
Single-species three-particle reactions in one dimension

Benjamin P. Vollmayr-Lee and Melinda M. Gildner
Department of Physics and Astronomy, Bucknell University, Lewisburg, Pennsylvania 17837, USA

�Received 2 February 2006; published 20 April 2006�

Renormalization group calculations for fluctuation-dominated reaction-diffusion systems are generally in
agreement with simulations and exact solutions. However, simulations of the single-species reactions 3A
→ �0” ,A ,2A� at their upper critical dimension dc=1 have found asymptotic densities argued to be inconsistent
with renormalization group predictions. We show that this discrepancy is resolved by inclusion of the leading
corrections to scaling, which we derive explicitly and show to be universal, a property not shared by the A
+A→ �0” ,A� reactions. Finally, we demonstrate that two previous Smoluchowski approaches to this problem
reduce, with various corrections, to a single theory which surprisingly yields the same asymptotic density as
the renormalization group.

DOI: 10.1103/PhysRevE.73.041103 PACS number�s�: 05.40.�a, 05.10.Cc

I. INTRODUCTION

Reaction-diffusion systems are known to be strongly de-
pendent on fluctuations when the spatial dimension d is at or
below an upper critical dimension dc. This fluctuation-
dominated case has been treated by field-theoretic renormal-
ization group �RG� methods for a wide variety of reaction
types and conditions, as recently reviewed �1�. Comparison
of the RG results with exact solutions and simulations has
generally yielded agreement or at least consistency, as de-
tailed in examples given below. However, simulations of the
single-species 3A→ �0” ,A ,2A� reactions at the upper critical
dimension d=dc=1 �2,3� appear to be inconsistent with RG
predictions �4�. This discrepancy is noteworthy since these
reactions present one of the simplest and directly testable
cases. In the current work we demonstrate that there is no
discrepancy.

The general single-species reaction-diffusion decay kA
→ �A with integers ��k has an upper critical dimension
dc=2/ �k−1�. Above the upper critical dimension the density
n�t� follows the rate equation �tn=−�nk, which gives the
asymptotic decay n� t−1/�k−1� with an amplitude that depends
on the nonuniversal rate constant �. Below the upper critical
dimension particle anticorrelations neglected by the rate
equation become relevant, giving rise to a slower decay n
�Ak,��Dt�−d/2, with Ak,� a universal constant dependent only
on the reaction type �k and �� and the dimension d. RG
methods have been used to show the exponent to be exact
�5�, and to demonstrate the universality of Ak,� and provide
an expansion in powers of dc−d for the amplitude �4�.

The amplitude expansion may be tested by comparison
with exact solutions and simulations. For example, solvable
realizations of the A+A→0 model in one dimension give the
decay amplitude of A2,0=1/�8��0.199 �6,7�. The RG ex-
pansion in �=dc−d=1 gives instead A2,0�0.080+0.029
+¯ �4�. Evidently the truncated perturbative RG is of little
accuracy when �=1. However, if the diffusive transport is
replaced by long-range hops, the upper critical dimension
can be continuously lowered from two to one, allowing for a
truly small � in spatial dimension d=1 �8�. In this case, the
theoretical amplitude compares well with simulations. Also
noteworthy is that the ratio A2,1 /A2,0=2 found from exact

solutions �6,9� is also an exact result from the RG calcula-
tion, i.e., a field rescaling transformation in the field theory
shows this ratio to hold to all orders in the � expansion �4�.
Thus simulations and exact solutions for d�dc are in general
agreement with the field-theoretic RG approach.

For the borderline case of d=dc, the density is predicted
to decay with the rate equation exponent, but with logarith-
mic corrections and a universal amplitude �4�,

n � Ak,�� ln t

Dt
	1/�k−1�

. �1�

The amplitude in this case is given explicitly, rather than
perturbatively, as

Ak,� = � k�k−2�/�k−1��k − 2�!
4��k − � � 	1/�k−1�

. �2�

This explicit result provides then a strong test for the RG
calculation. An exact solution is available for a particular
realization of the A+A→ �0” ,A� reactions in d=dc=2 �6�,
with values A2,0=1/8� and A2,1=1/4� that match the RG
results, Eq. �2�.

However, the predictions for the 3A→ �A reactions at the
upper critical dimension dc=1 have been the source of some
controversy. Simulations have demonstrated logarithmic cor-
rections in d=1, but with amplitudes that differ from the
renormalization group predictions. Specifically, while Eq. �2�
gives A3,��0.21, 0.26, and 0.37 for �=0, 1, and 2, respec-
tively, simulations have reported values A3,0�0.26 �3�, A3,1
�0.76, and A3,2�0.93 �2�. Further, the 3A→0” simulations
were found to be consistent with a version of Smoluchowski
theory adapted for three-particle reactions �3�. That is, an
approximate theory appears to agree better with the simula-
tions than the RG calculation, which in principle involves no
approximations.

To address this discrepancy, we reconsider all of the field-
theoretic approach, simulations, and Smoluchowski theory.
Our main results are as follows. First, we demonstrate with
RG methods that the leading corrections to the asymptotic
density are universal, a surprising property not shared by the
A+A→ �0” ,A� reactions at their upper critical dimension dc

=2. Our result is
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n�t� � A3,�� ln t

Dt
	1/2

+ B3,�� 1

Dt
	1/2

+ O� 1
�Dt ln t

	 �3�

with A3,� given by Eq. �2� and B3,� computed in Sec. II
below. Explicitly,

A3,� = � �3

4��3 − � �
	1/2

, B3,� =
9�2��2 + � �

128
. �4�

The next term in the expansion is nonuniversal.
This universal leading correction is quite significant in the

time range available to simulations, of the order of half the
magnitude of the asymptotic density. Consequently, includ-
ing this term makes the RG predictions consistent with the
previous 3A→0” simulations �3� but not with the 3A
→ �A ,2A� simulations �2�.

This motivated us to conduct our own simulations, which
are presented in Sec. III. Our simulation data are consistent
with those of Ref. �3� for the 3A→0” reaction, but not com-
patible with the data of Ref. �2� for the 3A→ �A ,2A� reac-
tions, which we believe to be in error. Our simulation data
are not capable of directly confirming the predicted ampli-
tudes due to remaining, slow transients. However, the data
show no discrepancy with the RG predictions for all three
cases.

In order to have a test of the RG predictions that does not
contain slow transients, we turn in Sec. IV to the field res-
caling transformation in the field theory, which we use to
predict relations between pure and mixed reactions. Our
simulations verify that these relations hold with high accu-
racy.

Finally, we turn to the Smoluchowski approach, which is
presented in Sec. V. We begin by demonstrating that the
Smoluchowski solution for the A+A→ �0” ,A� reactions in d
=2 not only exhibits the logarithmic corrections, but also
gives the correct density amplitude A2,�. This is also germane
to the 3A→ �A reaction in d=dc=1 because both Smolu-
chowski approaches to this problem in the literature �3,10�
are constructed via a quasi-two-dimensional approach. We
show that these two approaches, when various omitted fac-
tors are included, reduce to the same Smoluchowski theory,
and further that this theory reproduces the same asymptotic
density as the RG approach.

A summary is presented in Sec. VI.

II. RENORMALIZATION GROUP CALCULATION

Our presentation in this section will follow closely the
formalism developed in �4�. The Doi-Peliti mapping of
reaction-diffusion systems to a field theory is by now a stan-
dard technique �1,11,12�, giving for the 3A→ �A reaction
the action

S =
 ddx dt��̄��t − D�2�� + c1�0�̄�3 + c2�0�̄2�3 + �0�̄3�3

− n0�̄��t�� . �5�

The first term in the integrand corresponds to the diffusion
process and provides the propagator for the field theory. The

higher-order terms correspond to the reaction and provide
vertices in the diagrammatic expansion. The Poisson initial
conditions are reflected in the initial term n0�̄�t=0�.

Here �0 is a nonuniversal, bare coupling constant associ-
ated with the microscopic reaction rate, while the coefficients
c1 and c2 depend only on �. These coefficients are deter-
mined by a field shift. The Doi-Peliti mapping first gives the
action in terms of fields �̂ and �, with the coupling terms
�0��̂3− �̂���3. To eliminate a “final term” ��tf� that compli-

cates the calculations �see �1,4� for details� the field shift �̂

=1+ �̄ is then employed, resulting in the coupling terms in
Eq. �5�, with the coefficients

c1 = 3 − � , c2 = 1
2 �3 − � ��2 + � � . �6�

The renormalization of this action �1,4�, necessary to ob-
tain finite calculations for d�1, is relatively straightforward,
requiring only renormalization of the coupling constant. An
arbitrary normalization time t0 is used to define a dimension-
less, renormalized coupling constant gR. The renormalization
group flow, for t	 t0, is described by the Callan-Symanzik
�CS� equation

n�t,n0,gR,t0� = �t0/t�d/2n„t0, ñ0�t�, g̃R�t�,t0… �7�

with the running initial density

ñ0�t� = n0�t/t0�d/2 �8�

and running coupling for d=dc=1 given by

g̃R�t� �
2�

�3 ln�t/
�
�9�

where 
 is some nonuniversal time constant related, via the
diffusion constant, to the short-distance cutoff of the field
theory. The coefficient in Eq. �9� is determined by the loop
integrals in the definition of the renormalized coupling con-
stant. The logarithmic time dependence is characteristic of
marginal operators at the upper critical dimension.

A loop expansion in terms of the bare coupling �0 and
initial density n0 is used for the right-hand side of Eq. �7� to
give the asymptotic t	 t0 density. For example, the tree-level
�zero-loop� diagrams may be summed by a Dyson equation
�4�, giving

n�0��t� =
n0

�1 + 2n0
2c1�0t�1/2 � �2c1�0t�−1/2. �10�

The coupling �0 /D is converted to gR and then replaced by
the running coupling g̃R. The initial density n0 is replaced by
ñ0, which grows as td/2 via Eq. �8�. This last step allows us to
keep only the large-n0 limit in the unrenormalized density
calculation. Any corrections due to finite n0 will renormalize
to subasymptotic contributions to the density. Finally, the
time is set to t0 and the prefactor in Eq. �7� is included,
giving the renormalized contribution

nR
�0��t� �

�t0/t�1/2

�2c1g̃RDt0�1/2 � � �3 ln t

4�c1Dt
	1/2

. �11�
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The higher-order diagrams give renormalized contribu-
tions at order �Dt�−1/2g̃R

�m−1�/2, where m is the number of
loops. Since g̃R�1/ ln t for large t, these represent sublead-
ing terms to the asymptotic density. Thus with Eq. �6� for c1
we obtain the leading order asymptotic density reported in
�4�, and given by Eq. �1�.

Up to this point we have summarized results from �4�.
Now we demonstrate that the leading corrections to the
asymptotic density are themselves universal. The renormal-
ized loop expansion with g̃R�1/ ln�t /
� takes the form

�Dt�1/2n�t� = A�ln�t/
� + B + C/�ln�t/
� + ¯ �12�

where A, B, C , . . . are universal coefficients. Nonuniversal
terms, apart from 
 above, are suppressed by negative pow-
ers of time. Reorganizing the expansion in terms of ln t via
�ln�t /
���ln t+ 1

2 ln 
 /�ln t+¯, we observe that the non-
universal 
 dependence does not enter until order 1 /�ln t.
Hence, B3,� represents a universal leading correction to the
asymptotic density.

This is in contrast to the A+A→ �0” ,A� reaction at the
upper critical dimension, for which the renormalized loop
expansion has the form �Dt�−1�A ln�t /
�+B+ ¯ �, and the 

dependence enters the leading correction.

Next we determine the coefficient. As presented in �4�, the
summation of all one-loop diagrams requires the use of the
tree-level density n�0��t�, given by Eq. �10�, and the tree-level

response function G�0��x , t1 , t2�= ���x , t2��̄�0, t1��0, where the
subscript on the angular brackets indicates a tree-level aver-
age. With the Fourier transform f�p�=
dx e−ipxf�x� we obtain

G�0��p,t1,t2� � � t1

t2
	3/2

e−Dp2�t2−t1� �13�

in the large-n0 limit, which is sufficient for our purposes.
From �4� the one-loop diagram contribution is given by

n�1��t� = 6

0

t

dt2

0

t2

dt1
 dp

2�
G�0��0,t,t2��− c1�0�n�0��t2�G�0�

��p,t2,t1�G�0��− p,t2,t1��− c2�0��n�0��t1��3 �14�

The factor of 6 results from the combinatorics of attaching
the response functions to the vertices. Evaluating Eq. �14�
and using the result in the right-hand side of the CS equation
�7� gives the one-loop contribution

nR
�1��t� �

9�2�c2

64c1
�Dt�−1/2. �15�

Substituting for c1 and c2 via Eq. �6� gives the value for B3,�
reported in Eq. �4�.

III. SIMULATIONS

In order to test our density calculations, we simulate the
3A→ �0” ,A ,2A� reactions in one dimension. We employ syn-
chronous dynamics, in which the particles are restricted to be
on all even or all odd numbered sites at a given time. All
particles are updated simultaneously, each particle randomly
hopping one site left or right, which corresponds with a lat-

tice spacing of unity to a diffusion constant D=1/2. Subse-
quent reactions occur between particles on the same site until
there are no more than two particles per site. This completes
a single time step.

For initial conditions, each lattice site is randomly as-
signed 0, 1, or 2 particles with probabilities p0, p1, and p2,
respectively. We choose the pi as follows. First, the particle
numbers are determined by a Poisson distribution with aver-
age n0. Then these particles are allowed to react until there
are no more than two particles per site, which gives the site
occupation probabilities �p0 , p1 , p2� as functions of n0 and �.
In order to reduce initial density transients, we then take the
limit n0→�, which gives

�p0,p1,p2� =��
1

3
,
1

3
,
1

3
	 , � = 0,

�0,
1

2
,
1

2
	 , � = 1,

�0,0,1� , � = 2.
� �16�

These probabilities are used as the initial conditions for our
simulations. All simulations were conducted on a lattice of
size 223�8.4�106 for 108 time steps, with 10–20 indepen-
dent runs for each case.

In Fig. 1 we show the densities for the three reactions,
plotted as n�t�2Dt versus ln t. The data are clearly inconsis-
tent with the rate equation result n� t−1/2, suggesting loga-
rithmic corrections. According to Eq. �1� the density plotted
with these axes should approach a straight line with slope
A3,�

2 . While the data show seemingly little curvature at late
times, we present evidence below that suggests the
asymptotic slopes have not been reached.

Also illustrated in Fig. 1 is the universality with respect to
the initial density, shown for the 3A→0” reaction. Initial den-
sities of n0=0.1 and 0.01 produce only transient deviations
from the n0→� data. The duration of the transient grows
with decreasing n0.

Next we show, in turn, the same data for each of the pure
reactions, as compared to the RG predictions. In Fig. 2, the

FIG. 1. �Color online� Plot of n�t�2Dt versus ln t for the 3A
→ �0” ,A ,2A� reactions, as labeled. The three curves for the 3A→0”
reaction correspond, from top to bottom, to initial densities n0

→�, 0.1, and 0.01. The rate equation prediction n� t−1/2 would
correspond to a horizontal line.
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density is multiplied by �Dt / ln t, the inverse of the expected
time dependence, and this is plotted versus time. According
to the RG prediction, the data should approach the constant
value A3,0 asymptotically. This value included on the plot,
and is seen to be well below the data. Also plotted is the
universal sum of the asymptotic density and leading correc-
tions. It is clear the leading corrections play a significant role
in the time range accessible to simulation. It is important to
note that the upper RG curve has the lower constant as its
asymptote.

Our simulations appear to be consistent with those of Ref.
�3�. We further conclude that the simulations are not in con-
flict with the RG calculations. The slow, logarithmic decay
of the nonuniversal transient is responsible for the remaining
discrepancy between the simulation data and the RG. Ex-
tending the simulations to asymptotia would appear to be
impossible.

Similar plots for the �=1 and �=2 reactions are shown in
Figs. 3 and 4. In each case, the data fall well above the RG
asymptote, but below the RG asymptote with the universal
leading corrections. Here we note, observing the vertical
scale, that our data are not consistent with the amplitudes
0.76 ��=1� and 0.93 ��=2� reported in �2�.

IV. MIXED REACTIONS AND THE FIELD RESCALING
TRANSFORMATION

The RG field rescaling transformation, described below,
predicts relationships between various mixed and pure reac-
tions, similar to the predicted amplitude ratio for the k=2
case. These predictions can be tested by simulations, and
furthermore the tests are not plagued by the logarithmically
slow transients found in the previous section.

As discussed in �4�, the action Eq. �5� includes the case of
mixed reactions, where different reactions may occur accord-
ing to specified probabilities. Specifically, let q� be the prob-
ability that � particles remain after three particles meet, with
q0+q1+q2=1. These reaction rates carry linearly through the
Doi-Peliti formalism from the master equation to the field
theory, giving the same action �5�, with the coefficients

c1 = �
�=0

2

�3 − � �q� = 1 + 2q0 + q1, �17�

c2 = �
�=0

2
1

2
�3 − � ��2 + � �q� = 2 + q0 + q1, �18�

when expressed in terms of q0 and q1. We can write the
universal density amplitudes in Eq. �3� in terms of c1 and c2
as

A3,� = � �3

4�c1
	1/2

, B3,� =
9�2�c2

64c1
, �19�

via Eqs. �10� and �15�. Thus we have a prediction for the
density for any mixed reaction as well as the pure reactions.

A field rescaling transformation on the action Eq. �5� may
be used to predict relations between various pure and mixed
reactions. The transformation �→b� and �̄→b−1�̄ leaves
the diffusion part of the action unchanged, while transform-
ing the coupling prefactors and initial density according to

c1 → b−2c1, c2 → b−1c2, n0 → bn0. �20�

Thus, for example, the pure �=2 action, with c1=1 and c2
=2, can be transformed by a factor b=2/3 to a mixed reac-
tion with �q0 ,q1 ,q2�= �1/4 ,3 /4 ,0�. As a result, the field-

FIG. 2. �Color online� Plot of the density scaled by its expected
time dependence versus time for the 3A→0” reaction. The data are
averaged over 20 independent runs. Also shown are the RG predic-
tions for the asymptote, a constant on this plot, and the asymptote
with universal leading corrections.

FIG. 3. �Color online� Plot of the 3A→A simulation data, with
axes and RG predictions as described in Fig. 2. The data are aver-
aged over 15 independent runs.

FIG. 4. �Color online� Plot of the 3A→2A simulation data, with
axes and RG predictions as described in Fig. 2. The data are aver-
aged over ten independent runs.
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theory loop expansion for density in the 3A→2A reaction,
when multiplied by b, will match that of the mixed reaction
to all orders in the n0→� limit. The only difference in the
resulting renormalized densities will be short-lived transients
from the initial densities and irrelevant couplings, and a
longer-lived but relatively small transient from differing non-
universal time constants 
 in the marginal renormalized cou-
pling. Since the 
 values may be quite similar or identical for
models which implement the reaction the same way, the RG
ultimately predicts that the density from different systems
may be closely related by the field rescaling transformation,
even at times accessible to simulation. This provides an ad-
ditional test of the RG formalism.

In Fig. 5 we show simulation data for the pure 3A→2A
reaction along with two mixed reactions defined by the prob-
abilities �q0 ,q1 ,q2�= �1/4 ,3 /4 ,0� and �1/9 ,5 /9 ,1 /3�. Ac-
cording to the field rescaling transformation, these mixed
reactions are both related to the �=2 case with rescaling
factors b=2/3 and 3/4, respectively. The pure reaction data
are also plotted multiplied by b, which is seen to match quite
well with both cases of mixed reaction data. Evidently the
nonuniversal time constant 
, which would be the only
source of a slow transient difference, is essentially the same
in the various reactions. We note that the reactions were
implemented with the same microscopic rules, i.e., synchro-
nous dynamics with a maximum occupancy of two particles
per site and reaction occurring only between particles on the
same site.

V. SMOLUCHOWSKI THEORY

Smoluchowski theory is a mean-field theory based on the
correlation function, or conditional density, as compared to
rate equations which are based on the density. Interestingly,
Smoluchowski theory is capable of capturing much of the
behavior of the d�dc, fluctuation-dominated systems missed
by the rate equations: for the A+A→ �0” ,A� reactions it gives
the correct upper critical dimension dc=2, correct decay ex-
ponents above and below dc, and even exhibits logarithmic
corrections at the critical dimension. However, the approach

does involve an uncontrolled approximation and is known to
have limitations. For example, the Smoluchowski density de-
cay amplitude in d=1 differs from exact solutions by a factor
of � /2 �13�, and in multispecies reactions even the expo-
nents can be wrong �14�.

However, Smoluchowski theory gives, surprisingly, the
correct amplitude for the kA→ �A reaction at the upper criti-
cal dimension dc=2/ �k−1� for k=2 and 3, as we demon-
strate in this section. We first present the basic approach for
two-particle reactions A+A→ �0” ,A� in some detail, as this is
necessary for getting the various factors correct and for gen-
eralizing to the three-particle case.

A. A+A\ „0” ,A… reaction in d=2

A coordinate system origin is attached to one of the par-
ticles. The motion of the other particles in this coordinate
system remains diffusive with an effective diffusion constant

D̃=2D, as can be straightforwardly verified from the con-
tinuum Green’s functions for the diffusion equation. The
Smoluchowski theory is then built on the conditional density
n�r , t�, where r is the radial distance from the particle at the
origin. First, n�r , t� is assumed to evolve via the diffusion
equation,

�

�t
n�r,t� = D̃�2n�r,t� , �21�

subject to boundary conditions n�R , t�=0, where R is the
radius of the fixed particle, and n�r→ � , t�=n�, and initial
condition n�r ,0�=n�. The solution of Eq. �21� is used to

determine the particle current j=−D̃�n�r , t�, which in turn
gives the flux of particles toward the origin,

F = − � dS n̂ · j�r=R = − SdD̃� �n

�r
	

r=R

�22�

where Sd is the surface area of the d-dimensional unit hyper-
sphere. The flux F then determines the decay rate of the
probability p that the particle at the origin has not been vis-
ited by another particle, i.e., ṗ=−Fp.

This can be turned into an equation for the density decay
by considering each particle in turn to be the fixed particle.
Since each meeting of particles involves two particles and
removes 2−� particles, the density will decay according to

dn

dt
= −

2 − �

2
Fn . �23�

To close these equations, n� is taken to be n�t�. This
amounts to a quasistatic approximation, since the time de-
pendence of the large-r boundary condition is neglected
when solving Eq. �21�. The second approximation in Smolu-
chowski theory is that the exterior particles are treated as
only diffusing, and reactions are reincorporated in a mean-
field way via the decaying density used as the large-r bound-
ary condition.

Now consider the case of d=2. For times t	R2 /D the
solution to Eq. �21� in the region R�r
 �Dt�1/2 is given by
�15�

FIG. 5. �Color online� The density n�t� for the 3A→2A reaction,
as well as for two mixed reactions as labeled �see text�. Also plotted
are the 3A→2A data scaled by factors of 3 /4 and 2/3, which over-
lay the mixed reaction data as predicted by the field rescaling
transformation.
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n�r,t� =
2n�

ln t
ln�r/R� . �24�

The resulting flux is F=4�n�D̃ / ln t. Taking n�→n�t� gives,
via Eq. �23�,

dn

dt
= −

4��2 − � �D
ln t

n2, �25�

where we have substituted back the laboratory frame diffu-
sion constant. This has the form of the mean-field rate equa-
tion with a time-dependent rate constant that decays as
1/ ln t. Equation �25� results in an asymptotic density of the
form n�A ln t / �Dt�, with the amplitude matching the RG
value, Eq. �2�, and the exact solution �6�. We believe this to
be the first demonstration that Smoluchowski theory predicts
the correct amplitude at the upper critical dimension.

Finally, we comment on the case where the particles are
not circular. The boundary condition for the conditional den-
sity remains n�r , t�=0 for points r on the particle surface.
While we are unaware of a formal exact solution to Eq. �21�
for this case, we appeal to the quasistatic approach presented
in �10�. The conditional density is assumed to obey Laplace’s
equation in the region exterior to the particle at the origin but
within the diffusion radius RD=��Dt�1/2, where � is an arbi-
trary constant. The outer boundary condition is taken to be
n�RD , t�=n�. For a circular particle, this approach reproduces
the known solution Eq. �24�. For a noncircular particle, it is
straightforward to demonstrate via separation of variables
that the solution is unmodified apart from an additive con-
stant �with respect to r� and additional subasymptotic terms
that decay as powers of t. This suggests that the asymptotic
Smoluchowski flux and subsequent density are universal
with respect to particle shape.

B. 3A\ �A reaction in d=1

Two approaches have been used to extend Smoluchowski
theory to the case of three-particle, one-species reactions in
one dimension. Both approaches yielded densities with the
logarithmic correction to the rate equation result.

Krapivsky’s method �10� is to consider a fixed particle
and then construct pseudoparticles in the d=2 plane out of
every possible pair of particles, i.e., real particles at points x1
and x2 in the one-dimensional system would contribute a
pseudoparticle at �x1 ,x2�. In this viewpoint a three-particle
reaction corresponds to a pseudoparticle meeting the fixed
particle at the origin. Krapivsky proposes to approximate the
pseudoparticle dynamics as independently diffusing par-
ticles, even though their motion is correlated, with the net
result that the problem reduces to the d=2 two-particle reac-
tion. The only difference is that n� represents the pseudopar-
ticle density, which is given by n�t�2, where n�t� is the d=1
particle density. The corresponding equation becomes
�tn�−Dn3 / ln t, which exhibits the expected n��ln t /Dt
behavior.

The second approach, due to Oshanin, Stemmer, Luding,
and Blumen �OSLB� �3�, is based on the three-point correla-
tion function, which due to translational invariance is a func-

tion of two distances. OSLB show that this correlation func-
tion, in the absence of reactions, satisfies an anisotropic two-
dimensional diffusion equation in the plane defined by the
two arguments. Reactions are then incorporated into this
pseudo-two-dimensional system via the Smoluchowski ap-
proach.

We argue that at the level of the Smoluchowski approxi-
mation these two approaches are the same. The three-point
correlation function viewed in the two-dimensional plane is,
in fact, the average of Krapivsky’s pseudoparticles over sto-
chastic initial conditions and diffusion hops. Such an averag-
ing is implicit in the Krapivsky method in going to the
pseudoparticle diffusion equation, so at this point the two
approaches should be formally identical. We now proceed to
solve this system.

First, we observe that Krapivsky’s pseudoparticles indeed
satisfy the same anisotropic diffusion equation as OSLB. Let
yi�t��xi�t�−xi�0� represent the displacement at time t of the
ith particle from its initial position. The single-particle
Green’s function is G�y , t��e−y2/�4Dt�, where we neglect nor-
malization factors for clarity. We attach a coordinate origin
to particle i=0 by introducing the variables ui=yi−y0. Now
consider a pair of exterior, i�0 particles, which we take to
be i=1 and 2. The combined Green’s function in the Smolu-
chowski frame is given by

G2�u1,u2,t� =
 dy0G�y0,t�G�y1,t�G�y2,t�

� exp�−
1

6Dt
�u1

2 + u2
2 − u1u2�	 . �26�

The u1u2 cross term indicates anisotropic diffusion, which
may be diagonalized by a � /4 rotation. Taking v1= �u1

+u2� /�2 and v2= �u1−u2� /�2 gives

G2�v1,v2,t� � exp�−
v1

2

12Dt
−

v2
2

4Dt
	 . �27�

By comparison with the single-particle Green’s function we
find that in the v1 direction the effective diffusion constant is
D1=3D, while in the v2 direction D2=D. This can be under-
stood by noting that changes in y0, that is, the motion of the
particle at the origin, affect u1 and u2 identically, thus en-
hancing the motion of their sum relative to their difference.

To make the Smoluchowski approximation one then
solves this anisotropic diffusion equation in the v plane. We
first rescale ṽ1=v1 /�3 and ṽ2=v2 to get isotropic diffusion.
The rescaling affects the shape of the interior boundary con-
dition, but as argued above, this should not affect the
position-dependent part of the density at distances small
compared to �Dt�1/2. Mapping back to the v plane we find

n�v1,v2,t� � �n�/ln t�ln�v1
2/3 + v2

2� + const �28�

in the region v1 ,v2
 �Dt�1/2. The particle current in the
pseudoparticle plane is then

j = − �3D
�

�v1
+ D

�

�v2
	n�v1,v2,t� �29�
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=−
2n�D

�v1
2/3 + v2

2�ln t
�v1v̂1 + v2v̂2� . �30�

Interestingly, current is directed radially inward despite the
anisotropy. The flux through a circular region encompassing
the fixed particle is

F =
2n�D

ln t



0

2� d�

1

3
cos2 � + sin2 �

=
4�3�n�D

ln t
. �31�

Now we generate an equation for the density n�t� of our
one-dimensional system. As before, we generate an equation
for the density by considering each particle in turn to be
fixed at the origin. This brings a factor of �3− � � /3 since
each reaction removes 3−� particles and is counted three
times. Furthermore, since each particle pair contributes two
pseudoparticles, i.e., at �x1 ,x2� and �x2 ,x1�, the flux of
pseudoparticles to the origin double counts the reactions with
the particle at the origin. The net result is

dn

dt
= −

3 − �

6
Fn = −

2�3�3 − � ��D

3 ln t
n3 �32�

where in the last step we have taken n�=n�t�2. As with the
A+A→ �0” ,A� reactions in d=2, this has the rate equation
form with a 1/ ln t reaction rate. The resulting density is of
the expected form n�A�ln t / �Dt�, with the amplitude A
matching the RG result Eq. �2�. However, we note that the
universal leading corrections predicted by the RG are absent,
i.e., according to Smoluchowski theory B3,�=0.

Our result for the Smoluchowski amplitudes differs quan-
titatively from that of Krapivsky �10�, who did not consider
the anisotropic nature of the diffusion, and from that of
OSLB �3�, who omitted the factor of 3 due to the number of
particles removed in 3A→0” and the factor of 1 /2 due to
double-counting the rate of reactions at the origin. With these
factors included, the OSLB result becomes equivalent to Eq.
�32�.

VI. SUMMARY

The present work was motivated by the apparent discrep-
ancy between the simulations and RG predictions. This dis-

crepancy was resolved by demonstrating that the densities
measured by simulation, which appear to be asymptotic in
plots such as Fig. 1, are in fact consistent with the RG pre-
dictions of significant subasymptotic contributions, as dem-
onstrated in Figs. 2–4. Unfortunately, we also conclude that a
more precise test of the RG predictions by direct comparison
to simulations is not possible, owing to the slow decay of the
higher-order terms in a 1/�ln t expansion.

In view of this, it is significant that exact solutions are
available for the A+A→ �0” ,A� reactions in d=dc=2, which
do provide a strong test of the RG results. It is also signifi-
cant that relations predicted via the field rescaling transfor-
mation between pure and mixed reactions appear to hold
with no slow transients, as verified by simulation. Given that
these k=2 amplitudes are correct, that the field rescaling
transformation predictions hold, that there is no discrepancy
with simulation in the pure 3A→ �A reactions, and that in
principle no approximation is made in the RG treatment, it
seems reasonable to believe the RG amplitudes reported here
are exact results.

As is the usual benefit of an RG calculation, these ampli-
tudes are also demonstrated to be universal, thus the predic-
tions are subject to testing by future exact solutions for any
particular realization of the dynamics.

A final result of our study is the demonstration that there
is a single Smoluchowski theory for the 3A→ �A reaction in
one dimension, and that this approximate theory indeed
yields the exact asymptotic density. Since this property is
shared by the A+A→ �0” ,A� reaction in d=2, it appears to be
a general feature of Smoluchowski theory that it succeeds
quantitatively at the upper critical dimension. It may be pos-
sible to find an underlying explanation for this property,
which would be an interesting direction for future work.
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