy
was labeled unstable, and plotted in Fig. 1 with a filled
circle. The systems were evolved in time with multiple meth-
ods. First, we used Euler updateAt&0.05) evolved to
tmax=10% Next, we evolved systems with direct updates
both with fixed At=100 and with an increasing time step
At=0.05tY (both tot,,=10°).

the Euler update will lead rapidly to instability via accumu-
lated error fromrepeatedsteps, due to the checkerboard in-
stability. In contrast, by nature of its vN stability, the stable
step does not have this rapid accumulation of error. Clearly,
though, the extreme step sizes used to illustrate stability in
Figs. 2 and 3 would not be appropriate for an accurate simu-
lation. In the following section we show how accuracy pro-

As Fig. 1 shows, all VN stable algorithms were found \jqes 4 time-dependeribut unboundedlimit on the step
numerically to be gradient stable, and the lightly shaded reg;,q

gion corresponds extremely well to the gradient stable sys-
tems. Indeed, the vN stability boundary fay appears to be
followed quite sharply in the numerical tests. We do find
numerical gradient stability for a region whemg>1/2: this With a gradient stable algorithm, it is possible to use a
is most likely due, ironically, to a lattice-induced stabiliza- progressively larger time step as the characteristic dynamics
tion. That is, since the lattice Laplacian, has an become slower. The limiting factor for the increase of the
implementation-dependent minimum value, the inequalitytime step is then aaccuracyrequirement.
(28) may be satisfied for sone,>1/2. Therefore, we expect
the precise location of this boundary to shift slightly depend- T
ing on the lattice, the spatial dimension, and the choice of 0.068
lattice Laplacian, but not to cross=1/2. [ '

With the numerical tests described above we have tested () \
the linear iterative step proposed by Ey#g and found it to
be unstable.

To help illustrate numerical testing of gradient stability,
we show a mixture of stable and unstable steps in Figs. 2 and
3. The difference between gradient stable and unstable steps
is striking: while neither are particularly accurate for ex-
tremely largeAt, the unstable steps show a marked increase 0.067 [
in the free-energy density, while the gradient stable steps ) 1000 10'50 1100
adhere to the strict nonincreasing free-energy condition.
However, the closer view in Fig. 3 shows that some cost is t
paid in accuracy: for small values aft, both the Euler step FIG. 3. As per Fig. 2, but witliy=1000. The dashed line cor-
and the unstable semi-implicit step track the physical behavresponds to a single step of the Euler update, which is gradient
ior better than the stable step. While it may appear from Figunstable. Both the Euler step and the unstable semi-implicit step
3 that moderately large steps may be used with unstable afeotted are unstable under repeated steps for much smati¢han
gorithms, this is not case; for example, usingte=0.05 for  appear to be accurate for a single step.

IIl. ACCURACY

)
-
1
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A specified accuracy criterion may be imposed on thewhereas in the bulk region every order providesCin /%)
stable steps identified in Sec. Il without any further theoret-contribution. This would present an accurate solution with a
ical development using standard numerical adaptive step-sizet~t%° time step, except that, of course, the Euler step is
techniques(as described in Ref9] and discussed in Sec. not gradient stable for large time steps.

[ll B). For the CH equation, one would naively expect a time Now consider the general step, Efj0). The error term in
step growing adt~123, for the reasons presented in Sec. I. thig step,Ad=hys rr— brsar, CAN be written as
However, this is not the case: empirically we find signifi-

cantly slower growth. This motivated us to study the sources A=A~ (1—a) AtV(be. ai— b))

of error terms in the gradient stable CH steps. Our main

result is thep classification scheme, which determines the —(1—ay) AtVH( i ai— by)

allowed growth rate of the time step according to E4.

The remainder of this section is concerned with the CH +(1—ag) AtV oM - 3™]. (35
equation.

This peculiar form with implicité, ., 5, on the right is useful
A. The p classification scheme for the error analysis. By using E(LO) iteratively, the im-

We begin with an analysis of the error magnitude associp”C!t terms can bg replaced by terms that are higher order in
ated with the various gradient stable algorithms. The exact! involving the field 4,. For example, we can derive the
b1+ o, Obtained by integration of Eql) from a givensg,,  O(At?) part of the error, using e s~ ¢i=At oy
can be expressed in terms of the fields at tiby means of +O(At?)  and @2 M- ¢> M= (3—m)At >~ "5,

a Taylor expansion +O(At?). We find the error in our general step to be
1 1 ~
$uea= bt Aot S ACT Gt AL bt - A=[~ 35 p+(ar—1) V2 + (a,— 1) VAdy b,
(3D +(1-ag)(3-m)V24{a A+ O(AL%), (36)

The Euler update, Ec(9), is simply the truncation of this \here the first term comes from E@2). Now compare the
expansion atO(At) with resulting error Ad™=¢isc  time decay of the various terms. At the interface, e,
— ¢riat given by part decays as~*% but the other terms all decay &5%/°.
Therefore, for general values of tleg and m, to keep the
O(At?) interfacial error fixed, the time step is limited to
grow asAt~tY3. We see that the Euler case was special
because it made all but the first term in tB€At?) error
Other step parametrizations will have different coefficientsvanish. Since every term in E¢36) decays faster in the bulk

for the O(At") component of the error, but the general fea-than at the interface, we conclude that the errdnisrface

ture of an expansion to all powers aft will be the same. limited, i.e., the accuracy criterion at the interface will deter-
Since our goal is to have a growing time step with controlledmine how fast the time step can grow. This is a generic
error, successively higher powers &f will require coeffi- feature, as we will show below.

cients decaying increasingly faster in time. In order to deter- There are other ways besides using the Euler step to make
mine the limitation on how fast the time step may grow, it isthe O(At?) interfacial error decay as *°. If the coefficients
essential to know the decay rates of the coefficientd®df  satisfy

for all n. In this section we demonstrate how this can be

[}

At"
ApFi=—2 — il (32)

n=2

done. We make use of the following results for asymptotic a;=a,=1-b, a3=1-3b/(3—m) (37)
decay rates, derived in Sec. Il D. In the interfacial region
(defined in Sec. I D for someb, then the various); ¢, terms in Eq.(36) add to

, give ba?¢, . In this case,
ﬁ{‘¢~t_2”/3, a?(vZ)k¢j~t—2n/3l (33)
~ 1 a2 2 3
whereas in the bulk, that is, all of the system not near an A¢p=—(3—b)d A"+ O(AL), (38)

interface, we find and so theD(At?) coefficient decays as *° at the interface

Np~t~WI=@3N  5n(y2)kpi = (LU3-200+K/3 and faster in the bulk. From this example we can construct
(34) thep cla_SS|f|cat|on schgme. '
Consider the truncation error term of ordet”. This can
Consider first the Euler step: all tf@(At") coefficients be obtained by iterating E¢35) and can be expressed as a

are simply proportional to the time derivativ8e evaluated —sum of terms of the forraf ~*(V?)*¢l. If these terms appear
att. If numerical stability were not a problem and we simply in the right proportions, they combine via Ed) to become
increased the time step according to the naite-t?3 we  proportional tod; ¢, which decays faster by a factor ot4?
would find in the interfacial region that every order in the at the interface. This is exactly what occurs in tire2 case
Taylor expansion provides a@(t°) contribution to the error, above when Eq(37) is satisfied.
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Now consider some valup=2 for which all At" error 05 >
terms withn<p are proportional taAt"d{'¢,, but at order :
m=p this breaks down into a sum of terms of the type 0.0p
Atma{“’l(Vz)qu{ . In this case the ordgy term provides the a
leading asymptotic error. Focusing on interfacial region, the -0.5
orderp term goes aatPt 2P~ 13 gccording to the second
term in EQ.(33). Choosing the time step to hold this term at 1.0
constant error would requireAt~t* with a=2(p o
—1)/(3p), as displayed in Eq@). Now we show that all
higher- and lower-order terms it will decay faster than -1.5¢
the AtP term for this choice ofx. Forn<p, we have from
the first term in EQ.(33) A"t 2"3~N(a=2R)=¢=213% go -2.0
the n<p terms give ever-decreasing contributions to the er- 20 25 3.0 35 40
ror. For m>p the error terms are of the form a4

AtMgm2(m=DR_¢=2(m=p)/Ep) which decay as well. Hence
the asymptotic interfacial error is given by RKAL?) term 1024 system. The systems are evolved well into the scaling regime
as advertised, and is ordét. Note that for this interface (t~3000) with a fixed-step Euler update. The errors are found by

. e .
limited At~1* all bulk terms to all orders have decaying comparing a single direct time steyi= At with two steps of size

ﬁgroi(r: th;Tusr,ethus establishing interface limited error as a ge&t/2, and are then scaled by2(A’we) to estimate the average

error magnitude per lattice site p&# in the interfacial region, as
described in the text.

FIG. 4. Contour of scaled error for a single direct update in a

B. Quantifying error for direct steps _ ) ) ) )
We have investigated this error for a variety of direct

> i . ) algorithms in Fig. 4, where we have plotted the interfacial
<1/2 for stability, fail to satisfy Eq(3l7%, and so all direct o6 a5 determined above divided A§. We plot this error
steps givep=2 algorithms withAt~t"" This means that 5y jiude againsk, and a, for the same shaded regions
the asymptotic error magnitude should be given exactly by[qun and “E” ] as identified in Fig. 1. The typical interfa-
cial error for a given direct step of sizkt=At"® may be
obtained by multiplying the appropriate contour valueAsy

To illustrate the advantages of stable algorithms, as well
as of a detailed error analysis where it is possible, we show
in Fig. 5 how the error evolves in time for direct steps with
At=At"3versus the Euler step with fixesit. The field¢ is
evolved by the Euler method, and during the evolution error
checking is done with single steps that do not contribute to
the evolution. The decay of the Euler error shows that the
Euler method is asymptotically wastefully accurate.

Direct steps, withaz=1 by definition anda;>2, a,

|AP|=At%(a;—1)V20,h+ (a,— 1) V40|,  (39)

with At=AtY3. This gives a fixed amount of error at the
interface, and all higher orders dft give decaying contri-
butions. Therefore, the error magnitude is proportiona4p
and we can use numerical measurements of(B9). to de-
velop the constant of proportionality.

We determine error numerically in the usual wggj:
compare the fields*) obtained from a single step of sizd
to the field »(® obtained from two steps of siz&t/2. It is

straightforward to show that if the true error of the step is -4
EAtZ+O(AY), then oM — @D =(E/2)At%+O(A). 10 T T
Since we expect exacthjt? error, we simply take 26(*) 10'5
— ¢?) to be the true error. 6
In the bulk, the error decays #s%° The interfacial error 5 10
is not decaying, but the amount of interface decays &S, ’GCJ -7
which means the error magnitude, E§9), averaged over 10
the entire system will also decay &5, all from the inter- 108 L
facial contribution. To determine the error per lattice site in OF TR
the interfacial region, it is necessary to divide the averaged 10 ‘ ‘
error by the fraction of the system in the interfacial region. 10 100 1000 10000
We do that as follows. The asymptotic free-energy density is t
given by the product of the surface tensienand interface
density: e(t)= UAim(t)/LgyS~t_1/3, where the interfacial FIGI 5'é ITIot ?f ;Scillz)d errgrfper Iat.tic<|e s(i;g nt:artthe ilj;:erfa?::e for
p ” : : : - a single Euler stegsolid), and for a single direct step withy, =
area’ A is ad—1 dimensional hypersurface amqysds and 6?2=0 (dotted with At=At*3 Wherg from bottofn to topA

the system size. For Intgrface widtw, Ai”t.(t)W/L.SYS =10"% 103, and 10?). The scaling of the errors is the same as
=Wwelo represents the fraction of the system in the interfa, Fig. 4, except that the errors are not dividedA# For the two

cial region. Multiplying the averaged error layf(we) then — gmajjesta the scaling withA? is clearly seen, and so is the time
gives the typical error in the interfacial region. The surfaceingependence of the error for the driven direct step at later times.
tension corresponding to E@7) is 0=212/3. We takew  The system size is 20dgnd is evolved with a Euler step with
=2./2 as a typical measure for the interface width. At=0.05.
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0.3 T o Equation(30) shows that this step will be linearly unstable
' when a>1/2 (for large enoughAt), while for a<1/2 one

- runs into solvability problems. At this point it seems unlikely

« 000 M~ that ap— oo algorithm for the CH equation will be possible.

error

e(t)

0.1

10 102 10° 1047

t D. Asymptotic scaling of field derivatives

In this section we derive the relatiori33) and (34) that
provided the basis fop classification. Enough is known
0.03 1 1 about CH dynamics such that we can explicitly analyze the
10 100 1000 10000 leading asymptotic decay of mixed space and time deriva-

t tives to arbitrary order. We follow the review by Bra¥],
and we restrict ourselves to the power-law scaling of these

FIG. 6. Plot ofe vst for a Euler updatéwith At=0.05, thick terms at sufficiently late times, where all observable length
solid line) and with the evolution via a direct algorithma{=3 and  scales that describe the domain wall morphology, such as the
a,=0) driven with At=At"® with A=0.1 (dotted ling and 0.01 interface curvature radii, are proportional to the domain size
(thin solid ling in a 2048 system. Untilt=10 all systems were | ~t3 The domain wall thickness does not grow with
evolved with the Euler update. In the inset is plotted the percentagime, sow<L asymptotically. However, when analyzing the
difference between the Euler and direct updates: some error is iffie|ds in the interfacial region, defined as the locus of points
Froduce_d i.n the direct steps after 1Q buF at later times no increas- \ithin a distancev of a domain wall centefi.e., the surface
ing deviation from the Euler evolution is seen. #=0), both length scales andw can appear. The remain-

der of the system is referred to as the bulk.

Our single-step analysis and testing does not conclusively The scale of the chemical potential is proportional to
demonstrate that an algorithm will be reasonably behavethterface curvature due to the Gibbs-Thompson effect, and
under successive steps, i.e., there is a possibility of accum@incex~1/L,
lation of error. In Fig. 6 we show the free-energy density for 13
systems evolved by a direct step and compare the evolution pu~ U~ 1 (41
to that obtained by the Euler method. It appears that th
error.z,/sdo not accumulate and the free energy decays prope@]
ast™ "

the bulk, the chemical potential varies smoothly and con-
uously, so a Laplacian simply brings in more powers of

V2u~1/L3~ 1k, (42)

C. Toward p>2 which impliesd, ¢~ 11t via the equation of motios). Now

To go beyond th@=2 steps withAt~t'3, itis necessary we use the relatioRy— ¢eq~ w in the bulk[1] to relate de-
to find a stable step that satisfies £87). Comparing with  rivatives of ¢ and u. For example,V2¢~V2u, S0 di¢p
the stability conditions, Eq929), we find only marginally ~V?2¢. Taking more time derivatives gives
stable algorithms witha;=a,=1/2 and a;=(3/2—m)/(3
—m) for 0O=m=3. For m=0 this becomes the Crank- Np~V2a0 Lp~1"2Rgh 1, (43)
Nicholson method, which as noted before, has a fixed time
step due to solvability considerations. However, a marginalterating this from the initial value ford,¢ gives f¢
linear iterative step is possible witm=2 andaz=—1/2. ~t~M3~(3)" the first term in Eq(34). .
Unfortunately, whether or not the marginality is a problem, When the time derivatives act on a power of the figkl
the iterative methodgiven by Eyre in Ref[4]) fails to con-  the resulting expression contains théelds andn time de-
verge absolutely for these parameters. Evidently, then, it isivatives in various combinations. In this case the asymptotic
not possible to construct a usefu 3 step from the general decay comes from the single term proportionat#o 17 ¢,
step, Eq.(10). which means the decay fa§' derivatives is the same as the

One possible way to develop @=3 step is to use a j=1 case, since the fielg is of order unity in the bulk. To
method that is both stable and second-order accurate in timglustrate, consideﬁf¢3=6¢(ﬁt¢)2+ 3¢2(9t2¢_ The second

For example, a two-step method that uses bfithy and¢;  term decays as > as advertised, while the first term goes
to determine the updated fietbl . ,; can be made to have no as ¢~1)? and is asymptotically negligible.

O(At?) error. A preliminary study of VN stability for these  Adding spatial derivatives in the bulk simply brings more
two-step methods indicates that these are a possibility. factors ofL "%, so

It is worth considering the prospect of obtainingpas
step: according to the classification analysis this would (V2)kal L pl ~ L2k~ Ll ~ 1= 2K3 ~(U3)= (23 (44
allow the naturalAt~t%3 time step. However, the error
terms need to be strictly proportional &¢ at each order which gives the second term in E@4).

At". To achieve this with a one-step method one needs Near interfacesg changes by an amoumt ¢, in the
_ amount of timer=w/v ~123, it takes an interface to pass by.
Drint— (L—a) V20 ae=pr+aVau,. (400  Therefore we ge#;¢~t~?in the interfacial region, in con-
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trast tod,¢~t~* in the bulk. To determine the scalirig ¢, where a fixed-size step is used until some early tige
consider sitting at a point just outside the interfacial region,Sincety<t.,«, thety,-dependent terms can be neglected.
in front of the moving interface. At a tim®(7) later this Finally, we determine empirically the ratio of computer
point will be in the interfacial region, s@,¢ will have time per step3= T/ Teyer- FOr direct steps, the FFT in-
changed from a bulk to an interfacial value. This gives volved impliesB~ In N. For lattices of size 10%4-4096 we
find B=2.3+0.1.
T~ (1=t 71743, (45 Putting all this together, we find the ratio of computer
time cost for Euler steps to stable steps to be
Repeating this argument for higher derivatives givgg
~t~2"3in the interface, the first term in E¢33). A(l-a)tha A(l—a) [ fAX|3
For time derivatives ofp! at the interface, we again get BAt, - BAty | Lo N,
multiple terms with the various combinations ftime de-
rivatives and fields. In this case, however, every term con- For direct stepse=1/3, so the relative speedup over Euler
tributes to the asymptotic decay. Essentially every time deintegration grows with the system size ld8n N. From At,
rivative, wherever it acts, brings a factor ©f?3, and these ~Ax* we also see the speedup factor scaling a3/ mak-
are the only factors causing the decay. Hedfe'! ~ o ¢. ing stable steps an optimal choice when a smaller lattice
Finally, adding spatial derivatives in the interfacial regionspacing is desired. A= 3 algorithm hasx=4/9 and offers a
brings factors ofw ! rather thanL !, and so does not speedup factor oR*%/In N.
change the asymptotic decay. This proves the second relation We conclude by plugging in reasonably conservative pa-
in Eq. (33). rameter values. From Fig. 4 we see that the typical interfacial
error for thea; =3, a,=0 direct step is about 0A7. This is
IV. COMPUTATIONAL ADVANTAGE to be compared td ¢.4=2, the range in whichp varies.
) ] . The choiceA=0.1 is shown in Fig. 6 to give an error in the
Having established the possibility of controlled accuracyfree-energy density around 3% of the Euler value. While this
CH simulation with a growing step siz&t~t% we NOW  seems perhaps high, we note that this is comparable and
explore the relative computational advantage offered by sucBrgpably smaller than the error already introduced in the Eu-
an algorithm. As described in Sec. |, the goal in such simuier giscretization of the continuum CH equation due to the
lations is to evolve as close as possible to the scaling regimearge [attice constant. An interesting question for future study
meaning the largest possillgt). This means evolving until 5 \what choice ofAx and A will give optimal accuracy and
finite-size effects enter, since stopping earlier means @fficiency. We conclude thaa=0.1 is a reasonable choice.
smaller system size could be chosen. Finite-size effects akge gis0 takea=1/3, f=1/10, B=2.5, Ax=1, andL, as
expected to appear thmt)”LQtlls is some fraction of the  given above. These combine to give a factor 0N38or a
system size, so we define the simulation ending imgby 1024 |attice the direct step is a factor 40 faster than the

(49

i T Euler method, while for a 81$2lattice it is a factor 300
tmax:(fLsys/Lo)SZ(fAXN/LO)B, (46) faster
where N is the linear size of the lattice andis a small V. CONCLUSIONS AND FUTURE DIRECTIONS

constant factor. There is some arbitrariness in the definition
of the length scalé (t) that simply factors into the optimal
choice forf. We take the inverse interface density as our
measure, that is,

We have seen that the general Cahn-Hillia@H) step,
Eqg. (10), provides a range of linearly stable algorithms that
prove to be gradient stable for enormous single time steps up
to At=10 With these steps unphysical instabilities arising
Ld from the discrete implementations are no longer the limiting
_osys 9 9 s factor. Instead, accuracy considerations dominate. For con-
L(t)= = =—t (47 , y
Aine  €(t) e served Cahn-Hilliard coarsening, we have analyzed and
. ) ) ) ) tested the accuracy scaling for single dynamical time steps
using the interfacial areaim. from Sec. Il B, and its relatlor) %Cat increasewithout bound with time ag\t~t®. We find
to th.e free-energy densny and ;urface tension derive at the errors are dominated by terms of ordéf where
therein. From our data il=2 we find €,=0.675, so we they are no longer proportional & ¢. These dominant er-

také\l,_();i:/?:tl'm\',vith the Euler steplor any fixed-size "O'S restrict the growth of the time step to grow As
OVING 10 tmax € Euler stepor any TIX€-SIze —_2(p-1)(3p) \yhich approaches the natural dynamical time

step requiresn=t,./Atg steps, wherét, is the step size. stepr~t23 only asp—s . The Euler method, by contrast, is

E)o;r:) ;J rggzﬂﬁﬁtgf;bgtegael VMV?)::;gé;g;a(ﬂyosoﬁedg;sectrestr_ic_ted to a constanitt. This ?s also the case for existing
Atg~Ax4 [2]. Evolving t | t time ith ' . ﬁ‘nphcn Fourier spectral algorithms. The direct steps ob-
o= ' ao g to a fal€ iMemay WIth & groWING  ineq from Eq(10) with ag=1 are linear and diagonalized
step sizeAt—At"~dt/dn requires a number of steps in Fourier space, and so can be simply integrated via FFT's.

fma 1 This requires no more computer memory than the Euler step,
n~J A ttredt~ ———— L@ (48)  since the FFT can be performed in place. A range of param-
to A(l-a) eters, described by the shaded boxes in Fig. 1, are stable.
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These direct steps exhilpt=2 and so allowAt~tY3 which  should be compatible with gradient stable algorithms, as long
results in speedup factors proportional to the linear size ofis the noise amplitude is used to extend the range of possible
the system. ¢2 used in the vN analysis.

Future work in further developing these methods for the
CH equation includes determining possiple 3 algorithms,
for which At~t*° is possible and the relative speedup over
the Euler method is of ordé*¥/In N. Our preliminary work B.P.V.-L. acknowledges financial support from Sonderfor-
has shown thaD(At?) accurate two-step methods can beschungsbereich 262 and the hospitality of the University of
made unconditionally vN stable. It remains to test these staMainz, where part of this work was completed. A.D.R. ac-
bility predictions numerically to see if usefyd=3 algo- knowledges financial support through NSERC. We would
rithms are possible. like to thank Mowei Cheng, David Eyre, Baruch Meerson,

It is straightforward to construct a Fourier spectral methodJames Miante, Mathias Rauscher, and Jim Sethna for stimu-
integration algorithm for the stable steps analyzed here. ltating discussions.
fact, the numerical cost of the spectral method would be
quite small, since the direct steps already employ FFT’s for
solving the update equation. The primary benefit of the spec-
tral method for unstable algorithms is that it significantly We repeat Eyre’s Stab“ity theore[rﬁ] here to flesh out the
enhances the maximumt, allowed by stability. It is not derivation for the conserved dynamics case, and to clarify
clear how much benefit spectral methods would bring to arsome details of the proof. In particular, there are a few equa-
already stable algorithm, but this should be explored. tions in Ref.[3] that lack factors of vector norms. More

With the Euler step, the simulation efficiency was substantively, we find that Eyre’s theorem as originally pre-
strongly dependent oAx, leading to choosing values that sented was slightly more restrictive than necessary.

were as large as feasible. Consequently the interface profile A central quantity in Eyre’s theorem is the Hessian matrix
is typically poorly resolved, modifying and introducing sig-

nificant anisotropy into the surface tension. In contrast, the
efficiency of these stable methods is much less dependent on =T
the choice of lattice size, making them a useful tool in ap- Ihidd;
plications where a more accurate interface profile is desired.

Our analysis has been for errors after a single time stepwhereF is the free energy ang,; represents the field at the
Gradient stability would seem to permit errors to only lattice sitei (we consider only scalar one-component fields
modify interfacial properties in a curvature- or velocity- here. For free energies of interest in coarsening, this matrix
dependent way, either of which would be consistent with arhas both positive and negative eigenvalues. Eyre finds a
effective continuum dynamics that still monotonically de- stable first-order step by splitting the free energy intm-
creases the overall energy density from any field configuratractive and expansiveparts, F=F¢+FE, such thatFC is
tion. For the CH equation at least, our observedt *  convex andFE is concave; that is, the eigenvaluesMf;
decay of the free energy, even whiatrAt'?, indicates that  the Hessian matrix corresponding B, are strictly non-
there is no significant curvature-dependent modification ofegative, and the eigenvaluesMﬁ- corresponding t&-F are
interfacial speeds. We are studying the relationship betweegictly nonpositive for any possible field configuration.
single-step errors and errors of the asymptotic scaling func- | ot Amin<O represent the lower bound for the eigenval-

tions describing correlations in more detail. , _ues ofM over all fields¢ (such a bound must exigs]), and
We feel that our basic approach should be applicable in g _ represent the upper bound on the eigenvalues of

wide variety of scalar or vector phase-field systems that havgyE™ .o \main result is that if

both nonlinearities and numerical instabilities. There are just

three basic ingredientsi) allow for a general semi-implicit

parametrization, following Eq(10); (ii) check for uncondi- AE < E)\ _ (A2)

tional von Neumanilinean stability of an individual update max— 2 fmine

step, following Sec. Il A; andiii) numerically test the vN

stable algorithms for speed, accuracy, and nonlinear stability, o, the field equations of motion

in order to pick the best parameters for further study. As long

as the stability criteria are lattice independent, the resulting

ACKNOWLEDGMENTS

APPENDIX A: EYRE'S THEOREM

J°F
(A1)

algorithms can be used with any regular lattice in any spatial & +At£c - _AtiE (A3)
dimension, and even with irregular discretizations such as trat 8¢ t S5¢
used in adaptive mesh techniques. Preat %
The detailed accuracy analysis and theclassification )
scheme of the CH equation does not immediately generaliz€r nonconserved dynamics or
to other cases, but we stress that this analysis is not essential.
Once the stable steps are identified, a variable step size c SFE
method[9] will tune the time step to its accuracy-limited ¢t+At_AtV2E :¢t+AtV25_¢ (A4)

value. Finally, we note that the inclusion of additive noise Priat &
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for conserved dynamics lead to a strict nonincrease of the . 1 1 )

free energy in time: F(r a0 =F(P)<| Mmax™ 5 min~ 37 |6]°,
F(dia)<F(dy), (A5) <0, (A10)

where we ha\{g suppressed t_he Iatticg inde_x for clarity. Thisvhere the last inequality follows by assumption E42).

holds _uncondltlonally for_aII field configurationg, and a.II. Analyzing conserved dynamids complicated by the La-

step sizes\t>0. Convexity ofF© ensures that the implicit placian in the equations of motion. Consider a general di-

equation for¢, ., ,, has a unique solution. mensional lattice ofn sites with lattice Laplacian ¥(?);;

The energy dissipation property, along with other reason=A;; a symmetricnx n matrix with eigenvalues.;=0 and
able requirements such as positivity Bfis calledgradient  \ <0 for all m>1. Letui(m) represent théth component of

stability by Eyre[3]. While gradient stability can be obtained the mth eigenvector o, then we can write the Kroneckér
for many algorithms, such as the Euler step, by using a smaj;nction as

enoughAt, the algorithm defined by Eq$A2)—(A4) guar- ]
antees it forarbitrarily large At. Even so, finding the split- ~
tings intoF® andFE that lead to Eq(A2) can be a difficult §ik:mE—1 uMuf™ = .21 AjAjctuPul®, (ALY
task, and the splittings, if they exist, may not be unique. =

Condition (A2) corrects the corresponding condition in \yhere the pseudoinverdeis defined by
Ref. [3], AL =<Amin. The current form is less restrictive ]
sincei in<O0. ~ 1

An extremely useful corollary to Eyre’s theorem is that if Ajj = ngl )\_mui(m)“J( . (A12)
the eigenvalue conditiofA2) is satisfied for a restricted set
of fields ¢, then Eq.(A5) still applies for allAt, providedd, Note that the eigenvalue; =0 corresponds to the eigenvec-
always stays within this restricted set. For examgezould  tor u¥=1/n for all i, i.e., a uniform field. Now we insert
be field configurations withbi2< ¢g for all i, for some con- Eq. (Al11) into the sum in Eq(A6) and sum ork to get
stant¢q. This can be useful whegh is physically restricted

n

by the dynamics, and is employed in the direct algorithms _ A i
discussed in Sec. Il A PP ad) F("’t)g% OPiAi; Ak Il 4
The proof of Eq.(A5) relies on two inequalities At
1
9F 1 — = Aminl 602, (A13)
Fldhiad ~F(I=D 8] = Zhminl 017 2
1

Prean (A6) where we have used; 5¢; =0, which follows from the con-

servation law. Proceeding by analogy with the nonconserved
and case, we subtraczitAik[aFE/a¢>k]¢t+m from both sides of

the equation of motion, EqA4), to get

JFE E
S| — —— | <=Ahaldel?, (A7 , E E
Ei: (bl( i bt i d’r) nelo? A > Ajk% :%+E Ajk(% _% '
, , : Mg : M "o
where 8¢ =d; 1+ a1~ i and |5¢|°=3;5¢7. These are (A14)

simply properties of multivariable functions, and are derived

in appendix B for completeness. Substituting this into Eq(A13) gives

Consider first nonconserved dynamicsBy adding JFE JEE
At[aFE/agbi]q,I+AI to both sides of the equation of motion, F(¢HM)—F(¢t)$Z 5¢i(&—¢_ _(9_925' )
Eq. (A3), one obtains ' T ae gy
E E 1 1 ~
L VA iAsiil Lt BN Y — SNl 007+ 17 2 0 6hAy
a Pea AT gy I H
P at b
(Al15)
Substituting this into EG(AB) gives which is identical to Eq(A9) except for the 1At term. From
JFE JFE the definition ofA and an expansion af¢ in the eigenval-
F(bria)—F(d)=<> 5, - - uesu™ it follows that
| Wil Ty,
1 1) 2 5¢i5¢A;=0, (A16)
- E)\min+A_t |5¢| : (A9) )
so this term can be dropped from the right-hand side of Eq.
Next, use Eq(A7) to complete the proof: (A15), and the proof follows as before to yield E@\5).
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FAST AND ACCURATE COARSENING SIMULATION . ..

APPENDIX B: INEQUALITIES USED IN EYRE'S
THEOREM

For completeness, we rederive E¢A6) and (A7) here.
Consider a general functionf(x) of n variables x
=(Xq, ... X,). From the fundamental theorem of calculus

oy —t0-Sy [ as| . @

(9X, X+spy

that is, we introduce the parametgrto integrate along the
“diagonal” path fromx to x+vy. Similarly, we can write

of

|x+sly x E Y, f s x [?XJ (82)

X+Soy

Combining these gives the identity
f(x+y)—f(x)

of 1 s1 o°f
Zi Yi IXil fo =1 0 52121 ylyjﬁxiﬂxj N
(B3)

Now consider the case where the eigenvalues of the matrix
M;; =(92f/axiax,- are bounded from below by some constant

Amin for all x. In this case
2

o°f
|§J: yiyjm (B4)

2)\min|y|21
X+Syy

PHYSICAL REVIEW E68, 066703 (2003

which follows straightforwardly from an expansion wfin
the basis of eigenvectors o, with |y|?=3,y?. Thus we
have

i 1
x4y =f0=2 Yio | +5hminlyl>, (BS)
1 iy

where the 1/2 follows from ths integrals. Taking the func-
tion f to be the free energ¥ with X= ¢, »; and y= ¢
— by a¢ TESUILS IN EQ(AB).

The second inequality results from setting=1 in Eq.
(B2), then multiplying byy;, and summing

) Zyyjfl

9°f
S X 10X

X+y ﬁx'

S

Ix;

X X+ sy

We then use a relation similar to E¢B4), only with the
eigenvalues oﬁzf/axiaxj assumed to be boundedhoveby
Amax. O get

of

(B7)
X+y 2

X

S

) N
X

Now we can takef=FF andx andy as before to get Eq.
(A7).
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