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Ginzburg Criterion for Coulombic Criticality
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To understand the range of close-to-classical critical behavior seen in various electrolytes, generalized
Debye-Huckel theories (that yield density correlation functions) are applied to the restricted primitive
model of equisized hard spheres. The results yield a Landau-Ginzburg free-energy functional for which
the Ginzburg criterion can be explicitly evaluated. The predicted scale of crossover from classical
to Ising character is found to be similar in magnitude to that derived for simple fluids in comparable
fashion. The consequences in relation to experiments are discussed briefly. [S0031-9007(96)01424-X]

PACS numbers: 61.20.Qg, 05.40.+j, 05.70.JKk, 64.60.Fr

How can one understand the fact that some eleceritical-point density fluctuations [4,5,8]. Second, direct
trolyte solutions display classical (or van der Waals)simulations of the RPM [5,10] are far from being able
critical behavior down to deviations from criticality of to distinguish between classical and Ising criticality. In
[t| = |T — T.|/T. ~ 107* or less [1], while others ex- principle, a renormalization group (RG) treatment of the
hibit purely Ising-type criticality [2] or, in some cases, fluctuations could reveal the true nature of Coulombic
crossovetto Ising character at scales ~ 107> -10"2>  criticality, but, in practice, that requires an appropriate
[3,4]? The system triethylhexylammonium triethyhexyl- LGW effective Hamiltonian which hagot been available
boride (Ny»»B 2209 in diphenyl ether [1] so far reveals no [5]. Furthermore guantitativeaspects become important
hint of Ising character and is also the one that appears tif, as seems likely [5,6(a)], a scalg is present.
approximate most closely the simplest sensible theoreti- However, as emphasized previously [8], a sufficiently
cal model of an ionic system, namely, the restrictedgood mean-field free energy can provide a foundation
primitive model (RPM), corresponding oV = N+ +  for an LGW Hamiltonian; then one may estimate the
N_ hard spheres of diameterwith N carrying charges domain of validity of classical critical behavior by using
+g and N_(=N4) charges—gq, in a medium of dielec- the Ginzburg criterion [11] which, indeed, is implied by
tric constantD. Real solutions and molten salts devi- RG theory [12]. Ifm(r) = [p(r) — p.]/p. is the order
ate from the RPM ifmanyways: soft cores, differently parameter (the overall ionic density being= N/V)
sized ions, nonadditive ionic diameters, long-range vanhen, omitting the ordering field, the expected LGW
der Waals interactions, short-range attractions, ionic poform in d spatial dimensions is
larizability, specific ionic chemical bonding, the molecu-
lar structure of the solvent, etc. [5-7]. At least some of 3{ /k,T = a—df dr[—f(m) + 1 b2(Vm)? + .. ],
these featuremustbe responsible for the observedria- 2
tion of ¢«, from tx = 1 down to, perhapsix ~ 1077. (1)
Nevertheless, the most appealing scenario is that the RPM. . . .
itself, as an “extremal model,” displays purely cIassicaIW'th the spatially uniform reduced free-energy density
critical behavioror, failing that, has a very small value of _ 1 5 3 1 4 4 s
tx that is increased by more realistic interactions. (To —f= 302”" — hytm® + Ty wam + 0@m™, m?).
match the results for N,dB .6 ONe needstx < 1074 2)
[5].) Here we address this scenario. Sadly, perhaps, our
analysis, which encompasses all the leading physical effhe further gradient terms neglected in (1) and the
fects [4], doesot support this attractive picture. Instead, corrections in (2) are not needed for a leading order de-
it provides grounds for believing that. for the RPM  scription of criticality: in principle, however, large or
is of comparable magnitude to that for simple molecu-anomalous values of these terms could prove quantita-
lar fluids or liquid mixtures that exhibit little if any non- tively significant.

Ising behavior. To quantify the Ginzburg criterion we examine the

To introduce our approach [8], note first that all cur-fluctuations of the order parameter, normalized by the
rently available theories predicting ionic criticality (for spontaneous orde; (¢ < 0), in ad-sphereZ, of radius
dimensionalitiesd > 2 [9]) yield classical behavior be- set by thecorrelation lengthé&(T), that is,
cause, at heart, they are of mean-field character [5-9].

Recall also that the standard approximate integral equa- g — (m(X)m(0)) = (m)> d?r _ J2drGy,(r)
tions such as the HNC, YBG, MSA, etc., yiehb ac- = mj =1F p2mi|Ely
count of the critical region or else fail to predict divergent 3
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where G,,(r) = (p(r)p(0)) — (p)* is the density- tegral equation [17] repairs the simple MSA (for which
density correlation function, while|E|,—3 = gﬂéﬁ_ the density fluctuations remain bounded) by adding to the
SinceG,,(r) decays fast on the scalg it is convenient direct correlation functions a term with parameters which
to extend the integral te and accept (foe = 3) artzI adjusted to satisfly varioc;s desirgble sum rulsss; thence
. 2 3 ¢ diverges at criticality and, can be estimated. Un-
G(T) = 3x(T)/4m pemi(T)E(T) (r<0), 4 fortunately, however, the GMSA exhibits some serious
where y = [drG,,(r)/p is the reduced susceptibility. defects: (a) the correlation leng#(p, T) varies nonuni-
Treating (1) and (2) simply as a mean-field free-energyersally and quite incorrectly whep — 0 [4], thence

functional, F[ p, T], yields the asymptotic relations casting doubt on the plausibility of the results for= p.;
_ a3p. o ] ) b3 5) (b) th.e predicted valug of. is sign!ficantly too h?gh
X 205 1] 0 g 2050t] [8,10]; (c) no account is taken of Bjerrum pairing; and

(d) apparently as a result of this, the GMSA free energy
violates Gillan’s upper bound [18] throughout the criti-
cal region (while DHBjDIHC theories satisfy it). Conse-
tc = ui/8m%cy)(a/by)°,  ford =3, (6) quently, although the GMSA values fog [16] provide
below which fluctuations dominate and the mean-field@n interesting benchmark, they are surely not adequate for
theory loses validity: Ising behavior should be exhibitedthe purpose at hand.
for |t] < 6. For reference we start with pure DH theory [4,8]
Now, judging by concordance with the simulation Which yieldsc, = 1/64,uy = 1/3072a [19] while b5/
estimates ofT. and p. [8(b),10], the most successful a®> = (1 + 2In2 — 6InZ)/647 = (0.052)> [4]. Via
available theory for the RPM critical region [8] is based (6) these yieldzs = 12.90. This number is large and
on the Debye-Huckel (DH) analysis [13], supplementedcertainly not suggestive of any significant regime of
by (i) Bjerrum (+,—) ion pairing (Bj), (ii) solvation classical behavior, but the derivation of (6) entailed
of the dipolar pairs in the fluid of free ions (DI), and various essentially arbitrary numerical assignments. For
(iii) hard core (HC) repulsions [4,14]. From the free calibration, therefore, it is essential to calculageby a
energy F(p,T) of this DHBJDIHC theory {which is comparable procedure for a simple-fluid model that one
subject to minor numerical variants [4,8(b)]} one can, bycan be confident exhibits typical Ising behavior.
careful numerics [15], extract, in addition i@ andT,, ¢, To that end we start with the functional generalization
anduy in (2); note thati; plays no role in (6). of the Mayer expansion for a single-component fluid with
But the Ginzburg analysis demands also the coefficiend short-range pair potentialr), namely
b5 of the gradient-squared term in (1) that sets the
amplitude of the correlation length [see (5)]. Indeed, F**[p(r)]/ksT = —[ dr p(r)[In A’p(r) — 1]
corresponds to theange of the effectivedensity-density

fort — 0— atp = p.. We may now se§ = 1 to obtain
an explicit estimate for the crossover scgle namely

attractions in the RPM: these are embodied in the density _ lf dr dr' 1 !
correlations functions and, more explicitly, in the wave- 2 rdrpo)f(ule = r))pr)
vector dependent susceptibility + 0(p%), (8)
d p—eeeeeeeee
x(k) = _— Xzfr(Tz)Jr ~ pc2a2 . (M Wheref(x)_z exp(—x/lfng) -1 andA = h/\/277ml_cBT

& e ot bkt AL [8(b)]. This second-virial level suffices to describe the

The last relation (for — 0+, p = p.) follows by identi-  attractions driving criticality, for which we take square
fying, as before, the free energy fomanuniformsystem  well (SqQW) of rangera and depthe. For the repulsions
with 2 [4]. In the past, DH theory has been regardedwe adopthard coresof diametera: to treat these we
as throwing light only on thehargecorrelation function, follow our RPM approach [8] and approximate t0ép?)
G4, While remaining silent oiG,,. However, in [4] we terms by alocal expression offree-volume(FV) or
have shown how DH theory and its necessary DHBjDIHCCarnahan-Starling (CS) form [4,8]. Note, however, that
extensions [8] can b@eneralizedin a rather straight- in treating both this SQWHC model and the RPM, the CS
forward way to yield a classical functional gf(r) and expression is not obviously preferable since the attractive
thence an explicit mean-field expression fptk). Fur- interactions (direct or effective) necessarily enter the true
thermore, the unexpected divergencet0p, T') predicted  higher-order virial coefficients and act to soften the hard-
whenp — 0 turns out to be universal arekact By this  core effects.

route, therefore, the critical coefficieht is revealed and In the FV approximation the critical parameters are
the crossover sqa_h@; can be explicitly calculated [15]. P e A + 57B* /167

Before describing our results forg, however, we pe= "3 T In FER , (9
note that Leote de Carvalho and Evans [16] have re- Bl

cently demonstrated the strategy set out above [8] by apwith B* = 1/a’pn.c. For the ranged = 1.4-1.7 that
pealing to the generalized mean-spherical approximatioreasonably models real simple fluids [2Q], depends
(GMSA). This ingenious, OZ-based [14] approximate in-strongly onA. However,kzT. = 1.48¢ should describe
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the corresponding van der Waals/classical theory quitéable also lists the critical values &f = p/pkgT and
well [5]; thus for the assignment8* = = and 5+/3, the inverse Debye length = (47¢%p,/DksT)"/?, where
which correspond to the exact hard-core second viriab1 = p+ + p— = p — 2p, is the density offree ions
(2V) coefficient and bcc close packing, respectively [8],while p; is that for theion pairs[5,8]. The ratio(p,/p").
we choosex = 1.65 and 1.43. The LGW parameters in measures the degree of pairing in the critical region: it is
(2) are found to bey, = 3/16B*, quite significant [8,18].

¢y = (57B* + 16 A%)e/108ksT. B2, (10) The most striking feature of Table I, however, is the

ST os i} evidence thatg for the RPM lies in the range £G to

p2 — 274 (A = D{ + 57B7/16m) _ 1|. (1) 10“*and so significantlyreaterthan the value ofg for

> 135B% A= the hard-core-square-well model. From this perspective,
Note that in the infinite range Kac-Baker limiA —  the RPM shouldnot have an unduly small region of
o with 7, fixed, one hash, — « and correctly finds Ising-like character but rather one of the same order, or
t¢ — 0. even larger, than in simple fluids, a conclusion certainly

Using the CS hard-core form one can derive a quinticat variance with the most natural interpretation of the
equation for the critical density [21] which yielgsa® =  experimental evidence [1-3,5].
0.249 129. Normalizing tokgT./e = 1.48 as above leads Although the DHB|jDIHC theories account well for the
to A = 1.55. leading physical effects near criticality and all leading

The third column of Table | lists the values of  terms have been included i, gy, it is possiblethat
for the SQWHC model found using the various hard-r;, as calculated here, is a deceptive measure of the
core approximations, witm chosen as indicated, and, true RPM crossover scalex. Perhaps the ion-dipole
for reference, withh = 1.50. For completeness, an RPA and dipole-dipole interactions, neglected as of ordér
treatment [16] is included. The crucial LGW coefficients play a special role [7]; this is being studied within a
are also given. The last column presents the correlatioDH-style approach [23]. In principle, strong asymmet-
length amplitudeg()*, defined viaé(p., T) = &5 /t"/* as  ric terms, such ag; andus in (2), could, under the full
t — 0+ [22]. These estimates all lie quite closeltdla.  nonlinear RG flow, invalidate the perturbative Ginzburg
On the other hand, the values ©f prove very sensitive analysis. Higher-order gradient terms iH; gy, espe-
to the approximations, ranging from 0.33 to 2.4 (evencially if negative as arguments of Nabutovskti al. [24]
discounting the HC/bcc value). Sincg ~ bS [see (6)], suggest, might, instead, bring RPM criticality within the
a strong dependence anis not surprising; but one might crossover domain of some multicritical point [5]. The fact
have hoped for better agreement among the approximathat the crossovers seen experimentally are much sharper
methods. Nonetheless, we may conclude that 10°°3  than standard [25] (taking place in a decade or less [3,26])
will characterize fluids that display only Ising behavior (or supports this view. To justify such a scenario, however,
“immediate” crossover). seems to demand a more sophisticated and quantitative

We may now assess the data given in Table Il for theRG analysis than normally feasible.
RPM. In addition torg and &, /a (in the second and Conversely, if the RPM itself does exhibib signifi-
last columns) it is instructive to examine the estimatesant crossovefrom classical behaviogs our analysis in-
for T* = kgT.Da/q* and p* = p.a®: These provide dicates,the anomalous experimental results [1,3] must be
a measure of the merit of the various approximationsascribed to one or more of the features lacking in the RPM
relative to the simulation data [10] which may be sum-that were listed initially [5—-7]. Some of these, like the
marized by10°T* = 5.2-5.6,10%pF = 2.3-3.5 [8(b)].  presence of short-range van der Waals or solvent-mediated
Although the LGW coefficients here are factors of 3—100attractions, including the breaking of the-, —) charge
smaller than for the SQWHC model, the rati§ /a re-  symmetry, can and will be incorporated in our formalism
mains of order unity [4] and is again fairly insensitive although, in truth, it is hard to see how they will signifi-
to the approximations: Those yielding’, p)) in the cantly alter the; values. Indeed, the experimental trends
simulation range suggesgt, = 0.80. For reference, the seem, as mentioned, to indicate thatalwaysincreases

TABLE I. Ginzburg crossover scaleg, and critical parameters predicted for a hard-core square-well fluid (réampfl5]. See
text for hard-core (HC) approximations and Ref. 16 for RPA.

HC A tc kgT./e pea’ ) m by/a & Ja
bcc 1.43 0.09, 1.48 0.433 2.023% 0.243; 0.550; 0.38;
2V 1.65, 1.62; 1.48 0.159 0.492 0.089 0.323, 0.46,

1.50 2.4% 1.13, 0.159 0.539 0.089 0.298, 0.40;
CS 1.55 0.28, 1.48 0.249 0.947, 0.113, 0.419, 0.43,
1.50 0.33 1.33, 0.249, 0.979% 0.113, 0.406; 0.41,
RPA 1.50 1.5 1.26; 0.245, 0.673% 0.112 0.333, 0.40;
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TABLE Il. Ginzburg crossover scaleg, and critical parameters predicted for the RPM at various levels of approximation [4,15]:
DH, pure Debye-Huckel [4,13]; GMSA [16]; DHBj, with naive ion pairing [5,8};DI with dipole-ionic fluid solvation (and
a, = a, a, = 1.16198a [8]); hard-core treatments /bcc/2V/CS, see text and [8]; Bith a new charging process [23].

Approx. tc 10°T? 10%p* Ked 10%p5. 10Z, 10%¢, 103uy by/a & /a
DH 12.9 6.25 0.49 1 0 0.90, 0.49, 0.10, 0.051; 0.73;
GMSA 1.05 7.85 1.44, 1.52, 0 0.84 1.61 0.33 0.095; 0.75
DHB] 12.9, 6.25 4.5% 1 2.0, 4.54, 41.01, 704.6 0.469 0.73;
+DI 5.36 5.74 2.77 1.12 1.10, 2.23 2.29% 153 0.113 0.75,
+DI/bcc 10.6, 5.54, 2.59, 1.02 1.06, 2.48, 2.22, 2.24 0.115 0.77,
+DI/2V 23.2 5.22; 2.44, 0.92, 1.04, 2.82; 217, 3.71 0.120 0.81,
+DI/CS 21.5, 5.24 2.45, 0.93, 1.04 2.79% 2.18 3.54 0.120, 0.81
+DI’ 1.2 5.96, 2.38, 1.06, 0.91, 1.68 1.77, 7.98, 0.122, 0.91,
+DI’/bcc 2.2 5.78, 214 0.97, 0.85, 1.87, 1.65; 10.24 0.1215 0.94;
+DI’/2V 4.3, 5.505 1.91, 0.87; 0.79, 213, 1.54, 14.08, 0.122 0.98;
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