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Near-critical thermodynamics in the hard-sphere (1, 1) electrolyte is well described, at a clas
level, by Debye-Hückel (DH) theory withs1, 2d ion pairing and dipolar-pair-ionic-fluid coupling.
But DH-based theories do not addressdensity fluctuations. Here density correlations are obtained
by functional differentiation of DH theory generalized tononuniformdensities of various species. The
correlation lengthj diverges universally at low densityr assTrd21y4 (correcting the generalized mean-
spherical approximation). Whenr ­ rc one hasj . j

1
0 yt1y2 as t ; sT 2 TcdyTc ! 01, where the

amplitudesj1
0 compare informatively with experimental data.

PACS numbers: 61.20.Qg, 05.40.+j, 05.70.Jk, 64.60.Fr
,2

ic

t

l
ct

n

a
a
ca
,3
r

y

i)
of
l

o
im
e
8

r
he

in
e

he
H
th

de-
,

.

nd

ity

le

or

n-
ns
s

on

p-

d

-

nd

i-

in
.

There is a major puzzle in the theory of fluidcriticality
in model ionic systems [1] because experiments [1
reveal that certain electrolyte solutions exhibitclassical
(i.e., van der Waals as against the usual Ising-type) crit
exponents over as much as 1 to 3 decades whenjtj ;
jT 2 TcjyTc ! 0. Probably there is always a scalet3

below which the behavior crosses over from classical
Ising; but attempts to explain howt3 might vary from
,1 to ,1024 have so far been unconvincing. Initia
efforts have addressed the simplest case: the “restri
primitive model” (RPM), consisting ofN ­ N1 1 N2 ;
Vr hard-sphere ions of diametera, carrying charges6q
in a medium of dielectric constantD. The hope has bee
to decide the universality class (and crossover scalet3 if
appropriate) of the RPM [1,3].

To that end Fisher and Levin [3] have shown th
the original Debye-Hückel (DH) theory [4] provides
remarkably good, albeit classical account of the criti
thermodynamics as judged by current simulations [1
However, for a satisfactory description, pure DH theo
must be extended, (i) following Bjerrum (Bj) [1,3], b
recognizing bound, neutral but dipolars1, 2d ion pairs
in equilibrium with the free ions, (ii) by including the
dipolar-ionic (DI) solvation free energy [1,3], and (ii
by allowing for hard-core (HC) repulsions. In terms
Tp ; kBTDayq2, these DHBjDIHC theories yield critica
points in the rangeTp

c . 0.052 to 0.057 as compared with
0.052–0.056 from recent simulations [3(b)].

Now, following Ebeling and Grigo [5], one can als
pursue theories based on the mean spherical approx
tion (MSA); but, for reasons currently obscure, such th
ories, even when improved in various ways [3(b),5–
yield estimates forTp

c too high by (35–50)% [9]. Note
also that the hypernetted chain (HNC) and other integ
equations have no solutions in the critical region. Furt
study of the DH-based theories is thus well justified.

To understand properly the nature of a critical po
one must go beyond thermodynamics to study the ord
parameter fluctuations. But, even for ionic fluids, t
order parameter is just the overall density. Now D
based theories illuminate the Debye screening of
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bare Coulombic potential, as seen in the exponential
cay of thecharge-chargecorrelations, but, unfortunately
they say little about the overalldensity-density corre-
lation function,Grrsrd ; krsrdrs0dl 2 r2 ; rhdsrd 1

rf g2srd 2 1gj. Our aim here is to rectify this deficiency
Note, especially, that the Fourier transform ofGrrsrd

yields thek-dependent susceptibility

xskd ­ Ĝrrskdyr ­ xs0dyf1 1 j2k2 1 · · ·g , (1)

which diverges atk ­ 0 at criticality. Indeed,xskd de-
termines the critical opalescence and turbidity [2] a
specifies the (second-moment) correlation lengthjsT , rd
which diverges asj1

0 ytn when t ! 01 at r ­ rc; fur-
thermore,xskd approaches the reduced compressibil
xs0d ­ rkBTKT (or its solution analog) whenk ! 0 [10].

As stressed by Fisher and Levin [3(a),7], it is valuab
to know the amplitudej1

0 evenwithin a classical theory
since, via the Ginzburg criterion, that offers a route f
estimating a crossover range,6t3, outside which close-
to-classical critical behavior might be realized [11].

In this Letter we show how DH theory can be ge
eralized to yield, in a natural way, density fluctuatio
diverging at criticality [12–14]. The method extend
straightforwardly to the full DHBjDIHC theories [3] as
shown below. In particular, we calculate the correlati
length jsT , rd explicitly within the simplest generalized
(GDH) theory, and numerically, at improved levels of a
proximation. At low densities a novel,universal diver-
genceof jsT , rd is predicted for allT . In the critical
region the results are, as expected, classical withn ­

1
2 ;

but the amplitudesj1
0 prove informative and are compare

with experiment [2] in classical and Ising domains [11].
Explicitly we proceed, following [3], by approximat

ing the total Helmholtz free energyFsT , rd by a sum of
terms representing ideal gas, ionic fluid, dipole-ion, a
hard-core contributions; but we now aim for afunctional
bFfhrjjg ­

R
ddrF wherer1srd ­ r1srd 1 r2srd and

r2srd are slowly varying local free-ion and dipolar dens
ties, whileb ­ 1ykBT . Since we wish to probe only the
density fluctuations, we follow DH theory and mainta
electroneutrality,r1srd ­ r2srd, on long length scales
© 1996 The American Physical Society
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Of central concern are the direct correlation functio
given by functional differentiation (withi, j ­ 1, 2) as

Cijsr 2 r0d ; d2bFydrisrddrjsr0djrlsr00d­rl
, (2)

where therl sl ­ 1, 2, 2d are theoverall equilibrium
densities. Note that the various terms inF contribute
linearly to theCij and, in particular,Ĉideal

ij skd ­ dijyrj.
However, since thetotal local density isrsrd ­ r1srd 1

2r2srd [15] one finds, with the aid of the Ornstein-Zernik
(OZ) matrix relation forĈijskd [10], the result

1
rxskd

­
1

Ĝrrskd
­

Ĉ11skdĈ22skd 2 fĈ12skdg2

4Ĉ11skd 2 4Ĉ12skd 1 Ĉ22skd
,

from which j follows by expansion ink. More expedi-
tiously one may impose infinitesimal density variations

rjsRd ­ rjf1 1 Dj cosk ? rg , (3)

and expand the reduced free-energy densitybFyV
in powers of Dj : The quadratic term is then
1
4

P
i,j rirjĈijskdDiDj , from which theĈij follow.

Evidently, the crucial issue is to extend DH theo
to nonuniform but slowly varying mean densities of t
various species. Note first that the free-ion contribut
becomes [16], via the Debye charging process [4],

FDH ­
Z

ddr1r1sr1d
Z q

0
dq1c1sr1, q1d , (4)

wherec1sr1; q1d is the mean electrostatic potential at t
site r1 of a fixed ion due to all the other ions when ea
carries charges6q. If fsr, r1d is the mean electrostati
potential at a general pointr when the ion 1 is fixed atr1,
one has [4]c1sr1d ­ limr!r1 ffsr; r1d 2 q1yDjr 2 r1jg.
DH derived their celebrated equation forf by approxi-
mating the probability density for a particle of speci
l s­ 1, 2, 2d with chargeql by rl expf2bqlfsrdg .
rlf1 2 bqlfsrdg [4]. (Noteq2 ­ 0.) In the same spirit
we now propose to replace the constant partial (spec
density rl by rlsrd the (slowly varying) nonuniform
density [16]. Our generalized (GDH) equation then rea

f=2
r 2 k̃2srdQ1srdgfsr; r1d ­ 24pq1dsr 2 r1dyD , (5)

where, utilizing us yd, the Heaviside step function
Q1srd ; usjr 2 r1j 2 ad embodies the crucial hard-cor
boundary condition [4], while the spatially varyin
coefficient

k̃2fhrjjg ­ 4pb
X
l

q2
lrlsrdyD ­ 4pbq2r1srdyD , (6)

reduces to the standard expression fork2, the inverse
Debye length squared, whenrlsrd ­ rl is constant [4].

To solve (5), we adopt (3) and expandf in powers
of D1. The coefficient ofDn

1 can be found recursively
settingk̃ ­ k andr1 ­ 0, using the Green’s function

G sr; r0d ­
k

4p

X̀
,­0

G,skr, kr 0dP,

µ
r?r0

rr 0

∂
, (7)

where, employing modified spherical Bessel functions,
s)

s

G,ss, s0d ­
s,

,

s,11
.

2
k,21sxds,s0,

k,11sxdx2,11 , s, s0 , x ,

­ s2, 1 1d
s,

,k,ss.d
k,11sxdx,12 , s, # x # s. ,

wherex ­ ka, s. ­ maxss, s0d, s, ­ minss, s0d, while

G,ss, s0d
2, 1 1

­
i,11sxd
k,11sxd

k,ssdk,ss0d 1 i,ss,dk,ss.d , (8)

for s, s0 . x, andP,smd denotes a Legendre polynomial
Substituting in (4) and expandinĝCrr ; 1yĜrr to

Osk2d yields j2. This requires only the, ­ 0 and 1
terms in (7). Consequently, within pure DH theory th
correlation length is given explicitly by (recallx ­ ka)

j2

a2 ­
xDHs0d
24Tpx2

∑
ln

s1 1 xd10

s1 1 x 1
1
3 x2d9

2
x 2 5x2 2 8x3

2s1 1 xd2

∏
(9)

where1yxDHs0d ­ 1 2 xy4Tps1 1 xd2 [3].
Now corrections to this result enter only i

Osx2d ­ Osrd, i.e., beyond the leading low-densit
behavior which, in fact, exhibits the noveldivergence

jsT , rd ­
1
4 sby36prd1y4f1 1

1
8 kb 1 Osrpdg , (10)

when r ! 0, whereb ­ q2yDkBT is Bjerrum’s length.
This expression for the density-density correlation leng
is independentof the hard-core diametera and is thus
universal! We believe it represents theexact limiting
behavior not previously noted. At low densities Debye
screening lengthjD ­ 1yk controls the decay of the
charge correlations [4(b),17]. It also diverges universa
when r ! 0; but since we findj ø

p
bjDy48, the

density correlations then decay on ashorter scale than
the charge correlations.

Our conclusion (10) can be checked further by using
HNC relation cij ø 2buij 1

1
2 h2

ij [4(b),17,18], which
is probably generally valid in the low-density limit [17
whenhij ; gij 2 1 decays fast. This leads to [16,19]

1yxskd ø 1 2
1
2 k2b tan21sky2kdyk sr ! 0d , (11)

which, expanding to orderk2, yields the DH limiting law
for xs0d and reproduces (10). However, thetrue corre-
lation length,j`sT , rd, that determines the OZ-like ex
ponential decay ofGrrsrd is determined by the dominan
zeros of (11). These give the different expression

j` ø 1
2 jDh1 1 2 expf24ysprb3d1y2g 1 · · ·j , (12)

[16,19] which diverges assTyrd1y2. ThusGrrsrd has a
small but longer-range tail decaying slightlymore slowly
thane22kryr2, thesquaredcharge-charge correlation.

By contrast to (10) and (11), one finds [16] that th
GMSA or generalized mean-spherical approximati
[7,18] predicts1yxskd ø 1 2

1
2 kbyf2 1 k2aykg when

r ! 0. This givesxs0d correctly toOsr1y2d but leads to

jGMSA ø j`GMSA ø s 1
2 ajDd1y2 ­

1
2 sa2yprbd1y4. (13)
2907
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Thus jGMSA also diverges asr21y4, but the power ofT
differs and the result isnonuniversal,depending ona. This
reveals an unsuspected defect of the GMSA [20], wh
was especially devised to satisfy a variety of correlatio
function sum rules [18]. (The original MSA gives only
hard-sphere result forGrrsrd; see, e.g., [10].)

In the critical region the pure GDH result (11) d
verges with exponent2n ­ 1 at Tp

c ­
1
16 , xc ­ 1, rp

c ­
1y64p. The correlation length amplitude is found to be

sj1
0 yadDH ­ f1 1

20
3 ln2 2 6 ln 7

3 g1y2 . 0.7329 . (14)

This is surprisingly close to the GMSA value 0.75 [7
althoughTp

c andrp
c differ significantly [9].

Although the pure GDH theory based on (4)–(6)
sufficient at low density, one must, as mentioned ab
[3], include ion pairing to study the critical region.
Bjerrum’s ansatz for the association constant is appea
but Ebeling’s result is superior [3] and used here. (N
criticality the numerical changes are minor.) In simp
“DHBj” theory the ion pairs are supposedideal [3] and
one findsĈ22 ­ 1yr2, Ĉ12 ­ 0, andĈ11skd is unaltered.
But that is too naive and proves unphysical: It is essen
to include thedipole-ionic(DI) interactions[3].

We calculate the newnonuniformDI effects by using
the GDH equation, (5), but with a dipolar source ter
i.e., 1 and 2 point charges atr1 ­ 6

1
2 a1, where a1

specifies the orientation and typical charge separat
a1sTd ; ja1j [3]. The associated bispherical exclusio
zone is approximated by a sphere of radiusa2 [3]. Thus
the Green’s function (8) still applies, but withx ! x2 ;
ka2. At low T , a1 ­ a (“contact”) anda2 ­ 1.16198a
(angular average) are reasonable [3] and the sensitivit
these values is readily tested [3(b)].

Angular integration over the dipole orientation
is complicated, yielding the solutionfdipsr; r1d as
a multiple sum with Clebsch-Gordan coefficien
C,1,,2 sm1, m2j,, md. To obtainc2sr; qd for use in the pair
analog of (4), the self-potential of the source dipole
subtracted. ToOsk2d one needs only, ­ 0, 1, 2, which
gives explicit results with low-density expansions

ĈDI
11 skd ­

xx2
1r2

20Tpr
2
1

Ω
1 2

40
27 x2 1

25
21 x2

2 1 Osx3
2 d

2
5

36
k2

k2 f1 1
7
15 x2

2 1 Osx3
2 dg 1 Osk4d

æ
,

ĈDI
12 skd ­ 2

xx2
1

12Tpx2r1

Ω
1 2

6
5 x2 1

8
9 x2

2 1 Osx3
2 d

2
5

18
k2

k2 fx22
3
5 x2

2 1
1
5 x3

2 1 Osx4
2 dg 1 Osk4d

æ
,

wherex1 ; ka1 while ĈDI
22 skd ­ 0 [16].

Finally, hard-core exclusion may be approximated by
cal, free-volume termsF HC ­ 2

P
i ri lnf1 2

P
j Bjrjg

with (i) B1 ­
1
2 B2 ­ 4a3y3

p
3 to yield bcc close packing

or (ii) B1 ­
1
2 B2 ­ 2pa3y3 for the exact ion-ion second

virial coefficient [3]; or (iii), perhaps preferably, by the lo
2908
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6
p

∑µ
z0 2

z
3
2

z
2
3

∂
lns1 2 z3d 2

3z1z2

1 2 z3
2

z
3
2

z3s1 2 z3d2

∏
,

wherezn ; 1
6 p

P
i risrdsn

i with si the hard-core diam-
eter of speciesi; we take s

3
1 ­

1
2 s

3
2 ­ a3. For den-

sities near critical, only the second virial coefficien
prove significant. Being local, the approximations (i)–(i
give ĈHC

ij skd independent ofk. Nonlocal effects are eas
ily included at the second-virial-coefficient level; but th
changes the critical amplitudej1

0 by less than 1%.
For the DHBjDI theories the equilibrium equations r

quire numerical solution. Figure 1 shows the resulti
inverse square correlation lengths vsTp on the critical
isochore for various levels of approximation. The line
approach of all plots toj22 ­ 0 represents the expecte
classical predictionn ­

1
2 . The effects of the DI cou-

pling are less dramatic nearTc than might have been
guessed. With the assignmentsa1 ­ a, a2 . 1.162a
[3] the critical amplitudes arej1

0 ya . 0.7511, 0.7776,
0.8186, and 0.8147 for pure DHBjDI theory and with H
treatments (i)–(iii), respectively. Increasinga1 to 1.15a
lowersj

1
0 by no more than 8.3%. Similarly, takinga2 to

be 1.150a leads to a reduction of less than 1.1%. (T
changes inTp

c , rp
c , etc. can be found in [3(b)].)

To compare our results forj1
0 with experiments on

systems that might plausibly be modeled by the RP
one needs not only data forj

1
0 [2] but also some estimat

of the effective hard-core diameter,a. That might be
obtained by matching therp

c predictions to experiment
To that end, we re-express our results above asj

1
0 r

1y3
c .

0.2275, 0.2302, 0.2375, and 0.2368 (in contrast to 0.12
for pure DH theory and 0.1828 for the GMSA [7]).

Beyond that one must recall that our theory is class
with n ­ nMF ­

1
2 , whereas observations indicate th

Ising valuenIs . 0.63 or crossover to that fort & t3.

FIG. 1. Inverse square of the density-density correlat
length, jsT , rd, on the critical isochore according to (a) pu
DH theory; (b) with Bjerrum association and dipole-pair-ioni
fluid coupling (DHBjDI) with a1 ­ a, a2 ­ 1.16198a; (c)–(e)
with hard-core terms (i)–(iii): see text.
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However, for 3D lattice gases, which are described
nIs for all t & 1, the mean-field estimates forj1

0 , say
j

MF
0 , agree with numerical estimates, sayj

Is
0 , to within

10% [22] (for various lattice structures). On the othe
hand, if crossover is found, the fits fort , t3 andt . t3

should roughly obey the matching formulajIs
0 yj

MF
0 ­

st3dnIs2nMF . Data for Na1ND3 with t3 . s7 9d 3 1023

have been fitted in both regions [2(a),2(c)] and confirm t
relation. For this system we findjIs

0 r
1y3
c ­ 0.34 6 0.03,

which is some 40% to 50% above our estimates. F
Pitzer’s salt [2(b),2(e)] we may postulate a crossover
t3 . 1 3 1024 [1]: This yieldsj

Is
0 r

1y3
c ­ 0.21 6 0.04

which encompasses our values. Tetra-n-butyl-ammonium
picrate in n-tridecanol [2(d)] displays crossover and w
find j

Is
0 r

1y3
c . 0.22, close to our prediction. Finally, for

the same salt in other solvents [2(f)] quite similar valu
of j

Is
0 fit the turbidity data. Overall the agreement i

encouraging when using the Ising-fitted amplitudes. It
puzzling, but perhaps significant, that in the mean-fie
region outsidet3 the values ofjMF

0 r
1y3
c are all larger (by

factors of 2–3) than our classical theory predicts!
In conclusion, we have shown how to calculate densi

density correlations within DH theory and its extension
[3]. At low densities the correlation length,jsT , rd, di-
verges in unexpected but universal fashion potentia
amenable to experimental check. In the critical regio
comparison with experiments on electrolytes proves
structive and raises further questions. More concrete
the present theory enables the observed classical-to-Is
crossover to be addressed via the Ginzburg criterion [3,1

A naive extension of the functional approach outlined
not sufficient for studying the charge correlations at high
densities since, whenk ! 0, the associated density per
turbations, even when infinitesimal, induce a macrosco
charge imbalance. However, approaches which se
rate out the long-range Coulombic contributions [17,2
should lead to progress.

We are indebted to Dr. David Chandler for a stimula
ing comment that led to this work, to Dr. J. M. H. Leve
Sengers and Dr. Simone Wiegand for informative discu
sions, and to Dr. J. D. Weeks, Dr. R. Evans, and Dr.
Stell for helpful comments on the manuscript. The NS
provided support through Grant No. CHE 93-11729.
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