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Ginzburg Criterion for Coulombic Criticality
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To understand the range of close-to-classical critical behavior seen in various electrolytes, gene
Debye-Hückel theories (that yield density correlation functions) are applied to the restricted prim
model of equisized hard spheres. The results yield a Landau-Ginzburg free-energy functional for
the Ginzburg criterion can be explicitly evaluated. The predicted scale of crossover from clas
to Ising character is found to be similar in magnitude to that derived for simple fluids in compar
fashion. The consequences in relation to experiments are discussed briefly. [S0031-9007(96)014
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How can one understand the fact that some ele
trolyte solutions display classical (or van der Waal
critical behavior down to deviations from criticality o
jtj ­ jT 2 TcjyTc , 1024 or less [1], while others ex-
hibit purely Ising-type criticality [2] or, in some cases
crossoverto Ising character at scalest3 , 1021.5 1022.5

[3,4]? The system triethylhexylammonium triethyhexy
boride (N2226B2226) in diphenyl ether [1] so far reveals no
hint of Ising character and is also the one that appears
approximate most closely the simplest sensible theor
cal model of an ionic system, namely, the restricte
primitive model (RPM), corresponding ofN ­ N1 1

N2 hard spheres of diametera with N1 carrying charges
1q and N2s­N1d charges2q, in a medium of dielec-
tric constantD. Real solutions and molten salts dev
ate from the RPM inmanyways: soft cores, differently
sized ions, nonadditive ionic diameters, long-range v
der Waals interactions, short-range attractions, ionic p
larizability, specific ionic chemical bonding, the molecu
lar structure of the solvent, etc. [5–7]. At least some
these featuresmustbe responsible for the observedvaria-
tion of t3, from t3 . 1 down to, perhaps,t3 , 1025.
Nevertheless, the most appealing scenario is that the R
itself, as an “extremal model,” displays purely classic
critical behavioror, failing that, has a very small value o
t3 that is increased by more realistic interactions. (T
match the results for N2226B2226 one needst3 & 1024

[5].) Here we address this scenario. Sadly, perhaps,
analysis, which encompasses all the leading physical
fects [4], doesnot support this attractive picture. Instead
it provides grounds for believing thatt3 for the RPM
is of comparable magnitude to that for simple molec
lar fluids or liquid mixtures that exhibit little if any non-
Ising behavior.

To introduce our approach [8], note first that all cu
rently available theories predicting ionic criticality (fo
dimensionalitiesd . 2 [9]) yield classical behavior be-
cause, at heart, they are of mean-field character [5–
Recall also that the standard approximate integral eq
tions such as the HNC, YBG, MSA, etc., yieldno ac-
count of the critical region or else fail to predict divergen
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critical-point density fluctuations [4,5,8]. Second, dire
simulations of the RPM [5,10] are far from being abl
to distinguish between classical and Ising criticality. I
principle, a renormalization group (RG) treatment of th
fluctuations could reveal the true nature of Coulomb
criticality, but, in practice, that requires an appropria
LGW effective Hamiltonian which hasnot been available
[5]. Furthermore,quantitativeaspects become importan
if, as seems likely [5,6(a)], a scalet3 is present.

However, as emphasized previously [8], a sufficient
good mean-field free energy can provide a foundati
for an LGW Hamiltonian; then one may estimate th
domain of validity of classical critical behavior by usin
the Ginzburg criterion [11] which, indeed, is implied b
RG theory [12]. Ifmsrd ­ frsrd 2 rcgyrc is the order
parameter (the overall ionic density beingr ; NyV )
then, omitting the ordering fieldh, the expected LGW
form in d spatial dimensions is

H ykBT ­ a2d
Z

drf2fsmd 1
1
2

b2
2s,md2 1 . . .g ,

(1)

with the spatially uniform reduced free-energy density

2f ­
1
2

c2tm2 2 h3tm3 1
1
4

u4m4 1 Ostm4, m5d .

(2)

The further gradient terms neglected in (1) and t
corrections in (2) are not needed for a leading order d
scription of criticality: in principle, however, large or
anomalous values of these terms could prove quant
tively significant.

To quantify the Ginzburg criterion we examine th
fluctuations of the order parameter, normalized by t
spontaneous order,m0 st , 0d, in ad-sphere,J, of radius
set by thecorrelation lengthjsT d, that is,

G ­
Z

J

kmsrdms0dl 2 kml2

m2
0

ddr
jJjd

­

R
J drGrrsrd
r2

cm2
0jJjd

,

(3)
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where Grrsrd ­ krsrdrs0dl 2 krl2 is the density-
density correlation function, whilejJjd­3 ­

4
3 pj3.

SinceGrrsrd decays fast on the scalej, it is convenient
to extend the integral tò and accept (ford ­ 3)

GsT d ­ 3xsTdy4prcm2
0sT dj3sTd st , 0d , (4)

where x ­
R

drGrrsrdyr is the reduced susceptibility.
Treating (1) and (2) simply as a mean-field free-energ
functional,Ffr, T g, yields the asymptotic relations

x ø
a3rc

2c2jtj
, m2

0 ø
c2jtj
u4

, j2 ø
b2

2

2c2jtj
, (5)

for t ! 02 atr ­ rc. We may now setG ­ 1 to obtain
an explicit estimate for the crossover scalet3, namely

tG ­ s9u2
4y8p2c2d sayb2d6, for d ­ 3 , (6)

below which fluctuations dominate and the mean-fie
theory loses validity: Ising behavior should be exhibite
for jtj ø tG.

Now, judging by concordance with the simulation
estimates ofTc and rc [8(b),10], the most successful
available theory for the RPM critical region [8] is base
on the Debye-Hückel (DH) analysis [13], supplemente
by (i) Bjerrum s1, 2d ion pairing (Bj), (ii) solvation
of the dipolar pairs in the fluid of free ions (DI), and
(iii) hard core (HC) repulsions [4,14]. From the free
energy Fsr, T d of this DHBjDIHC theory {which is
subject to minor numerical variants [4,8(b)]} one can, b
careful numerics [15], extract, in addition torc andTc, c2
andu4 in (2); note thath3 plays no role in (6).

But the Ginzburg analysis demands also the coefficie
b2

2 of the gradient-squared term in (1) that sets th
amplitude of the correlation length [see (5)]. Indeed,b2
corresponds to therange of the effectivedensity-density
attractions in the RPM: these are embodied in the dens
correlations functions and, more explicitly, in the wave
vector dependent susceptibility

xskd ­
xsT d

1 1 j2k2 1 . . .
ø

rcad

c2t 1 b2
2k2 1 . . .

. (7)

The last relation (fort ! 01, r ­ rc) follows by identi-
fying, as before, the free energy for anonuniformsystem
with H [4]. In the past, DH theory has been regarde
as throwing light only on thechargecorrelation function,
Gqq, while remaining silent onGrr. However, in [4] we
have shown how DH theory and its necessary DHBjDIH
extensions [8] can begeneralizedin a rather straight-
forward way to yield a classical functional ofrsrd and
thence an explicit mean-field expression forxskd. Fur-
thermore, the unexpected divergence ofjsr, T d predicted
whenr ! 0 turns out to be universal andexact. By this
route, therefore, the critical coefficientb2 is revealed and
the crossover scaletG can be explicitly calculated [15].

Before describing our results fortG, however, we
note that Leote de Carvalho and Evans [16] have r
cently demonstrated the strategy set out above [8] by a
pealing to the generalized mean-spherical approximati
(GMSA). This ingenious, OZ-based [14] approximate in
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tegral equation [17] repairs the simple MSA (for whic
the density fluctuations remain bounded) by adding to t
direct correlation functions a term with parameters whic
are adjusted to satisfy various desirable sum rules; the
j diverges at criticality andb2 can be estimated. Un-
fortunately, however, the GMSA exhibits some seriou
defects: (a) the correlation lengthjsr, T d varies nonuni-
versally and quite incorrectly whenr ! 0 [4], thence
casting doubt on the plausibility of the results forr . rc;
(b) the predicted value ofTc is significantly too high
[8,10]; (c) no account is taken of Bjerrum pairing; an
(d) apparently as a result of this, the GMSA free ener
violates Gillan’s upper bound [18] throughout the criti
cal region (while DHBjDIHC theories satisfy it). Conse
quently, although the GMSA values fortG [16] provide
an interesting benchmark, they are surely not adequate
the purpose at hand.

For reference we start with pure DH theory [4,8
which yieldsc2 ­ 1y64p, u4 ­ 1y3072p [19] while b2

2y
a2 ­ s1 1

20
3 ln 2 2 6 ln 7

3 dy64p . s0.052d2 [4]. Via
(6) these yieldtG . 12.90. This number is large and
certainly not suggestive of any significant regime o
classical behavior, but the derivation of (6) entaile
various essentially arbitrary numerical assignments. F
calibration, therefore, it is essential to calculatetG by a
comparable procedure for a simple-fluid model that o
can be confident exhibits typical Ising behavior.

To that end we start with the functional generalizatio
of the Mayer expansion for a single-component fluid wit
a short-range pair potentialusrd, namely

FSRfrsrdgykBT ­ 2
Z

dr rsrdfln L3rsrd 2 1g

2
1
2

Z
dr dr0 rsrdfsssusr 2 r1ddddrsr0d

1 Osr3d , (8)

wherefsxd ­ exps2xykBT d 2 1 andL ­ hy
p

2pmkBT
[8(b)]. This second-virial level suffices to describe th
attractions driving criticality, for which we take asquare
well (SqW) of rangela and depth́ . For the repulsions
we adopthard coresof diametera: to treat these we
follow our RPM approach [8] and approximate theOsr3d
terms by a local expression offree-volume (FV) or
Carnahan-Starling (CS) form [4,8]. Note, however, th
in treating both this SqWHC model and the RPM, the C
expression is not obviously preferable since the attract
interactions (direct or effective) necessarily enter the tr
higher-order virial coefficients and act to soften the har
core effects.

In the FV approximation the critical parameters are

rc ­
rmax

3
,

´

kBTc
­ ln

√
l3 1 57Bpy16p

l3 2 1

!
, (9)

with Bp ­ 1ya3rmax. For the rangel ­ 1.4 1.7 that
reasonably models real simple fluids [20],Tc depends
strongly onl. However,kBTc ­ 1.48´ should describe
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the corresponding van der Waals/classical theory qu
well [5]; thus for the assignmentsBp ­

2
3 and 4

9

p
3,

which correspond to the exact hard-core second vir
(2V) coefficient and bcc close packing, respectively [8
we choosel . 1.65 and 1.43. The LGW parameters in
(2) are found to beu4 ­ 3y16Bp,

c2 ­ s57Bp 1 16pl3d´y108kBTcBp2 , (10)

b2
2 ­

2pa2

135Bp2

"
sl5 2 1d s1 1 57Bpy16pd

l3 2 1
2 1

#
. (11)

Note that in the infinite range Kac-Baker limit,l !

` with Tc fixed, one hasb2 ! ` and correctly finds
tG ! 0.

Using the CS hard-core form one can derive a quint
equation for the critical density [21] which yieldsrca3 .
0.249 129. Normalizing tokBTcy´ ­ 1.48 as above leads
to l . 1.55.

The third column of Table I lists the values oftG

for the SqWHC model found using the various hard
core approximations, withl chosen as indicated, and
for reference, withl ­ 1.50. For completeness, an RPA
treatment [16] is included. The crucial LGW coefficient
are also given. The last column presents the correlati
length amplitude,j1

0 , defined viajsrc , T d ø j
1
0 yt1y2 as

t ! 01 [22]. These estimates all lie quite close to0.41a.
On the other hand, the values oftG prove very sensitive
to the approximations, ranging from 0.33 to 2.4 (eve
discounting the HC/bcc value). SincetG , b6

2 [see (6)],
a strong dependence onl is not surprising; but one might
have hoped for better agreement among the approxim
methods. Nonetheless, we may conclude thattG ­ 1060.5

will characterize fluids that display only Ising behavior (o
“immediate” crossover).

We may now assess the data given in Table II for th
RPM. In addition totG and j

1
0 ya (in the second and

last columns) it is instructive to examine the estimate
for Tp

c ; kBTcDayq2 and rp
c ­ rca3: These provide

a measure of the merit of the various approximation
relative to the simulation data [10] which may be sum
marized by102Tp

c ­ 5.2 5.6, 102rp
c ­ 2.3 3.5 [8(b)].

Although the LGW coefficients here are factors of 3–10
smaller than for the SqWHC model, the ratioj

1
0 ya re-

mains of order unity [4] and is again fairly insensitive
to the approximations: Those yieldingsTp

c , rp
cd in the

simulation range suggestj
1
0 . 0.80. For reference, the
TABLE I. Ginzburg crossover scale,tG , and critical parameters predicted for a hard-core square-well fluid (rangela) [15]. See
text for hard-core (HC) approximations and Ref. 16 for RPA.

HC l tG kBTcy´ rca3 c2 u4 b2ya j
1
0 ya

bcc 1.433 0.097 1.48 0.4330 2.0235 0.2436 0.5506 0.387

2V 1.651 1.621 1.48 0.1592 0.4926 0.0895 0.3234 0.461

1.50 2.418 1.131 0.1592 0.5395 0.0895 0.2980 0.406

CS 1.553 0.284 1.48 0.2491 0.9478 0.1131 0.4191 0.430

1.50 0.330 1.334 0.2491 0.9792 0.1131 0.4066 0.411

RPA 1.50 1.57 1.267 0.2457 0.6735 0.1125 0.3332 0.406
e

l
,

c

-

n

te

e

s

s

table also lists the critical values ofZ ; pyrkBT and
the inverse Debye lengthk ­ s4pq2r1yDkBT d1y2, where
r1 ­ r1 1 r2 ­ r 2 2r2 is the density offree ions
while r2 is that for theion pairs[5,8]. The ratiosr

p
2yrpdc

measures the degree of pairing in the critical region: it
quite significant [8,18].

The most striking feature of Table II, however, is th
evidence thattG for the RPM lies in the range 100.3 to
101.4 and so significantlygreater than the value oftG for
the hard-core-square-well model. From this perspect
the RPM shouldnot have an unduly small region o
Ising-like character but rather one of the same order,
even larger, than in simple fluids, a conclusion certain
at variance with the most natural interpretation of t
experimental evidence [1–3,5].

Although the DHBjDIHC theories account well for th
leading physical effects near criticality and all leadin
terms have been included inHLGW , it is possiblethat
tG , as calculated here, is a deceptive measure of
true RPM crossover scale,t3. Perhaps the ion-dipole
and dipole-dipole interactions, neglected as of orderr3,
play a special role [7]; this is being studied within
DH-style approach [23]. In principle, strong asymme
ric terms, such ash3 and u5 in (2), could, under the full
nonlinear RG flow, invalidate the perturbative Ginzbu
analysis. Higher-order gradient terms inHLGW , espe-
cially if negative as arguments of Nabutovskiiet al. [24]
suggest, might, instead, bring RPM criticality within th
crossover domain of some multicritical point [5]. The fa
that the crossovers seen experimentally are much sha
than standard [25] (taking place in a decade or less [3,2
supports this view. To justify such a scenario, howev
seems to demand a more sophisticated and quantita
RG analysis than normally feasible.

Conversely, if the RPM itself does exhibitno signifi-
cant crossoverfrom classical behavior,as our analysis in-
dicates,the anomalous experimental results [1,3] must
ascribed to one or more of the features lacking in the RP
that were listed initially [5–7]. Some of these, like th
presence of short-range van der Waals or solvent-medi
attractions, including the breaking of thes1, 2d charge
symmetry, can and will be incorporated in our formalis
although, in truth, it is hard to see how they will signifi
cantly alter thetG values. Indeed, the experimental tren
seem, as mentioned, to indicate thatt3 always increases
3563
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5]:
TABLE II. Ginzburg crossover scale,tG , and critical parameters predicted for the RPM at various levels of approximation [4,1
DH, pure Debye-Hückel [4,13]; GMSA [16]; DHBj, with naive ion pairing [5,8];1DI with dipole-ionic fluid solvation (and
a1 ­ a, a2 ­ 1.161 98a [8]); hard-core treatments /bcc/2V/CS, see text and [8]; DI0, with a new charging process [23].

Approx. tG 102T p
c 102rp

c kca 102r
p
2c 10Zc 102c2 103u4 b2ya j

1
0 ya

DH 12.90 6.25 0.497 1 0 0.904 0.497 0.104 0.0517 0.733

GMSA 1.08 7.858 1.448 1.522 0 0.848 1.616 0.339 0.0953 0.750

DHBj 12.90 6.25 4.517 1 2.010 4.549 41.014 704.6 0.4694 0.733

1DI 5.36 5.740 2.778 1.123 1.101 2.236 2.295 1.530 0.1138 0.751

1DIybcc 10.67 5.542 2.594 1.029 1.064 2.484 2.223 2.249 0.1159 0.777

1DIy2V 23.25 5.227 2.443 0.923 1.044 2.823 2.178 3.717 0.1208 0.819

1DIyCS 21.52 5.249 2.454 0.931 1.046 2.798 2.185 3.548 0.1204 0.815

1DI0 1.23 5.969 2.381 1.069 0.919 1.680 1.770 7.981 0.1223 0.919

1DI0ybcc 2.25 5.784 2.145 0.978 0.852 1.874 1.653 10.249 0.1215 0.945

1DI0y2V 4.31 5.506 1.919 0.877 0.791 2.137 1.543 14.080 0.1226 0.987
s.

e
r

of

d
o

s.
when the Coulombic forces have to compete with solvo
phobic effects. Unfortunately, one must also allow tha
particular impurities might distort the data in unexpecte
ways: One can imagine selective binding leading to “big
dipoles, or long ionic “rods.” The discovery, discusse
in [4], that the dimensionless correlation length paramet
j

1
0 r

1yd
c fits our calculations rather well when theIsing-

fitted amplitudes are used may point in this direction.
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