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Fast and accurate coarsening simulation with an unconditionally stable time step
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We present Cahn-Hilliard and Allen-Cahn numerical integration algorithms that are unconditionally stable
and so provide significantly faster accuracy-controlled simulation. Our stability analysis is based on Eyre’s
theorem and unconditional von Neumann stability analysis, both of which we present. Numerical tests confirm
the accuracy of the von Neumann approach, which is straightforward and should be widely applicable in
phase-field modeling. For the Cahn-Hilliard case, we show that accuracy can be controlled with an unbounded
time stepDt that grows with timet asDt;ta. We develop a classification scheme for the step exponenta and
demonstrate that a class of simple linear algorithms givesa51/3. For this class the speedup relative to a fixed
time step grows withN, the linear size of the system, asN/ ln N. With conservative choices for the parameters
controlling accuracy and finite-size effects we find that an 81922 lattice can be integrated 300 times faster than
with the Euler method.
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I. INTRODUCTION

A starting point in the analysis of coarsening system
such as the phase-separation dynamics following a que
from a disordered to an ordered phase, is the characteriza
of the asymptoticlate-timebehavior. Most coarsening sys
tems exhibit asymptotic dynamical scaling with the char
teristic length scaleL(t) given by the size of individual or-
dered domains. The growth lawL;tn is determined by only
a few general features, such as conservation laws and
nature of the order parameter~see Ref.@1# for a review!. For
conserved Cahn-Hilliard equations describing phase sep
tion, L;t1/3 at late times. More detailed information abo
the scaling state is difficult to obtain analytically. Indeed, t
very existence of scaling has only been demonstrated em
cally in simulations and experiments. Consequently, co
puter simulations of coarsening models, especially pha
field models such as the Cahn-Hilliard equation, play
essential role in our understanding and characterization
late-stage coarsening.

These simulations face several restrictions. To accura
resolve the asymptotic structure it is necessary to evolve
til late times so thatL(t)@w, wherew is the domain wall
width. However, to avoid finite-size effects we must halt t
simulation whenL(t) is some fraction of the system siz
Lsys. Additionally, to resolve the domain wall adequately t
lattice spacingDx must be sufficiently small compared to th
domain wall width w. Very large lattices of linear size
Lsys/Dx are necessary to satisfy all of these requireme
Dx,w!L(t),Lsys. Accurate studies of the scaling sta
require us to evolve large systems to late times.

Unfortunately, current computational algorithms are ve
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inefficient in their time integration. The standard Euler int
gration of the Cahn-Hilliard~CH! and Allen-Cahn~AC!
coarsening models for conserved and nonconserved dyn
ics, respectively, is known to be unstable for time stepsDt
above a threshold fixed by the lattice spacingDx—this is the
‘‘checkerboard’’ instability @2#. This imposes a fixed time
step irrespective of the natural time scale set by the phys
dynamics. The domain walls move increasingly slowly, f
example, the CH equation yields asymptotic domain w
velocitiesv;]L/]t;t22/3. Consequently, a fixed time ste
results in ever-decreasing amounts of domain wall mot
per step and eventually becomes wastefully accurate.

Ideally, one would like a stable integration algorithm
which would allowaccuracyrequirements rather thanstabil-
ity limitations to determine the integration step size. R
cently, Eyre proved the existence of unconditionally gradi
stable algorithms~essentially a strict nonincrease in free e
ergy for every possible time step! @3#, and provided explicit
examples of stable steps for both CH and AC dynamics@3,4#.
The present work is concerned with developing these m
ods in two directions: clarifying and expanding the class
unconditionally stable algorithms and deriving the accura
limitations on these algorithms.

Our main results for stability are the following. We hav
determined the parameter range for which Eyre’s theor
proves unconditional gradient stability~Sec. II A!, and we
present Eyre’s theorem in Appendix A. We have also de
mined the parameter range that is unconditionally von N
mann ~vN! stable, that is, linearly stable for any size tim
step~Sec. II B!. The latter range is a superset of the form
and neither appear to have been previously determined.
have also performed numerical tests of stability in dimens
d52 ~Sec. II C! and found that the vN stability condition
appears to be sufficient for identifying unconditionally gr
dient stable steps. Specifically, for the parameterless form
the CH equation~see Ref.@1#!
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©2003 The American Physical Society03-1



at
he
a
es

s
re
ro
ien
ili

s
l
n

e
la
he
p

al-
on
s,
ers
or

w
te
at

al
tep,

y

ri-
iti-

ex-

of
ds

th-
the

ra-
-
e of

ite-
ible
lly
s of
of
s-

s to
e-

p-

n-

re
re

di
th
t

B. P. VOLLMAYR-LEE AND A. D. RUTENBERG PHYSICAL REVIEW E68, 066703 ~2003!
] tf52¹2~¹2f1f2f3!, ~1!

there exists a class of semi-implicit steps

f̃ t1Dt1Dt¹2@~12a1!f̃ t1Dt1~12a2!¹2f̃ t1Dt#

5f t1Dt¹2@2a1f t2a2¹2f t1f t
3# ~2!

that may be solved for the updated fieldf̃ t1Dt efficiently by
means of fast Fourier transform~FFT!. The various stability
conditions for these steps are depicted in terms ofa1 anda2
in Fig. 1. The stability conditions do not depend on the l
tice type or dimension, on the volume fraction, or on t
form of the lattice Laplacian. This implies, for example, th
these algorithms could be combined with adaptive m
techniques~see, for example, Ref.@5#! for independent con-
trol of spatial and temporal discretization. Figure 1 sugge
that the unconditional vN stability conditions, which a
widely applicable and relatively easy to analyze, may p
vide a reasonably accurate proxy for unconditional grad
stability. We have also determined the analogous stab
conditions for the AC equation.

When stability is not the limiting factor, practical limit
are still imposed byaccuracy. To maintain the domain wal
profile to a given accuracy, a time step should be chose
that the wall only moves a fraction of its widthw in a single
step. For a scaling system withL;tn, wheren<1 generally,
the passage timet scales likew/v;w/L̇;t12n at late times.
Then the natural time step should scale as

Dtnat;t;t12n. ~3!

For CH dynamicsn51/3 andDtnat;t2/3, while for AC dy-
namicsn51/2 andDtnat;t1/2. However, we show that thes
stable algorithms are still not capable of accurately simu
ing coarsening using the natural time scale—despite t
stability. For example, accuracy limits the stable CH ste
given above to ‘‘only’’Dt;t1/3.

FIG. 1. For time steps parametrized as in Eq.~2! the dark
shaded region indicates parameters for which Eyre’s theo
proves unconditional gradient stability, while the light shaded
gion corresponds to unconditional von Neumann~linearly! stable
steps. The open circles denote steps that are numerically gra
stable under all of our tests, as described in Sec. II C, while
black circles indicate parameters that were found numerically no
be gradient stable.
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To understand the limitations imposed on even stable
gorithms by accuracy, we study in Sec. III the truncati
error for the CH equation for general numerical algorithm
and determine how these terms scale with time to all ord
in Dt ~Sec. III D!. We develop a classification scheme f
such algorithms based on the lowest orderp of Dtp at which
truncation error fails to follow its optimal scaling, and sho
that this term limits the accuracy of the algorithm at la
times ~Sec. III A!. Our analysis leads to the conclusion th
accuracy requires a time step

Dt;t2(p21)/3p ~4!

for the CH model. The algorithms in Eq.~2! have p52,
meaning the error becomes suboptimal atO(Dt2), the lead-
ing error term. This result is consistent with our numeric
observations. Our simple analysis for the natural time s
Eq. ~3!, corresponds to thep5` class. We are unable to
identify any such ‘‘perfect’’ algorithms for the CH case; the
may be impossible for any nonlinear problem.

Next, we turn to the question of practical advantage. Va
ous computational algorithms have been developed to m
gate the impact of instabilities by increasingDt by a fixed
factor compared to the simplest Euler discretization. For
ample, the cell-dynamical scheme~CDS! @6# exploits univer-
sality to choose a free energy that is convenient in terms
numerical stability. More recently, Fourier spectral metho
@7,8# have been shown to increase the maximumDt by an
impressive two orders of magnitude. However, these me
ods still require fixed time steps and so cannot adjust to
naturally slowing CH dynamics.

In Sec. IV we determine the relative advantage of integ
tion by algorithms such as Eq.~2! compared to the conven
tional Euler method. For a reasonably conservative choic
accuracy requirements, we find for an 819238192 lattice
~currently feasible for a Linux workstation! with Dx51 that
our unconditionally stable methods can integrate up to fin
size effects roughly a factor of 300 times faster than poss
with the Euler method. The advantage of unconditiona
stable steps increases with larger system sizes: for lattice
linear sizeN we show the relative advantage in speed is
orderN/ ln N, regardless of the spatial dimension of the sy
tem. This means that as computational power continue
increase, unconditionally gradient stable algorithms will b
come even more valuable.

We present a summary and outlook for future develo
ments and applications in Sec. V.

II. STABILITY

The parameterless form of the CH equation for a co
served scalar field@1# is

] tf5¹2m, ~5!

wherem is the local chemical potential given by

m~x![
dF

df~x!
~6!

m
-

ent
e
to
3-2



th

ua
b
,

e

ili
rio

s

r
o

o
le

er
e

i-
f
,

th

ize

e

eri-

nd
ds

for

re-
for

ysi-
-

e-

n-
ed to

ex-

ous

sis
d
s of

-
nd
ely

ex-

FAST AND ACCURATE COARSENING SIMULATION . . . PHYSICAL REVIEW E68, 066703 ~2003!
andF@f# is the free-energy functional, taken here to be

F@f#[E ddx@ 1
2 ~“f!21 1

4 ~f221!2#. ~7!

The second term inF represents a double-well potential wi
equilibrium valuesf561, and Eqs.~5!–~7! combine to
give Eq.~1!. The parameterless form of the AC equation@1#
is

] tf52m5¹2f1f2f3. ~8!

For dissipative dynamics such as the CH and AC eq
tions, a discrete time stepping algorithm is defined to
gradient stableonly if the free energy is nonincreasing
F@f̃ t1Dt#<F@f t#, for any field configurationf t . The other
requirements for gradient stability, e.g., that stable fix
points must correspond to minima ofF or that F should
increase without bound for largef, are already manifest in
the discretized forms of these equations. Gradient stab
may reasonably be regarded as the ultimate stability crite
for the CH equation.

Unconditional gradient stabilitymeans that the condition
for gradient stability hold for any size time stepDt
P@0,̀ ). Since unconditionally stable steps are our prima
concern, we will henceforth use ‘‘stable’’ or ‘‘unstable’’ t
refer to the behavior for arbitrarily largeDt. That is, stable
implies unconditionally stable, while a fixed time-step alg
rithm such as the Euler step may be referred to as unstab
conditionally stable.

The Euler time discretization of the CH equation is

f t1Dt
Eu [f t1Dt¹2m t . ~9!

The Euler update is ‘‘explicit’’ since the field at the earli
time step (f t) explicitly determines the field at the next tim
step (f t1Dt). It is also unstable for values ofDt that exceed
a lattice-dependent threshold,Dtmax;Dx4 @2#. The fully im-
plicit time step is obtained by replacingm t with m t1Dt in Eq.
~9!, and is, like the Euler step, accurate toO(Dt). Other time
steps, which involve splittingm into parts evaluated att and
at t1Dt, are generally called semi-implicit methods.

Remarkably, Eyre@3,4# proved that appropriate sem
implicit parametrizations can lead to stable update steps
both CH and AC equations. To explore these possibilities
is useful to introduce a general family of such steps for
CH equation in an arbitrary spatial dimension:

f̃ t1Dt1~12a1!Dt¹2f̃ t1Dt1~12a2!Dt¹4f̃ t1Dt

2~12a3!Dt¹2@f t
mf̃ t1Dt

32m#

5f t2a1Dt¹2f t2a2Dt¹4f t1a3Dt¹2f t
3 . ~10!

This reduces to Eq.~2! for a351. For each of the three
terms on the right-hand side of Eq.~1! there generally are
both explicit and implicit contributions to Eq.~10!, and this
will be exploited to construct stable dynamics for any s
Dt. For all values of the parametersai andm this step gives
a solutionf̃ t1Dt that isO(Dt) accurate. The implicit terms
06670
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are denoted byf̃ t1Dt , with f t1Dt reserved to represent th
exact field obtained by integration of Eq.~1! over the time
step Dt. We choose our parametrization such thata15a2
5a351 corresponds to the Euler update, Eq.~9!, while a1
5a25a350 is the fully implicit step. Fora3Þ1 we have,
motivated by Eyre, a mixed nonlinear term with 0<m,3
that combines implicit and explicit terms.

It is useful to sort algorithms described by Eq.~10! into
three categories based on how they are implemented num
cally. First, whena351 we havelinear direct steps, where
the equation forf̃ t1Dt is linear and has spatially uniform
coefficients so the updated field can be found efficiently, a
with no additional memory requirements, by FFT metho
@9,10#. Second, whena3Þ1 but m52 then the implicit
equation remains linear inf̃ t1Dt but no longer has spatially
uniform coefficients. Eyre outlines an iterative procedure
solving these equations@4#, so we call theselinear iterative
steps. Insisting on convergence of the iterative procedure
stricts this class to a subset of parameter values. Finally,
a3Þ1 andmÞ2 the update equation isnonlinear. For some
parameter values the nonlinear equation can lead, unph
cally, to multiple solutions.This occurs for both the fully im
plicit case a15a25a35m50, and the Crank-Nicholson
case a15a25a351/2, m50, whenever Dt exceeds a
threshold value@3#. Generally, the nonlinear equations r
quire solution by the Newton-Raphson method@9,10#, which
is complicated to implement in two or more spatial dime
sions. For some parameter values this can be demonstrat
be absolutely convergent~as shown below!, so nonlinear
steps provide a viable option—though not one we have
plored numerically.

The step parametrization for the AC equation analog
to Eq. ~10! is

f̃ t1Dt2~12a1!Dtf̃ t1Dt2~12a2!Dt¹2f̃ t1Dt

1~12a3!Dt@f t
mf̃ t1Dt

32m#

5f t1a1Dtf t1a2Dt¹2f t2a3Dtf t
3 , ~11!

which we include because the theoretical stability analy
follows nearly identically for the CH and AC equations, an
the stability regions are given by the same shaded region
Fig. 1.

A. Unconditionally stable steps from Eyre’s theorem

Eyre’s theorem~see Appendix A! shows that an uncondi
tionally gradient stable algorithm results, for both CH a
AC equations, if one can split the free energy appropriat
into contractiveandexpansiveparts,F5FC1FE, and treat
the contractive parts implicitly and the expansive parts
plicitly. That is, the CH equation~5! is discretized as

f̃ t1Dt2Dt¹2m t1Dt
C 5f t1Dt¹2m t

E , ~12!

while the AC equation~8! is discretized as

f̃ t1Dt1Dtm t1Dt
C 5f t2Dtm t

E , ~13!
3-3
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B. P. VOLLMAYR-LEE AND A. D. RUTENBERG PHYSICAL REVIEW E68, 066703 ~2003!
wherem i
X5]FX/]f i for lattice sitei, and where¹2 implies

a lattice Laplacian. The necessary condition on the splitt
is the same for both equations and may be stated by in
ducing the Hessian matrices

Mi j 5
]2F

]f i]f j
, Mi j

E5
]2FE

]f i]f j
, Mi j

C5
]2FC

]f i]f j
,

~14!

wherei , j denote lattice sites. First, we must have all eige
values ofME nonpositive and all eigenvalues ofMC non-
negative. Second, as shown in Appendix A, forlmin equal to
the smallest eigenvalue ofM andlmax

E the largest eigenvalue
of ME, we need

lmax
E <

1

2
lmin . ~15!

This also automatically satisfies the convexity requirem
for ME, sincelmin,0.

To identify the appropriate splittings, it is useful to bre
the free energy, Eq.~7!, in its lattice-discretized form, into
three parts~neglecting the irrelevant constantV/4 term!:

F (1)52(
i

1

2
f i

2 , F (2)5(
i

1

2
~“f! i

2 ,

F (3)5(
i

1

4
f i

4 , ~16!

with corresponding Hessian matricesM ( i ). First, Mi j
(1)

52d i j , whered i j is the Kroneckerd function, has all ei-
genvalues equal to21. Next,Mi j

(2)5(2¹2) i j is the negative
of the lattice Laplacian, which can always be diagonaliz
by going to Fourier space. It immediately follows that t
eigenvalues ofM (2) are strictly non-negative.~Even for ir-
regular spatial discretizations, theM (2) eigenvalues must be
non-negative.! Finally, Mi j

(3)53f i
2d i j , which has strictly

non-negative eigenvalues as well. We parametrize the s
ting via

FE5(
i 51

3

aiF
( i ), FC5(

i 51

3

~12ai !F
( i ) ~17!

which results in the general CH step, Eq.~10!, and AC step,
Eq. ~11!, whenm50.

Now to obtain bound, since the sum of matrices,M
5M (1)1M (2)1M (3), has eigenvalues bounded by the su
of the bounds, the minimum eigenvalue ofM satisfieslmin

>21. Therefore Eq.~15! is satisfied by ensuringlmax
E

<21/2.
One example that satisfies these conditions is the split

FE5F (1) andFC5F (2)1F (3), sincelmax
E 521 satisfies Eq.

~15! andMC has strictly non-negative eigenvalues. This p
vides a gradient stable nonlinear step witha151 and a2
5a350. This case was identified by Eyre@3#, who noted
that the convexity requirement for the splitting guarante
absolute convergence of the Newton-Raphson method.
06670
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Eyre also presents a technique for identifying stable lin
direct algorithms @3#, which relies on the fact thatf2 is
bounded. It exceeds unity only slightly in the CH equati
and only in the interior region of a curved interface due
Gibbs-Thompson effects@11#. Therefore the eigenvalues o
M (3) have an effective upper bound, approximately three
we then takeFE5a1F (1)1F (3) ~so a351 and a250) the
eigenvalues ofME are of the form2a113f i

2 and satisfy
Eq. ~15! for f i

2&1 if a1*7/2. Any valuea2<0 will give the
same result, since negative values ofa2 can only decrease
the eigenvalues ofME. These choices implyFC5(1
2a1)F (1)1(12a2)F (2), which has the necessary non
negative eigenvalues for the range ofa1 anda2 given above.
Therefore we can identify a class of gradient stable direct
and AC steps as

a1*7/2, a2<0, a351. ~18!

This gives the dark gray shaded region in Fig. 1. These r
resentsufficientrestrictions on theai to satisfy the conditions
for Eyre’s theorem; however other values of theai may be
gradient stable as well.

Eyre provided specific step examples for all three imp
mentation categories: a nonlinear step, witha151, a25a3
50, andm50, a lineariterative step with m52 and the
sameai as the nonlinear step, and a lineardirect step with
a153, a250, and a351 @3,4#. The nonlinear step is the
example presented earlier in this section, and its grad
stability follows from Eyre’s theorem. However, it is no
clear to us that Eyre’s theorem can be directly applied to
iterative steps, and in fact we find Eyre’s proposed iterat
method to be numerically unstable, as described in Sec. I
Finally, thea1 value in the direct step violates Eq.~18!, so
this case does not follow from Eyre’s theorem.

B. Unconditional von Neumann stability

Since Eyre’s theorem provides, in principle, only a sub
of the possible gradient stable steps, complementary
proaches for determining stability are desirable. In this s
tion we extend vN linear stability analysis@9,10# to arbitrary
time steps, which we call unconditional vN stability. Sin
any gradient stable algorithm is likely also linearly stab
the von Neumann analysis would appear to identify asuper-
set of possibly gradient stable algorithms: in principle, th
vN analysis could also identify some unwanted nonlinea
unstable algorithms. As shown in Fig. 1, though, the
stability boundary corresponds quite well with the nume
cally determined gradient stability line. This leads us to su
gest that the approach of imposing unconditional vN stabi
on a broadly parametrized class of semi-implicit algorithm
followed by numerical checking, could be fruitfully adapte
to a wide variety of applications.

We analyze the general step, Eq.~10!, for linear stability
around a constant phasef5f0. It is important to realize
there arephysical, and therefore desirable, linear instabilitie
in the continuum CH and AC equations. Therefore it is im
portant to distinguish between these and the unphysica
stabilities induced by the numerical implementation. Ta
3-4
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f(x,t)[f01h(x,t), and linearize the CH equation~1! in h
to get ḣ52¹2(¹2h1h23f0

2h). Fourier transform this to
get

ḣk52lk~lk1k0
2!hk , ~19!

k0
2[123f0

2 . ~20!

Here lk is the eigenvalue of the Laplacian and is nonpo
tive, with lkmin<lk<0 ~note that lk52k2 in the con-
tinuum!. The minimum valuelkmin depends on the lattice
spatial dimension, and specific form of the Laplacian. Sim
larly, for the samef linearize the AC equation~8! in h and
Fourier transform to get

ḣk5~lk1k0
2!hk . ~21!

The physical instability for both Eqs.~19! and ~21! occurs
for

2lk,k0
2 , ~22!

which corresponds in the CH equation to spinodal decom
sition @1#. We stress that while these Fourier modes are
early unstable, the dynamics of spinodal decomposition
gradient stableand represents a physical decrease of the
energy, which is why it must be retained.

We now linearize and Fourier transform our general C
step, Eq.~10!, as above to get

@12lkDt$~a121!2lk~12a2!

1f0
2~12a3!~32m!%#hk,t1Dt

5@12lkDt$a11lka21f0
2

3@23a31m~a321!#%#hk,t . ~23!

Writing this as

@11DtLk#hk,t1Dt5@11DtRk#hk,t , ~24!

the von Neumann stability criterion is

u11DtLku.u11DtRku, ~25!

which implies that small deviations from the constant so
tion evolve to decrease in magnitude. We want to impose
stability condition for allk and arbitrary positive Dt. For
largeDt, Eq. ~25! implies uLku.uRku. The left-hand side of
Eq. ~25! can be made to violate the inequality for smallDt
unlessLk>0. Combining these conditions we have

Lk.uRku, ~26!

which is a necessary and sufficientcondition for uncondi-
tional linear stability. This condition applies toall first-order
time steps that can be expressed in the form given by
~24!.

We examine the linear stability condition in two step
First, Lk.Rk :
06670
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0,Lk2Rk5~2lk!@212lk13f0
2#. ~27!

This reduces to the spinodal condition, Eq.~22!. Note that all
the parameters (a1 ,a2 ,a3 ,m) are absent from Eq.~27!, so
we cannot interfere with the spinodal condition. This e
dently follows from having a first-order accurate step. Ne
we check forLk.2Rk , which gives

2a1212@~32m!~2a321!1m#f0
21lk~2a221!.0.

~28!

If we choosea2,1/2, then sincelk<0 we get 2a121
2@(32m)(2a321)1m#f0

2.0. For a2.1/2 we obtain a
lattice-dependent condition, that is, our inequality wou
containlkmin .

We choose to restrict ourselves to lattice-independentsta-
bility conditions as these are more practical: they carry o
into any lattice or spatial dimension. For this purpose
takea2,1/2. This gives the vN stable conditions

a2,1/2,

a1.
11max@0,~32m!~2a321!1m#

2
. ~29!

We have letf0
2 vary in the late-time asymptotic range o

f0
2P@0,1#, where Gibbs-Thompson-induced supersaturat

has been ignored, and have imposed ona1 the most restric-
tive value that results. For this reason algorithms near
stability boundaries should be avoided at early times.

For direct steps, witha351, the second condition in Eq
~29! becomesa1.2. This gives the lightly shaded region i
Fig. 1. The Euler update, witha15a25a351, is clearly
unstable sincea2.1/2 anda1,2. For linear iterative steps
with m52, Eq.~29! becomesa1.max@1/2,a311#. The sta-
bility condition of the general nonlinear step cannot be f
ther simplified from Eq.~29!, but the special casem50
givesa1.max@1/2,3a321#.

There is another special case for which the stability c
ditions can be imposed, namely, whenm50 and a15a2
5a3[a. In this case the vN condition, Eq.~28!, becomes

~122a!@2113f0
21lk#.0. ~30!

The term in square brackets is again the spinodal condi
and should be positive for all physically stable modes, so
a,1/2 both vN stability conditions reduce to the spinod
condition. However, these steps, which include the marg
Crank-Nicholson case (a51/2) and the stable fully implicit
step (a50) suffer from having multiple solutions to the non
linear implicit equation wheneverDt exceeds some thresh
old, making them unsuitable.

Regarding Eyre’s proposed steps, introduced at the en
Sec. II A, we note that the direct step is vN stable, the ite
tive step is marginal for vN stability, and the nonlinear ste
which was gradient stable by Eyre’s theorem, is also
stable.

The linearization for the general AC step, Eq.~11!, results
in the same linearized equation~23! but with the substitution
3-5
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B. P. VOLLMAYR-LEE AND A. D. RUTENBERG PHYSICAL REVIEW E68, 066703 ~2003!
2lkDt→Dt. Since2lk>0, the vN stability analysis for
the AC equation is identical and also results in Eq.~29!.

C. Numerical stability tests

The vN stability analysis yields a considerably larger p
rameter range for stable steps, Eq.~29!, than those which are
provably stable by Eyre’s theorem, e.g., Eq.~18!. Here we
determine numerically which step parametrizations are g
dient stable, for purposes of comparison with the theoret
results. We focus primarily on direct steps, witha351, since
these are an important practical class of steps. We cons
only symmetric quenches of the CH equation in this secti
with ^f&50.

The primary result, shown in Fig. 1, is obtained as f
lows. We evolved a uniformly distributed 20320 array of
direct CH steps with the parameter valuesa1P(0,4) and
a2P(22,2) on a 5122 lattice to a final timetmax. We take
lattice spacingDx51 here and throughout. At regular inte
vals during the evolution we tested a single direct step w
0,Dt,1010. This step was only used for stability testin
and did not contribute to the time evolution. Steps larger th
Dt51010 were not employed to avoid spurious roundoff e
ror effects. Any system thatever increased its free energ
was labeled unstable, and plotted in Fig. 1 with a fill
circle. The systems were evolved in time with multiple me
ods. First, we used Euler updates (Dt50.05) evolved to
tmax5104. Next, we evolved systems with direct updat
both with fixed Dt5100 and with an increasing time ste
Dt50.05t1/3 ~both to tmax5106).

As Fig. 1 shows, all vN stable algorithms were fou
numerically to be gradient stable, and the lightly shaded
gion corresponds extremely well to the gradient stable s
tems. Indeed, the vN stability boundary fora1 appears to be
followed quite sharply in the numerical tests. We do fi
numerical gradient stability for a region wherea2.1/2: this
is most likely due, ironically, to a lattice-induced stabiliz
tion. That is, since the lattice Laplacianlk has an
implementation-dependent minimum value, the inequa
~28! may be satisfied for somea2.1/2. Therefore, we expec
the precise location of this boundary to shift slightly depen
ing on the lattice, the spatial dimension, and the choice
lattice Laplacian, but not to crossa251/2.

With the numerical tests described above we have te
the linear iterative step proposed by Eyre@4# and found it to
be unstable.

To help illustrate numerical testing of gradient stabili
we show a mixture of stable and unstable steps in Figs. 2
3. The difference between gradient stable and unstable s
is striking: while neither are particularly accurate for e
tremely largeDt, the unstable steps show a marked incre
in the free-energy density, while the gradient stable st
adhere to the strict nonincreasing free-energy condit
However, the closer view in Fig. 3 shows that some cos
paid in accuracy: for small values ofDt, both the Euler step
and the unstable semi-implicit step track the physical beh
ior better than the stable step. While it may appear from F
3 that moderately large steps may be used with unstable
gorithms, this is not case; for example, using aDt*0.05 for
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the Euler update will lead rapidly to instability via accum
lated error fromrepeatedsteps, due to the checkerboard i
stability. In contrast, by nature of its vN stability, the stab
step does not have this rapid accumulation of error. Clea
though, the extreme step sizes used to illustrate stability
Figs. 2 and 3 would not be appropriate for an accurate sim
lation. In the following section we show how accuracy pr
vides a time-dependent~but unbounded! limit on the step
size.

III. ACCURACY

With a gradient stable algorithm, it is possible to use
progressively larger time step as the characteristic dynam
become slower. The limiting factor for the increase of t
time step is then anaccuracyrequirement.

FIG. 2. Plot of the free-energy densitye vs time ~thick solid
line! approaching the asymptotice;t21/3 decay, as evolved with a
Euler update withDt50.01 in a 10242 system. At five distinct
departure timestd , separated by factors of 4, we show the fr
energies that result from asingletime stepDtP(0,10 000), plotted
vs t5td1Dt. The dotted lines correspond to using a common se
implicit algorithm (a151, a250, a351) for the single step, while
the thin solid lines correspond to single steps with a vN stable di
algorithm (a153, a250, anda351).

FIG. 3. As per Fig. 2, but withtd51000. The dashed line cor
responds to a single step of the Euler update, which is grad
unstable. Both the Euler step and the unstable semi-implicit s
~dotted! are unstable under repeated steps for much smallerDt than
appear to be accurate for a single step.
3-6
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FAST AND ACCURATE COARSENING SIMULATION . . . PHYSICAL REVIEW E68, 066703 ~2003!
A specified accuracy criterion may be imposed on
stable steps identified in Sec. II without any further theor
ical development using standard numerical adaptive step-
techniques~as described in Ref.@9# and discussed in Sec
III B !. For the CH equation, one would naively expect a tim
step growing asDt;t2/3, for the reasons presented in Sec
However, this is not the case: empirically we find signi
cantly slower growth. This motivated us to study the sour
of error terms in the gradient stable CH steps. Our m
result is thep classification scheme, which determines t
allowed growth rate of the time step according to Eq.~4!.
The remainder of this section is concerned with the C
equation.

A. The p classification scheme

We begin with an analysis of the error magnitude asso
ated with the various gradient stable algorithms. The ex
f t1Dt , obtained by integration of Eq.~1! from a givenf t ,
can be expressed in terms of the fields at timet by means of
a Taylor expansion

f t1Dt5f t1Dt ] tf t1
1

2
Dt2] t

2f t1
1

3!
Dt3 ] t

3f t1•••.

~31!

The Euler update, Eq.~9!, is simply the truncation of this
expansion atO(Dt) with resulting error DfEu[f t1Dt

Eu

2f t1Dt given by

DfEu52 (
n52

`
Dtn

n!
] t

nf t . ~32!

Other step parametrizations will have different coefficie
for the O(Dtn) component of the error, but the general fe
ture of an expansion to all powers ofDt will be the same.
Since our goal is to have a growing time step with control
error, successively higher powers ofDt will require coeffi-
cients decaying increasingly faster in time. In order to de
mine the limitation on how fast the time step may grow, it
essential to know the decay rates of the coefficients ofDtn

for all n. In this section we demonstrate how this can
done. We make use of the following results for asympto
decay rates, derived in Sec. III D. In the interfacial regi
~defined in Sec. III D!

] t
nf;t22n/3, ] t

n~¹2!kf j;t22n/3, ~33!

whereas in the bulk, that is, all of the system not near
interface, we find

] t
nf;t2(1/3)2(2/3)n, ] t

n~¹2!kf j;t2(1/3)22(n1k)/3.
~34!

Consider first the Euler step: all theO(Dtn) coefficients
are simply proportional to the time derivative] t

nf evaluated
at t. If numerical stability were not a problem and we simp
increased the time step according to the naiveDt;t2/3, we
would find in the interfacial region that every order in th
Taylor expansion provides anO(t0) contribution to the error,
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whereas in the bulk region every order provides anO(t21/3)
contribution. This would present an accurate solution with
Dt;t2/3 time step, except that, of course, the Euler step
not gradient stable for large time steps.

Now consider the general step, Eq.~10!. The error term in
this step,Df̃[f̃ t1Dt2f t1Dt , can be written as

Df̃5DfEu2~12a1!Dt¹2~f̃ t1Dt2f t!

2~12a2!Dt¹4~f̃ t1Dt2f t!

1~12a3!Dt¹2@f t
m~f̃ t1Dt

32m2f t
32m!#. ~35!

This peculiar form with implicitf̃ t1Dt on the right is useful
for the error analysis. By using Eq.~10! iteratively, the im-
plicit terms can be replaced by terms that are higher orde
Dt involving the fieldf t . For example, we can derive th
O(Dt2) part of the error, using f̃ t1Dt2f t5Dt ] tf t

1O(Dt2) and f̃ t1Dt
32m2f t

32m5(32m)Dt f t
22m] tf t

1O(Dt2). We find the error in our general step to be

Df̃5@2 1
2 ] t

2f t1~a121!¹2] tf t1~a221!¹4] tf t

1~12a3!~32m!¹2f t
2] tf t#Dt21O~Dt3!, ~36!

where the first term comes from Eq.~32!. Now compare the
time decay of the various terms. At the interface, the] t

2f t

part decays ast24/3, but the other terms all decay ast22/3.
Therefore, for general values of theai and m, to keep the
O(Dt2) interfacial error fixed, the time step is limited t
grow asDt;t1/3. We see that the Euler case was spec
because it made all but the first term in theO(Dt2) error
vanish. Since every term in Eq.~36! decays faster in the bulk
than at the interface, we conclude that the error isinterface
limited, i.e., the accuracy criterion at the interface will dete
mine how fast the time step can grow. This is a gene
feature, as we will show below.

There are other ways besides using the Euler step to m
theO(Dt2) interfacial error decay ast24/3. If the coefficients
satisfy

a15a2512b, a35123b/~32m! ~37!

for someb, then the various] tf t terms in Eq.~36! add to
give b] t

2f t . In this case,

Df̃52~ 1
2 2b!] t

2f tDt21O~Dt3!, ~38!

and so theO(Dt2) coefficient decays ast24/3 at the interface
and faster in the bulk. From this example we can constr
the p classification scheme.

Consider the truncation error term of orderDtn. This can
be obtained by iterating Eq.~35! and can be expressed as
sum of terms of the form] t

n21(¹2)kf j . If these terms appea
in the right proportions, they combine via Eq.~1! to become
proportional to] t

nf, which decays faster by a factor of 1/t2/3

at the interface. This is exactly what occurs in then52 case
above when Eq.~37! is satisfied.
3-7
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Now consider some valuep>2 for which all Dtn error
terms withn,p are proportional toDtn] t

nf t , but at order
m>p this breaks down into a sum of terms of the ty
Dtm] t

m21(¹2)kf t
j . In this case the orderp term provides the

leading asymptotic error. Focusing on interfacial region,
orderp term goes asDtpt22(p21)/3 according to the secon
term in Eq.~33!. Choosing the time step to hold this term
constant error would requireDt;ta with a52(p
21)/(3p), as displayed in Eq.~4!. Now we show that all
higher- and lower-order terms inDt will decay faster than
the Dtp term for this choice ofa. For n,p, we have from
the first term in Eq.~33! Dtnt22n/3;tn(a22/3)5t22n/3p, so
the n,p terms give ever-decreasing contributions to the
ror. For m.p the error terms are of the form
Dtmt22(m21)/3;t22(m2p)/(3p) which decay as well. Hence
the asymptotic interfacial error is given by theO(Dtp) term
as advertised, and is ordert0. Note that for this interface
limited Dt;ta all bulk terms to all orders have decayin
error terms, thus establishing interface limited error as a
neric feature.

B. Quantifying error for direct steps

Direct steps, witha351 by definition anda1.2, a2
,1/2 for stability, fail to satisfy Eq.~37!, and so all direct
steps givep52 algorithms withDt;t1/3. This means that
the asymptotic error magnitude should be given exactly

uDf̃u5Dt2u~a121!¹2] tf1~a221!¹4] tfu, ~39!

with Dt5At1/3. This gives a fixed amount of error at th
interface, and all higher orders ofDt give decaying contri-
butions. Therefore, the error magnitude is proportional toA2,
and we can use numerical measurements of Eq.~39! to de-
velop the constant of proportionality.

We determine error numerically in the usual way@9#:
compare the fieldf (1) obtained from a single step of sizeDt
to the fieldf (2) obtained from two steps of sizeDt/2. It is
straightforward to show that if the true error of the step
EDt21O(Dt3), then f (1)2f (2)5(E/2)Dt21O(Dt3).
Since we expect exactlyDt2 error, we simply take 2(f (1)

2f (2)) to be the true error.
In the bulk, the error decays ast22/3. The interfacial error

is not decaying, but the amount of interface decays ast21/3,
which means the error magnitude, Eq.~39!, averaged over
the entire system will also decay ast21/3, all from the inter-
facial contribution. To determine the error per lattice site
the interfacial region, it is necessary to divide the avera
error by the fraction of the system in the interfacial regio
We do that as follows. The asymptotic free-energy densit
given by the product of the surface tensions and interface
density: e(t)5sAint(t)/Lsys

d ;t21/3, where the interfacial
‘‘area’’ Aint is a d21 dimensional hypersurface andLsys is
the system size. For interface widthw, Aint(t)w/Lsys

d

5we/s represents the fraction of the system in the inter
cial region. Multiplying the averaged error bys/(we) then
gives the typical error in the interfacial region. The surfa
tension corresponding to Eq.~7! is s52A2/3. We takew
52A2 as a typical measure for the interface width.
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We have investigated this error for a variety of dire
algorithms in Fig. 4, where we have plotted the interfac
error as determined above divided byA2. We plot this error
amplitude againsta1 and a2 for the same shaded region
@‘‘vN’’ and ‘‘E’’ # as identified in Fig. 1. The typical interfa
cial error for a given direct step of sizeDt5At1/3 may be
obtained by multiplying the appropriate contour value byA2.

To illustrate the advantages of stable algorithms, as w
as of a detailed error analysis where it is possible, we sh
in Fig. 5 how the error evolves in time for direct steps wi
Dt5At1/3 versus the Euler step with fixedDt. The fieldf is
evolved by the Euler method, and during the evolution er
checking is done with single steps that do not contribute
the evolution. The decay of the Euler error shows that
Euler method is asymptotically wastefully accurate.

FIG. 4. Contour of scaled error for a single direct update in
10242 system. The systems are evolved well into the scaling reg
(t'3000) with a fixed-step Euler update. The errors are found
comparing a single direct time stepDt5At1/3 with two steps of size
Dt/2, and are then scaled by 2s/(A2we) to estimate the averag
error magnitude per lattice site perA2 in the interfacial region, as
described in the text.

FIG. 5. Plot of scaled error per lattice site near the interface
a single Euler step~solid!, and for a single direct step witha153
and a250 ~dotted with Dt5At1/3 where from bottom to topA
51024, 1023, and 1022). The scaling of the errors is the same
in Fig. 4, except that the errors are not divided byA2. For the two
smallestA the scaling withA2 is clearly seen, and so is the tim
independence of the error for the driven direct step at later tim
The system size is 20482 and is evolved with a Euler step with
Dt50.05.
3-8
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FAST AND ACCURATE COARSENING SIMULATION . . . PHYSICAL REVIEW E68, 066703 ~2003!
Our single-step analysis and testing does not conclusi
demonstrate that an algorithm will be reasonably beha
under successive steps, i.e., there is a possibility of accu
lation of error. In Fig. 6 we show the free-energy density
systems evolved by a direct step and compare the evolu
to that obtained by the Euler method. It appears that
errors do not accumulate and the free energy decays prop
as t21/3.

C. Toward pÌ2

To go beyond thep52 steps withDt;t1/3, it is necessary
to find a stable step that satisfies Eq.~37!. Comparing with
the stability conditions, Eqs.~29!, we find only marginally
stable algorithms witha15a251/2 and a35(3/22m)/(3
2m) for 0<m<3. For m50 this becomes the Crank
Nicholson method, which as noted before, has a fixed t
step due to solvability considerations. However, a marg
linear iterative step is possible withm52 and a3521/2.
Unfortunately, whether or not the marginality is a proble
the iterative method~given by Eyre in Ref.@4#! fails to con-
verge absolutely for these parameters. Evidently, then,
not possible to construct a usefulp53 step from the genera
step, Eq.~10!.

One possible way to develop ap53 step is to use a
method that is both stable and second-order accurate in t
For example, a two-step method that uses bothf t2Dt andf t
to determine the updated fieldf t1Dt can be made to have n
O(Dt2) error. A preliminary study of vN stability for thes
two-step methods indicates that these are a possibility.

It is worth considering the prospect of obtaining ap→`
step: according to thep classification analysis this woul
allow the naturalDt;t2/3 time step. However, the erro
terms need to be strictly proportional to] t

nf at each order
Dtn. To achieve this with a one-step method one needs

f̃ t1Dt2~12a!¹2m t1Dt5f t1a¹2m t . ~40!

FIG. 6. Plot ofe vs t for a Euler update~with Dt50.05, thick
solid line! and with the evolution via a direct algorithm (a153 and
a250) driven with Dt5At1/3 with A50.1 ~dotted line! and 0.01
~thin solid line! in a 20482 system. Untilt510 all systems were
evolved with the Euler update. In the inset is plotted the percen
difference between the Euler and direct updates: some error i
troduced in the direct steps aftert510 but at later times no increas
ing deviation from the Euler evolution is seen.
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Equation~30! shows that this step will be linearly unstab
when a.1/2 ~for large enoughDt), while for a,1/2 one
runs into solvability problems. At this point it seems unlike
that ap→` algorithm for the CH equation will be possible

D. Asymptotic scaling of field derivatives

In this section we derive the relations~33! and ~34! that
provided the basis forp classification. Enough is known
about CH dynamics such that we can explicitly analyze
leading asymptotic decay of mixed space and time der
tives to arbitrary order. We follow the review by Bray@1#,
and we restrict ourselves to the power-law scaling of th
terms at sufficiently late times, where all observable len
scales that describe the domain wall morphology, such as
interface curvature radii, are proportional to the domain s
L;t1/3. The domain wall thicknessw does not grow with
time, sow!L asymptotically. However, when analyzing th
fields in the interfacial region, defined as the locus of poi
within a distancew of a domain wall center~i.e., the surface
f50), both length scalesL andw can appear. The remain
der of the system is referred to as the bulk.

The scale of the chemical potentialm is proportional to
interface curvaturek due to the Gibbs-Thompson effect, an
sincek;1/L,

m;1/L;1/t1/3. ~41!

In the bulk, the chemical potential varies smoothly and co
tinuously, so a Laplacian simply brings in more powers ofL:

¹2m;1/L3;1/t, ~42!

which implies] tf;1/t via the equation of motion~5!. Now
we use the relationf2feq;m in the bulk @1# to relate de-
rivatives of f and m. For example,¹2f;¹2m, so ] tf
;¹2f. Taking more time derivatives gives

] t
nf;¹2] t

n21f;t22/3] t
n21f. ~43!

Iterating this from the initial value for] tf gives ] t
nf

;t2(1/3)2(2/3)n, the first term in Eq.~34!.
When the time derivatives act on a power of the fieldf j ,

the resulting expression contains thej fields andn time de-
rivatives in various combinations. In this case the asympto
decay comes from the single term proportional tof j 21] t

nf,
which means the decay forf j derivatives is the same as th
j 51 case, since the fieldf is of order unity in the bulk. To
illustrate, consider] t

2f356f(] tf)213f2] t
2f. The second

term decays ast25/3 as advertised, while the first term goe
as (t21)2 and is asymptotically negligible.

Adding spatial derivatives in the bulk simply brings mo
factors ofL21, so

~¹2!k] t
n21f j;L22k] t

n21f j;t22k/3t2(1/3)2(2/3)n ~44!

which gives the second term in Eq.~34!.
Near interfaces,f changes by an amountDfeq in the

amount of timet5w/v;t2/3, it takes an interface to pass b
Therefore we get] tf;t22/3 in the interfacial region, in con-

e
in-
3-9
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trast to] tf;t21 in the bulk. To determine the scaling] t
2f,

consider sitting at a point just outside the interfacial regi
in front of the moving interface. At a timeO(t) later this
point will be in the interfacial region, so] tf will have
changed from a bulk to an interfacial value. This gives

] t
2f;~ t22/32t21!/t;t24/3. ~45!

Repeating this argument for higher derivatives gives] t
nf

;t22n/3 in the interface, the first term in Eq.~33!.
For time derivatives off j at the interface, we again ge

multiple terms with the various combinations ofn time de-
rivatives andj fields. In this case, however, every term co
tributes to the asymptotic decay. Essentially every time
rivative, wherever it acts, brings a factor oft22/3, and these
are the only factors causing the decay. Hence] t

nf j;] t
nf.

Finally, adding spatial derivatives in the interfacial regi
brings factors ofw21 rather thanL21, and so does no
change the asymptotic decay. This proves the second rela
in Eq. ~33!.

IV. COMPUTATIONAL ADVANTAGE

Having established the possibility of controlled accura
CH simulation with a growing step sizeDt;ta, we now
explore the relative computational advantage offered by s
an algorithm. As described in Sec. I, the goal in such sim
lations is to evolve as close as possible to the scaling reg
meaning the largest possibleL(t). This means evolving unti
finite-size effects enter, since stopping earlier mean
smaller system size could be chosen. Finite-size effects
expected to appear whenL(t);L0t1/3 is some fraction of the
system size, so we define the simulation ending timetmax by
L(tmax)5 f Lsys or

tmax5~ f Lsys/L0!35~ f DxN/L0!3, ~46!

where N is the linear size of the lattice andf is a small
constant factor. There is some arbitrariness in the defini
of the length scaleL(t) that simply factors into the optima
choice for f. We take the inverse interface density as o
measure, that is,

L~ t !5
Lsys

d

Aint
5

s

e~ t !
5

s

e0
t1/3 ~47!

using the interfacial areaAint from Sec. III B, and its relation
to the free-energy density and surface tension deri
therein. From our data ind52 we find e0.0.675, so we
takeL05s/e0.1.40.

Evolving to tmax with the Euler step~or any fixed-size
step! requiresn5tmax/Dt0 steps, whereDt0 is the step size.
For our square lattice withDx51 we findDt050.05 is close
to the maximum stable value. More generally, one expe
Dt0;Dx4 @2#. Evolving to a late timetmax with a growing
step sizeDt;Ata;dt/dn requires a number of steps

n;E
t0

tmax
A21t2adt;

1

A~12a!
tmax
12a , ~48!
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where a fixed-size step is used until some early timet0.
Sincet0!tmax, the t0-dependent terms can be neglected.

Finally, we determine empirically the ratio of comput
time per stepb5tstable/tEuler. For direct steps, the FFT in
volved impliesb; ln N. For lattices of size 10242–40962 we
find b.2.360.1.

Putting all this together, we find the ratio of comput
time cost for Euler steps to stable steps to be

A~12a!tmax
a

bDt0
5

A~12a!

bDt0
S f Dx

L0
D 3a

N3a. ~49!

For direct steps,a51/3, so the relative speedup over Eul
integration grows with the system size asN/ ln N. From Dt0
;Dx4 we also see the speedup factor scaling as 1/Dx3, mak-
ing stable steps an optimal choice when a smaller lat
spacing is desired. Ap53 algorithm hasa54/9 and offers a
speedup factor ofN4/3/ ln N.

We conclude by plugging in reasonably conservative
rameter values. From Fig. 4 we see that the typical interfa
error for thea153, a250 direct step is about 0.7A2. This is
to be compared toDfeq52, the range in whichf varies.
The choiceA50.1 is shown in Fig. 6 to give an error in th
free-energy density around 3% of the Euler value. While t
seems perhaps high, we note that this is comparable
probably smaller than the error already introduced in the
ler discretization of the continuum CH equation due to t
large lattice constant. An interesting question for future stu
is what choice ofDx andA will give optimal accuracy and
efficiency. We conclude thatA50.1 is a reasonable choice
We also takea51/3, f 51/10, b52.5, Dx51, andL0 as
given above. These combine to give a factor 0.038N. For a
10242 lattice the direct step is a factor 40 faster than t
Euler method, while for a 81922 lattice it is a factor 300
faster

V. CONCLUSIONS AND FUTURE DIRECTIONS

We have seen that the general Cahn-Hilliard~CH! step,
Eq. ~10!, provides a range of linearly stable algorithms th
prove to be gradient stable for enormous single time step
to Dt51010. With these steps unphysical instabilities arisi
from the discrete implementations are no longer the limit
factor. Instead, accuracy considerations dominate. For c
served Cahn-Hilliard coarsening, we have analyzed
tested the accuracy scaling for single dynamical time st
that increasewithout bound with time asDt;ta. We find
that the errors are dominated by terms of orderDtp where
they are no longer proportional to] t

pf. These dominant er-
rors restrict the growth of the time step to grow asDt
;t2(p21)/(3p), which approaches the natural dynamical tim
stept;t2/3 only asp→`. The Euler method, by contrast, i
restricted to a constantDt. This is also the case for existin
implicit Fourier spectral algorithms. The direct steps o
tained from Eq.~10! with a351 are linear and diagonalize
in Fourier space, and so can be simply integrated via FF
This requires no more computer memory than the Euler s
since the FFT can be performed in place. A range of para
eters, described by the shaded boxes in Fig. 1, are sta
3-10
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These direct steps exhibitp52 and so allowDt;t1/3, which
results in speedup factors proportional to the linear size
the system.

Future work in further developing these methods for
CH equation includes determining possiblep53 algorithms,
for which Dt;t4/9 is possible and the relative speedup ov
the Euler method is of orderN4/3/ ln N. Our preliminary work
has shown thatO(Dt2) accurate two-step methods can
made unconditionally vN stable. It remains to test these
bility predictions numerically to see if usefulp53 algo-
rithms are possible.

It is straightforward to construct a Fourier spectral meth
integration algorithm for the stable steps analyzed here
fact, the numerical cost of the spectral method would
quite small, since the direct steps already employ FFT’s
solving the update equation. The primary benefit of the sp
tral method for unstable algorithms is that it significan
enhances the maximumDt0 allowed by stability. It is not
clear how much benefit spectral methods would bring to
already stable algorithm, but this should be explored.

With the Euler step, the simulation efficiency wa
strongly dependent onDx, leading to choosing values tha
were as large as feasible. Consequently the interface pr
is typically poorly resolved, modifying and introducing sig
nificant anisotropy into the surface tension. In contrast,
efficiency of these stable methods is much less dependen
the choice of lattice size, making them a useful tool in a
plications where a more accurate interface profile is desi

Our analysis has been for errors after a single time s
Gradient stability would seem to permit errors to on
modify interfacial properties in a curvature- or velocit
dependent way, either of which would be consistent with
effective continuum dynamics that still monotonically d
creases the overall energy density from any field configu
tion. For the CH equation at least, our observede;t21/3

decay of the free energy, even whenDt;At1/3, indicates that
there is no significant curvature-dependent modification
interfacial speeds. We are studying the relationship betw
single-step errors and errors of the asymptotic scaling fu
tions describing correlations in more detail.

We feel that our basic approach should be applicable
wide variety of scalar or vector phase-field systems that h
both nonlinearities and numerical instabilities. There are
three basic ingredients:~i! allow for a general semi-implicit
parametrization, following Eq.~10!; ~ii ! check for uncondi-
tional von Neumann~linear! stability of an individual update
step, following Sec. II A; and~iii ! numerically test the vN
stable algorithms for speed, accuracy, and nonlinear stab
in order to pick the best parameters for further study. As lo
as the stability criteria are lattice independent, the resul
algorithms can be used with any regular lattice in any spa
dimension, and even with irregular discretizations such
used in adaptive mesh techniques.

The detailed accuracy analysis and thep classification
scheme of the CH equation does not immediately genera
to other cases, but we stress that this analysis is not esse
Once the stable steps are identified, a variable step
method @9# will tune the time step to its accuracy-limite
value. Finally, we note that the inclusion of additive noi
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should be compatible with gradient stable algorithms, as lo
as the noise amplitude is used to extend the range of pos
f0

2 used in the vN analysis.
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APPENDIX A: EYRE’S THEOREM

We repeat Eyre’s stability theorem@3# here to flesh out the
derivation for the conserved dynamics case, and to cla
some details of the proof. In particular, there are a few eq
tions in Ref. @3# that lack factors of vector norms. Mor
substantively, we find that Eyre’s theorem as originally p
sented was slightly more restrictive than necessary.

A central quantity in Eyre’s theorem is the Hessian mat

Mi j 5
]2F

]f i]f j
, ~A1!

whereF is the free energy andf i represents the field at th
lattice sitei ~we consider only scalar one-component fiel
here!. For free energies of interest in coarsening, this ma
has both positive and negative eigenvalues. Eyre find
stable first-order step by splitting the free energy intocon-
tractive and expansiveparts,F5FC1FE, such thatFC is
convex andFE is concave; that is, the eigenvalues ofMi j

C ,
the Hessian matrix corresponding toFC, are strictly non-
negative, and the eigenvalues ofMi j

E corresponding toFE are
strictly nonpositive for any possible field configuration.

Let lmin,0 represent the lower bound for the eigenv
ues ofM over all fieldsf ~such a bound must exist@3#!, and
lmax

E <0 represent the upper bound on the eigenvalues
ME. The main result is that if

lmax
E <

1

2
lmin , ~A2!

then the field equations of motion

f t1Dt1Dt
dFC

df U
ft1Dt

5f t2Dt
dFE

df U
ft

~A3!

for nonconserved dynamics or

f t1Dt2Dt¹2
dFC

df U
ft1Dt

5f t1Dt¹2
dFE

df U
ft

~A4!
3-11
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for conserved dynamics lead to a strict nonincrease of
free energy in time:

F~ft1Dt!<F~ft!, ~A5!

where we have suppressed the lattice index for clarity. T
holds unconditionally for all field configurationsft and all
step sizesDt.0. Convexity ofFC ensures that the implici
equation forf t1Dt has a unique solution.

The energy dissipation property, along with other reas
able requirements such as positivity ofF, is calledgradient
stability by Eyre@3#. While gradient stability can be obtaine
for many algorithms, such as the Euler step, by using a sm
enoughDt, the algorithm defined by Eqs.~A2!–~A4! guar-
antees it forarbitrarily large Dt. Even so, finding the split-
tings intoFC andFE that lead to Eq.~A2! can be a difficult
task, and the splittings, if they exist, may not be unique.

Condition ~A2! corrects the corresponding condition
Ref. @3#, lmax

E <lmin . The current form is less restrictiv
sincelmin,0.

An extremely useful corollary to Eyre’s theorem is that
the eigenvalue condition~A2! is satisfied for a restricted se
of fieldsf, then Eq.~A5! still applies for allDt, providedft
always stays within this restricted set. For example,f could
be field configurations withf i

2,f0
2 for all i, for some con-

stantf0. This can be useful whenf is physically restricted
by the dynamics, and is employed in the direct algorith
discussed in Sec. II A

The proof of Eq.~A5! relies on two inequalities

F~ft1Dt!2F~ft!<(
i

df i

]F

]f i
U

ft1Dt

2
1

2
lminudfu2

~A6!

and

(
i

df iS ]FE

]f i
U

ft1Dt

2
]FE

]f i
U

ft

D <lmax
E udfu2, ~A7!

where df i[f i ,t1Dt2f i ,t and udfu25( idf i
2 . These are

simply properties of multivariable functions, and are deriv
in appendix B for completeness.

Consider first nonconserved dynamics. By adding
Dt@]FE/]f i #ft1Dt

to both sides of the equation of motion
Eq. ~A3!, one obtains

]F

]f i
uft1Dt

52
1

Dt
df i1

]FE

]f i
U

ft1Dt

2
]FE

]f i
U

ft

. ~A8!

Substituting this into Eq.~A6! gives

F~ft1Dt!2F~ft!<(
i

df iS ]FE

]f i
U

ft1Dt

2
]FE

]f i
U

ft

D
2S 1

2
lmin1

1

Dt D udfu2. ~A9!

Next, use Eq.~A7! to complete the proof:
06670
e

is

-

ll

s

d

F~ft1Dt!2F~ft!<S lmax
E 2

1

2
lmin2

1

Dt D udfu2,

<0, ~A10!

where the last inequality follows by assumption Eq.~A2!.
Analyzing conserved dynamicsis complicated by the La-

placian in the equations of motion. Consider a general
mensional lattice ofn sites with lattice Laplacian (¹2) i j
[Ai j a symmetricn3n matrix with eigenvaluesl150 and
lm,0 for all m.1. Letui

(m) represent thei th component of
themth eigenvector ofA, then we can write the Kroneckerd
function as

d ik5 (
m51

n

ui
(m)uk

(m)5(
j 51

n

Ãi j Ajk1ui
(1)uk

(1), ~A11!

where the pseudoinverseÃ is defined by

Ãi j 5 (
mÞ1

n
1

lm
ui

(m)uj
(m) . ~A12!

Note that the eigenvaluel150 corresponds to the eigenve
tor ui

(1)51/An for all i, i.e., a uniform field. Now we inser
Eq. ~A11! into the sum in Eq.~A6! and sum onk to get

F~ft1Dt!2F~ft!<(
i , j ,k

df i Ãi j Ajk

]F

]fk
U

ft1Dt

2
1

2
lminudfu2, ~A13!

where we have used( idf i50, which follows from the con-
servation law. Proceeding by analogy with the nonconser
case, we subtractDtAjk@]FE/]fk#ft1Dt

from both sides of
the equation of motion, Eq.~A4!, to get

(
k

Ajk

]F

]fk
U

ft1Dt

5
df j

Dt
1(

k
AjkS ]FE

]fk
U

ft1Dt

2
]FE

]fk
U

ft

D .

~A14!

Substituting this into Eq.~A13! gives

F~ft1Dt!2F~ft!<(
i

df iS ]FE

]f i
U

ft1Dt

2
]FE

]f i
U

ft

D
2

1

2
lminudfu21

1

Dt (
i , j

df idf j Ãi j ,

~A15!

which is identical to Eq.~A9! except for the 1/Dt term. From
the definition ofÃ and an expansion ofdf in the eigenval-
uesu(m) it follows that

(
i , j

df idf j Ãi j <0, ~A16!

so this term can be dropped from the right-hand side of
~A15!, and the proof follows as before to yield Eq.~A5!.
3-12
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APPENDIX B: INEQUALITIES USED IN EYRE’S
THEOREM

For completeness, we rederive Eqs.~A6! and ~A7! here.
Consider a general functionf (x) of n variables x
5(x1 , . . . ,xn). From the fundamental theorem of calculu

f ~x1y!2 f ~x!5(
i

yiE
0

1

ds1

] f

]xi
U

x1s1y

, ~B1!

that is, we introduce the parameters1 to integrate along the
‘‘diagonal’’ path from x to x1y. Similarly, we can write

] f

]xi
ux1s1y2

] f

]xi
U

x

5(
j

y jE
0

s1
ds2

]2f

]xi]xj
U

x1s2y

. ~B2!

Combining these gives the identity

f ~x1y!2 f ~x!

5(
i

yi

] f

]xi
U

x

1E
0

1

ds1E
0

s1
ds2(

i , j
yiy j

]2f

]xi]xj
U

x1s2y

.

~B3!

Now consider the case where the eigenvalues of the ma
Mi j 5]2f /]xi]xj are bounded from below by some consta
lmin for all x. In this case

(
i , j

yiy j

]2f

]xi]xj
U

x1s2y

>lminuyu2, ~B4!
i-

et

06670
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which follows straightforwardly from an expansion ofy in
the basis of eigenvectors ofM, with uyu25( i yi

2 . Thus we
have

f ~x1y!2 f ~x!>(
i

yi

] f

]xi
U

x

1
1

2
lminuyu2, ~B5!

where the 1/2 follows from thes integrals. Taking the func-
tion f to be the free energyF with x5ft1Dt and y5ft
2ft1Dt results in Eq.~A6!.

The second inequality results from settings151 in Eq.
~B2!, then multiplying byyi , and summing

(
i

yi S ] f

]xi
U

x1y

2
] f

]xi
U

x
D 5(

i , j
yiy jE

0

1

ds
]2f

]xi]xj
U

x1sy

.

~B6!

We then use a relation similar to Eq.~B4!, only with the
eigenvalues of]2f /]xi]xj assumed to be boundedaboveby
lmax, to get

(
i

yi S ] f

]xi
U

x1y

2
] f

]xi
U

x
D<lmaxuyu2. ~B7!

Now we can takef 5FE and x and y as before to get Eq
~A7!.
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