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Density Fluctuations in an Electrolyte from Generalized Debye-Huickel Theory
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Near-critical thermodynamics in the hard-sphere (1, 1) electrolyte is well described, at a classical
level, by Debye-Hiickel (DH) theory witli+, —) ion pairing and dipolar-pair-ionic-fluid coupling.
But DH-based theories do not addredsnsity fluctuations. Here density correlations are obtained
by functional differentiation of DH theory generalized nionuniformdensities of various species. The
correlation length¢ diverges universally at low densigy as(Zp)~'/* (correcting the generalized mean-
spherical approximation). Whem = p. one hast = & /t'/?> ast = (T — T,)/T. — 0+, where the
amplitudesé, compare informatively with experimental data.

PACS numbers: 61.20.Qg, 05.40.+j, 05.70.Jk, 64.60.Fr

There is a major puzzle in the theory of flugdticality  bare Coulombic potential, as seen in the exponential de-
in model ionic systems [1] because experiments [1,2Ftay of thecharge-chargecorrelations, but, unfortunately,
reveal that certain electrolyte solutions exhibiassical they say little about the overaliensity-density corre-
(i.e., van der Waals as against the usual Ising-type) criticdation function,G,,(r) = (p(r)p(0)) — p> = p{s(r) +
exponents over as much as 1 to 3 decades wHes  p[ g>(r) — 1]}. Our aim here is to rectify this deficiency.

|T — T.|/T. — 0. Probably there is always a scalg Note, especially, that the Fourier transform@f , (r)
belowwhich the behavior crosses over from classical toyields thek-dependent susceptibility
Ising; but attempts to explain howy might vary from y(k) = Gpp(k)/p — v O)/[1 + &K + -], Q)

~1 to ~10~* have so far been unconvincing. Initial

efforts have addressed the simplest case: the “restrictathich diverges ak = 0 at criticality. Indeed,y (k) de-
primitive model” (RPM), consistingaV = N* + N~ =  termines the critical opalescence and turbidity [2] and
Vp hard-sphere ions of diameter carrying chargestq  Specifies the (second-moment) correlation lengfi, p)

in a medium of dielectric constafit. The hope has been Which diverges agy /t” whent — 0+ at p = p,; fur-

to decide the universality class (and crossover sgali¢  thermore, y (k) approaches the reduced compressibility
appropriate) of the RPM [1,3]. x(0) = pkpTK7y (or its solution analog) whebh — 0[10].

To that end Fisher and Levin [3] have shown that As stressed by Fisher and Levin [3(a),7], it is valuable
the original Debye-Hiickel (DH) theory [4] provides a to know the amplitudety evenwithin a classical theory
remarkably good, albeit classical account of the criticalsince, via the Ginzburg criterion, that offers a route for
thermodynamics as judged by current simulations [1,3]€stimating a crossover range¢y, outside which close-
However, for a satisfactory description, pure DH theoryto-classical critical behavior might be realized [11].
must be extended, (i) following Bjerrum (Bj) [1,3], by In this Letter we show how DH theory can be gen-
recognizing bound, neutral but dipolét, —) ion pairs  eralized to yield, in a natural way, density fluctuations
in equilibrium with the free ions, (ii) by including the diverging at criticality [12—14]. The method extends
dipolar-ionic (DI) solvation free energy [1,3], and (iii) Straightforwardly to the full DHBJDIHC theories [3] as
by allowing for hard-core (HC) repulsions. In terms of Shown below. In particular, we calculate the correlation

* = kgTDa/q?, these DHBjDIHC theories yield critical length £(T, p) explicitly within the simplest generalized
points in the rang@* = 0.052 to 0.057 as compared with (GDH) theory, and numerically, at improved levels of ap-
0.052-0.056 from recent simulations [3(b)]. proximation. Atlow densities a novelyniversal diver-

Now, following Ebeling and Grigo [5], one can also genceof £(T, p) is predicted for all7. In the critical
pursue theories based on the mean spherical approximeegion the results are, as expected, classical with 2,
tion (MSA); but, for reasons currently obscure, such thebut the amplitudeg; prove informative and are compared
ories, even when improved in various ways [3(b),5—8]with experiment [2] in classical and Ising domains [11].
yield estimates fofl* too high by (35-50)% [9]. Note Explicitly we proceed, following [3], by approximat-
also that the hypernetted chain (HNC) and other integraing the total Helmholtz free energ§(T, p) by a sum of
equations have no solutions in the critical region. Furtheterms representing ideal gas, ionic fluid, dipole-ion, and
study of the DH-based theories is thus well justified. hard-core contributions; but we now aim forfunctional

To understand properly the nature of a critical pointBF[{p;}] = [d‘rF wherep;(r) = p+(r) + p_(r) and
one must go beyond thermodynamics to study the orderp,(r) are slowly varying local free-ion and dipolar densi-
parameter fluctuations. But, even for ionic fluids, theties, whileg = 1/kzT. Since we wish to probe only the
order parameter is just the overall density. Now DH-density fluctuations, we follow DH theory and maintain
based theories illuminate the Debye screening of thelectroneutrality,po+(r) = p_(r), on long length scales.
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Of central concern are the direct correlation functions

given by functional differentiation (with, j = 1,2) as
Cijlr —x') = 52ﬁF/5Pi(l')5pj(I'/)|pA(r”)=ﬁA, (2)

where thep, (A = +, —,2) are theoverall equilibrium
densities. Note that the various terms iff contribute
linearly to the C;; and, in particularﬁ'}feal(k) = 8:i/p;-
However, since théotal local density isp(r) = pi(r) +

2p,(r) [15] one finds, with the aid of the Ornstein-Zernike

(OZ) matrix relation forC;;(k) [10], the result
1L 1 eumCnk) - [Co®)P
px(kK)  G,p(k)  4C(k) — 4Cp(k) + Coo(k)’

from which & follows by expansion irk. More expedi-

tiously one may impose infinitesimal density variations
p](R) = ﬁ][l + Aj coxk - I’], (3)

and expand the reduced free-energy density'/V

in powers of A;:  The quadratic term is then

13 7:7,;Cii(K)A;A;, from which the; follow.

¢ €t
, st ke—1(x)sts ,
o(s,s) = - ,  os,s <x,
G S€>+1 ke+1(x)x2€+l
¢
s—ke(s
=2¢+1) <kels>) S = x = 5>,

kg+1(x)x€+2’
wherex = ka, s~ = max(, s'), s« = min(s, s'), while

Gels,s) _ ien®)
2¢ + 1 ke+1(x)

ke(s)ke(s") + ig(s<)ke(s>), (8)
for s, s’ > x, andP¢(u) denotes a Legendre polynomial.
Substituting in (4) and expanding,, = 1/G,, to
O(k?) yields £2. This requires only the = 0 and 1
terms in (7). Consequently, within pure DH theory the
correlation length is given explicitly by (recall = xa)

f_z _ XDH(O)[In (1 + x)1° X = 5x2 — 8x3:|
a>  24T*X2L (1 + x + %xz)g 2(1 + x)?

(9)

wherel/yPH(0) = 1 — x/4T7*(1 + x)? [3].

Evidently, the crucial issue is to extend DH theory NOW corrections to this result enter only in
to nonuniform but slowly varying mean densities of the 0(x") = O(p), i.e., beyond the leading low-density
various species. Note first that the free-ion contributiorPehavior which, in fact, exhibits the noveivergence

becomes [16], via the Debye charging process [4],

FPH = f ddmm(n)j;q dgipi(r,q),  (4)

E(T,p) = 3(b/36mp)*[1 + gxb + 0(p™)], (10)

whenp — 0, whereb = ¢%/DkgT is Bjerrum’s length.
This expression for the density-density correlation length

where ¢ (r;; q1) is the mean electrostatic potential at theis independentof the hard-core diametar and is thus
siter; of a fixed ion due to all the other ions when eachuniversal! We believe it represents thexact limiting

carries chargestq. If ¢(r,r;) is the mean electrostatic
potential at a general poimtwhen the ion 1 is fixed aty,
one has [4Jy(r;) = lime_; [¢(r;r1) — g1/DIr — ry]].
DH derived their celebrated equation feér by approxi-

behavior not previously noted. At low densities Debye’s
screening lengthép = 1/« controls the decay of the
charge correlations [4(b),17]. It also diverges universally
when p — 0; but since we find¢ = /bép/48, the

mating the probability density for a particle of speciesdensity correlations then decay onshorter scale than

A (= +,—.2) with chargeq, by 7, exfl—Bq.d(r)] =
Pl — Bgag(r)][4]. (Noteg, = 0.) Inthe same spirit

we now propose to replace the constant partial (specie$INC relation cij =

density p, by pa(r) the (slowly varying) nonuniform

the charge correlations.

Our conclusion (10) can be checked further by using the
—Bui; + 3h¥ [4(b),17,18], which
is probably generally valid in the low-density limit [17]

density [16]. Our generalized (GDH) equation then fead&vhenhij = g;; — | decays fast. This leads to [16,19]

[V2 — &2(r)®(r)]¢(r;r)) = —47q,8(r — r1)/D, (5)

where, utilizing 6(y), the Heaviside step function
®,(r) = 6(r — r;] — a) embodies the crucial hard-core
boundary condition [4], while the spatially varying
coefficient

R{p =478 gipa(r)/D =47B4’pi(x)/D, (6)
A

reduces to the standard expression kgt the inverse
Debye length squared, when (r) = 5, is constant [4].
To solve (5), we adopt (3) and expantl in powers
of A;. The coefficient ofA] can be found recursively,
settingk = « andr; = 0, using the Green'’s function

Gosr) = 15 3 Gulwrwrp 5 ). @)
=0

where, employing modified spherical Bessel functions,

1/x(k) =1 — 3’btan ' (k/26)/k (p — 0), (11)

which, expanding to order?, yields the DH limiting law
for x(0) and reproduces (10). However, tlree corre-
lation length, £-(T, p), that determines the OZ-like ex-
ponential decay 06, ,(r) is determined by the dominant
zeros of (11). These give the different expression

&~ 5ép{l + 2exd—4/(mpb?)2] + -}, (12)

[16,19] which diverges aél'/p)"/?. ThusG,,(r) has a
small but longer-range tail decaying slightlyore slowly
thane2<" /12, thesquaredcharge-charge correlation.

By contrast to (10) and (11), one finds [16] that the
GMSA or generalized mean-spherical approximation

[7,18] predicts1/y(k) = 1 — %Kb/[Z + k*a/k] when
p — 0. This givesy(0) correctly toO(p'/?) but leads to
EoMsA = ExgMsA = (%afD)l/z = %(az/ﬂpb)m- (13)
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Thus &gmsa also diverges ag ~!/4, but the power ofl
differs and the result isonuniversaldepending om. This

reveals an unsuspected defect of the GMSA [20], which—

was especially devised to satisfy a variety of correlation
function sum rules [18]. (The original MSA gives only a
hard-sphere result fag, , (r); see, e.g., [10].)

In the critical region the pure GDH result (11) di-
verges with exponerty = 1 atT* = 1, x. = 1, p* =
1/647. The correlation length amplitude is found to be

(& /a)pu =[1 + 22 — 6In 212 = 0.7329. (14)

This is surprisingly close to the GMSA value 0.75 [7],
althoughT* andp* differ significantly [9].

Although the pure GDH theory based on (4)—(6) is
sufficient at low density, one must, as mentioned abov
[3], include ion pairing to study the critical region.

Bjerrum'’s ansatz for the association constant is appealing|;ssical predictiony = 1
but Ebeling’s result is superior [3] and used here. (Neabling are less dramatic

criticality the numerical changes are minor.) In simple
“DHBj” theory the ion pairs are supposedeal [3] and
one findsCy = 1/p5,, C1» = 0, andCy,(k) is unaltered.
But that is too naive and proves unphysical: It is essenti
to include thedipole-ionic(DI) interactions|[3].

We calculate the newonuniformDI effects by using
the GDH equation, (5), but with a dipolar source term

i.e., + and — point charges ar; = *5a;, where a,

IEW LETTERS 15 ARIL 1996
cal Carnahan-Starling mixture form [21]
6 [< z§> 304 & }
- = ]In(1 — - - ,
1l A=) R R S (e aE

where ¢, érr >, pi(r)a! with o; the hard-core diam-
eter of species; we take o = 303 = a’. For den-
sities near critical, only the second virial coefficients
prove significant. Being local, the approximations (i)—(iii)
give C‘Sc(k) independent ok. Nonlocal effects are eas-
ily included at the second-virial-coefficient level; but that
changes the critical amplitudg by less than 1%.

For the DHBjDI theories the equilibrium equations re-
quire numerical solution. Figure 1 shows the resulting
inverse square correlation lengths ¥& on the critical
$ochore for various levels of approximation. The linear
approach of all plots t& 2 = 0 represents the expected

5. The effects of the DI cou-

nedr. than might have been
guessed. With the assignments = a, a, = 1.162a
[3] the critical amplitudes ar&, /a = 0.7511, 0.7776,
.8186, and 0.8147 for pure DHB|DI theory and with HC
reatments (i)—(iii), respectively. Increasiag to 1.15a
lowers £y by no more than 8.3%. Similarly, taking to
be 1.150a leads to a reduction of less than 1.1%. (The
changes iT*, p¥, etc. can be found in [3(b)].)

To compare our results fofg with experiments on

specifies the orientation anq typica_ll charge separa_tiorg)ystemS that might plausibly be modeled by the RPM,
ai(T) = |a;| [3]. The associated bispherical exclusion gne needs not only data fgf” [2] but also some estimate

zone is approximated by a sphere of radiuq3]. Thus
the Green'’s function (8) still applies, but with— x, =
kay. Atlow T, a; = a (“contact”) anda, = 1.16198a
(angular average) are reasonable [3] and the sensitivity
these values is readily tested [3(b)].

Angular integration over the dipole orientations
is complicated, yielding the solutionpg,(r;r;) as
a multiple sum with Clebsch-Gordan coefficients
Ce, ¢,(m1, my|€,m). To obtaing,(r; g) for use in the pair

analog of (4), the self-potential of the source dipole is

subtracted. Ta0(k?) one needs only = 0, 1,2, which
gives explicit results with low-density expansions

2
CRl = el {1 B+ Bk + 00
s k2 72 3 4
550+ g+ o0 + owh),
ADI )Cxl2 6 8 2 3
Cp (k)= — M{l —zx + gx; + O(x3)
s k2

K2

wherex; = ka; while €' (k) = 0 [16].

—3% Sln—3x3 + 33 + oG] + O(k“)},

Finally, hard-core exclusion may be approximated by lo-

cal, free-volume termg "¢ = — 3" p;In[1 — 3, B;p;]

with (i) By = 3B, = 4a3/3/3 to yield bcc close packing
or (i) By = %Bz = 2ara’/3 for the exact ion-ion second
virial coefficient [3]; or (iii), perhaps preferably, by the lo-
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of the effective hard-core diametes#, That might be
obtained by matching the* predictions to experiment.

To that end, we re-express our results abovegasé/ ’

t8.2275, 0.2302, 0.2375, and 0.2368 (in contrast to 0.1251

for pure DH theory and 0.1828 for the GMSA [7]).
Beyond that one must recall that our theory is classical

with v = vyp = % whereas observations indicate the

Ising value vi; = 0.63 or crossover to that for < r«.

1.2
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04 r

0.05 0.06 0.07 T* 0.08 0.09

FIG. 1. Inverse square of the density-density correlation
length, £(T, p), on the critical isochore according to (a) pure
DH theory; (b) with Bjerrum association and dipole-pair-ionic-
fluid coupling (DHBJjDI) with a; = a, a, = 1.16198a; (c)—(e)
with hard-core terms (i)—(iii): see text.
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However, for 3D lattice gases, which are described by [3] (a) M.E. Fisher and Y. Levin, Phys. Rev. Leftl, 3826

vis for all 1 < 1, the mean-field estimates faf, , say

ME agree with numerical estimates, s&}, to within

10% [22] (for various lattice structures).
hand, if crossover is found, the fits for< rx andr > 7«
should roughly obey the matching formulg®/&)" =
(tx)"s~"wr . Data for NarND3 with 5 = (7-9) X 1073

(1993); (b) Y. Levin and M. E. Fisher, Physica2®5 164
(1996), and references therein.

On the other [4] (@) P. Debye and E. Huckel, Phys. 24, 185 (1923);

for a modern account, see (b) D. A. McQuarigatistical
Mechanicg(Harper-Collins, New York, 1976), Sec. 15-1.

[5] W. Ebeling and M. Grigo, Ann. Phys. (Leipzid7, 21

(1980).

have been fitted in both regions [2(a),2(c)] and confirm the 6] M. Medina-Noyola, J. Chem. Phy81, 5059 (1984), uses

relation. For this system we firngftl)s,ocl/3 = (.34 = 0.03,
which is some 40% to 50% above our estimates.

GHS-EMSA and EMSA-I equations, neglects ion pairing
[5], and finds very poof,. values [9].

Pitzer's salt [2(b),2(e)] we may postulate a crossover at[7] R.J.F. Leote de Carvalho and R. Evans, (a) Mol. PBgs.
/3 619 (1994), (b) J. Phys. Condens. Matferl.575 (1995),

. —4 . : : Is 1/3 _
txh._hl x 107 [1]: This ylfldsfo_r’;;h t |0'21 = 0'.04 study the GMSA which does not recognize Bjerrum
which encompasses our values. Fautyl-ammonium pairing and yields poofT.., p,) estimates [9].

picrate iq;g—tridecanol [2(d)] displays crossover and we [8] Y. Zhou et al, J. Chem. Phys.102 5785 (1995):
find f(l)spc/ = (.22, close to our prediction. Finally, for B. Guillot and Y. Guissani, Mol. Phys87, 37 (1996).
the same salt in other solvents [2(f)] quite similar values = These works do not study the correlation functions.

of & fit the turbidity data. Overall the agreement is [9] Simulations suggesp,” = p.a® = 0.025-0.035 [3]; ex-
encouraging when using the Ising-fitted amplitudes. Itis  tended DH and recent MSA theories [3(b),8] yield 0.023—
puzzling, but perhaps significant, that in the mean—field[lo] 0.028, butp* (GMSA, EMSA-I) = 0.0145,0.0017 [6,7].

. . ME 1/3 M. Medina-Noyola and D. A. McQuarrie, J. Stat. Ph¢s,
region outsidex the values OE,O pe - areall Igrger (by 445 (1978), give an Ornstein-Zernike theory of the RPM.
factors of 2—3) than our classical theory predicts!

] _ [11] A companion paper, M. E. Fisher and B.P. Lee, explores
In conclusion, we have shown how to calculate density-  the Ginzburg criterion; see also [7].

density correlations within DH theory and its extensions[12] One might adapt DH theory to treat density correlations
[3]. At low densities the correlation lengtl(T, p), di- following X.-J. Li et al., Europhys. Lett.26, 683 (1994)
verges in unexpected but universal fashion potentially  and M.E. Fisheet al.,J. Chem. Physl01, 2273 (1994);
amenable to experimental check. In the critical region  but that cannot yield & diverging at(, p.).

comparison with experiments on electrolytes proves inl13] M. Grigo and W. Ebeling [J. Solution Cheni3, 321
structive and raises further questions. More concretely, ~(1984); Z. Phys. Chem. (Leipzigp65 1072 (1984)]
the present theory enables the observed classical-to-Ising SOUdNt to derives, , (r) by f”nCt'c’?ﬁ' dﬁerzn:\l/lagzn W(';hDH
crossover to be addressed via the Ginzburg criterion [3,11]. respect to lon-ion Interactions. They use an

. . . . ; theory, with ion pairs (but not DI effects). However, the
A naive extension of the functional approach outlinedis | ,athod also fails to givé — o at criticality.

not sufficient for studying the charge correlations at highef14] cluster expansion techniques [G. Stetlal., Phys. Rev.
densities since, whek — 0, the associated density per- Lett. 37, 1369 (1976)] might be used fa(T) aboveT..
turbations, even when infinitesimal, induce a macroscopic  The approach is potentially powerful but not easy; so far
charge imbalance. However, approaches which sepa- it has led to poofT, p¥) values [1].
rate out the long-range Coulombic contributions [17,23][15] For simplicity the density of an ion pair is taken at its
should lead to progress. center of mass. This approximation can be corrected, but
We are indebted to Dr. David Chandler for a stimulat- _ Should not matter for smalk|. _ _
ing comment that led to this work, to Dr. J. M. H. Levelt [16] B.P. Lee and M. E. Fisher (to be published). Extending

. - . . . : [4(b)] yields a statistical mechanical basis for (5)—(7).
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