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Persistence, Poisoning, and Autocorrelations in Dilute Coarsening
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We calculate the exact autocorrelation exponertind persistence exponefit and also amplitudes,
in the dilute limit of phase ordering for dimensiods= 2. In the Lifshitz-Slyozov-Wagner limit of
conserved order parameter dynamics we fing y,e, a universal constant times the volume fraction.
For autocorrelations) = 4 at intermediate times, with a late time crossoveite: d/2 + 2. We also
derive A and @ for globally conserved dynamics and relate these togthe «—state Potts model and
soap froths, proposing new poisoning exponents. [S0031-9007(97)04799-6]

PACS numbers: 64.60.Cn, 05.40.+j, 82.20.Mj

While much has been learned about the coarseningrevious studies of persistence for conserved coarsening
kinetics that follows a temperature quench from a singledynamics.
phase to a multiphase state [1], relatively little has In phase-ordering systems the autocorrelation func-
been established for certain recently introduced dynamicalon, A(, 1) = (¢ (r, 1) P (r, 1)) — {$)?*, decays asymp-
exponents. It is accepted that the characteristic lengttotically as A(z, 1) ~ [L(t;)/L(t,)]*, which definesA
scale of strongly correlated regions grows as a powefl,12]. For nonconserved scalar coarseniadias been
law in time, L ~ ¢'/¢, with universal z [1]. Most measured experimentally id = 2 [13] and calculated
nonconserved order parameter systems yield 2, and in d = 1 [14]. Approximate calculations and numerical
those with scalar conserved order parameter dynamiagsults have been obtained for varioesand d [15] in
yield z = 3, independendf the system dimensionality ~ the case ofjlobally conserved dynamics—i.e., a noncon-
or of conserved quantities such as the volume fractiorserved order parameter (henge= 2) subject to a con-
e of the minority phase. Consequently, persistence [2-straining field that maintains the total volume fraction of
11] and autocorrelation [12—17] exponents,and A, each phase.Locally conserved dynamics has been stud-
respectively, are being explored in the hope that theyed numerically in two [16,17] and three [17] dimensions,
contribute to a characteristic set of universal exponentand a formal asymptotic bound, = d/2 + 2, has been
analogous to those of equilibrium criticality. However, established by Yeung, Rao, and Desai (YRD) [16], but
fundamental questions remain about the universality obtherwise little theoretical progress has been made.
these new exponents, and even of the existence of power In this Letter, we study persistence and autocorrelations
laws in the relevant quantities. for both locally and globally conserved dynamics. We

The persistence expone#t introduced in the experi- focus on the asymptotic late stage regime which follows
mental study of breath figures [2], is defined by thea quench to a subcritical temperatdte< T, in the limit
power-law decayP (1, 1,) ~ t; ?, of the probability that of vanishing volume fractione — 0*. This is the limit
a stochastic variable has not crossed some threshold-ef the classic Lifshitz-Slyozov-Wagner (LSW) theory,
typically its mean—between the timesandz, [3]. We  which firmly established = 3 for dilute locally conserved
consider the persistence ofl@cal scalar order parameter coarsening [1,18]. We use the LSW theory in a similar
¢ (r,r) (rescaled so that in equilibriunp = *1), given  spirit to obtaind andA. A summary of our results follows.
by the fraction of the system that has not undergone phase For locally conserved dynamics we computdor all
change between andr, [4]. d = 2 and demonstrate that (i) the persistence decays as

In d = 1, 6 has been calculated exactly for the non-a power law,P(t;, 1) ~ (t;/12)?, (i) the exponent is a
conservedg-state Potts model [5] and has been showrfunction of the volume fraction, going as
to be universal by renormalization group methods in the 0 = yq€ 1)
Ising (¢ = 2) case [6]. In higher dimensions, studies have, I . . . .
focused on diffusion models [7], which exhibit nontrivial in the smalle limit, and (iii) y. is unlv_ersal in that it
values of@, and on related Gaussian approximations fordoes not depend on the surface tension, quench depth,

nonconserved ordering kinetics [7,8]. Far= 2, these Begr:)girsatupr\el, or r_:;Ob'“ty’ withy, = Ot.a9008, arldtﬁ -
approximate results compare well with simulations [9,10]" - Alarge expa?smn gives the asymplolic series

and with e>_<periments on twisted nematic liquid crystals ya = 3d/87| 1 + Z and™ + 0d* Y|, @
[11], an Ising analog. However, there have been no o]
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which is quite accurate id = 2,3 when truncated at =  to R?R = a,(R/R. — 1), where a; is a nonuniversal
3[19,20]. We also compute the ordet/? corrections to  constant [1] and the dot indicates a time derivative. Here
Q) ind = 3. R. = (;—1adt)1/3 ~ L is the critical radius, where drops

For the autocorrelation function we find = d as  shrink for R < R. and grow forR > R.. The density
e — 0™, with explicit universal expressions for both the n(R, 1) of droplets of sizeR at timer obeys a continuity
amplitudeand logarithmic corrections. We also present equation: = —dz(Rn), which leads to a scaling solution
a physical scaling argument that predicts a crossover tQ,(R, 1) = R.(t) ¢~ ' f4(R/R.), with
A= d/2 + 2 for any finite e, after r, = e~ ¥/4¢;, thus 5
satisfying the YRD bound [16]. falx) = eFqx”exd—d/G — 2x)] , (5)
Next we consider globally conserved (GC) dynamics, ' (3 + x)1F4d/9(3 — 2x)>+34/9
again in the smalk limit, and find 6 to have the same 4 fi=0 for x=3/2 [1,2627]

form (1), with a different universayg“. In particular, i ation” constant F, is determined by the volume
§C€ = 0.48797 andy5¢ = 0.62450. In larged : o “ d
Y2 : Y3 : : 9 fraction of the minority phasee = V, [, dx fa(x) x4,

y§€¢ = Vd2m[l — 3d7' + 2d 2 + 0(d73)], (3) Where Vy E_rrd/z_/l“(l + 3d) is the unit d-sphere
volume. This givesF, = 37.752 and F3; = 186.13,
which is highly accurate for al [20]. The larged  and the larget expansion V,F, = e92!/2+84/9 x
asymptote,0 = 0.40e+/d is similar to the approximate /27477 [1 + >*_ and™" + 0(d~*")] [19]. The
. 1 m= _m .
resulté = 0.15+/d obtained at = 5 [7] (where the GC total number density of drops can be shown to be
dynamics is equivalent to nonconserved). The autocorre;(y) = eF, /(4d3%e?/3) [R.(1)] 7.

lation exponent is\ = d [15], with no crossover expected  The droplet growth equation can be written in terms of
at late times. We also find universal amplitudesiloga-  the scaled size = R/R.(t) as3tx’x = —(x + 3)(x —

rithmic corrections. . 2)2; wherex < 0 for all x = 0. This may be integrated
Finally we draw a connection between the above resultg, give the trajectory
for persistencén GC dynamics withpoisoning(defined L /s 2 s/
below) in soap froths. First, there is some evidence, fy = t(1 + 3031 — 50 exd2x/(3 — 2x)], (6)
mainly ind = 2, that soap froths have the same asymptoti
dynamics as the nonconserveéstate Potts model in the
g — o limit [21]. Second, the coarsening of tlestate
Potts model and that of GC dynamics with= 1/ were
shown to be equivalent ag — «, within a Gaussian x(r1) = %[1 - 8(t/t) + ---1, @)
approximation scheme [15]. However, the details of the 5 ]
topological rearrangements may be different between Pothere 8(t1/5) = 1/[In(c2/11) + 3InIn(zz/11)]. This
models and soap froths [21], and, further, while both Pottééading correction to"(tg)v related to the essential sin-
models and soap froths have vertices, GC systems do ndularity in f4(x) atx = 3, is universaland independent
Nevertheless, numerical studies found little differenceof x(2).
in A between the Potts and GC models [15], implying Using these LSW results, we can calcul&@e(z;, ),
that they may lie in the same dynamic universality classthe persistent or unpoisoned volume fraction of minority
Also, the Potts persistence exponent, which measures ti1ase, andP~(t;, 1), that of the majority phase. The
volume never visited by a wall, is given via the GC cor-total persistent volume® = P~ + P~ will decay with
respondence by = d/2 asq — « [22], consistent with the slower of the two unpoisoned fractions.
Potts simulations [9,23] and with experiments @nr= 2 Only droplets that have survived to time contribute
soap froths [24]. To further explore these analogies, w0 P~, the unpoisonedninority phase, and their density
define a new set gboisoningexponent¥s that give the decays asn ~ R, ¢ ~ tz_d/3, using the notationr; =
decay of volume that has never been visited by any oR.(z;). The density of droplets that have survived and
a set of phases that occupy ®@tal volume fractionX. aresmalleratt, than they were at; is
This poisoning should provide a more delicate test of the (11 /1)
underlying dynamics than autocorrelations or persistence Rz_df dx fa(x) ~ Ry473 ~ 1 /3 1, (8)
and may be directly explored via simulations of Potts 0
models and experiments on foams [25]. By use of thayvhere we have used the smalbehaviorf,(x) ~ x2 for
GC correspondence we obtain, br< 1, t» > t; andR, ~ 1'/3. Hence, droplets that have shrunk
os = y5°3. (4) comprise a vanishing fraction of those surviving rat
so that no surviving droplets have been poisoned at time
t, > t;. ConsequentlyP< is asymptotically the number
density n(r,) times the volume at the initial time of
%hose largest droplet¥,[x(r;)R;]?. Usingx(t;) from (7),

The normal-

Swhich is parametrized by the time of complete evaporation
tr. From (6), we find an expansion fof < t, = t¢
which will prove to be useful:

We begin with the LSW theory, which applies to
widely separated drops of minority phase as— 0*.
This theory provides the only solution of a phase-orderin
system ind > 1 with topological defects—in this case
with domain walls. Drops of radiug evolve according P=(t1,10) = %eBd(tl/tz)d“[l —dé(t/n) + -], (9)
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where B, = F;V,/(24de?/?), with B, = 7.6115 and  droplet growth with the continuity equation, as in LSW,
B3 = 11.951, and the leading logarithmic corrections we find a scaling solution for the droplet densityR, 1) =
5(t1 /1) are universal. R;471fOC(R/R,), when R.(t) = (3a41)"/?, with the
The majority phase, with unpoisoned volume fraction distribution

P~, can only be poisoned by growing drops, i.e., those .gc, .  ,.gc —d—2
with R > R,. Since the drop positions are uncorrelated 74 () = eFy"x(2 = x)" " ex ~2d/(2 = 1)] (19)
in the dilute limit [18]—the key feature which makes for x < 2, and f; = 0 otherwise. The normalization
the LSW theory soluble—it follows that the unpoisonedcondition € = V, [5 dx x/f$¢(x), determines FSC,

regions must be uncorrelated as well, leading to with F§¥€ = 16961 and F5¢ = 120.29. A larged
3,P”(t1,1) = =0 ()P~ (11, 1) (10)  expansion yields the e)igsellent apgggoximatiUglFffc =
’ T 2d_/ ol 43, 1033 43 —4
where v () is the rate of encroachment by the minority ¢ 2d/m 1 3‘_1 _+GC288d 623920dfd+ 0(d™)]
phase. From the LSW theory we have The droplet density i8“ (1) = eF; (2¢)~“/d [20]. In-
Rmax _ tegrating the scaled growth equatidmyx = —(2 — x)2,
v(r) = [ dR V4R9:n(R,t) = V4R n(R., 1R, gives the trajectoryr; = 1 (1 — 3x)?exg2x/(2 — x)].
R. Hence, drops surviving to timg > r; have
11
(11) x(t) = 2[1 — 6%C(1, /1) + -], (16)

where the second equality comes from mass conservation ' _ _
of drops larger tharR.(1), i.e., 3, [>dxx?f,(x) =0. Where the leading correction is 89(n/n) =
Using R. = /3, we obtainy = V,f.(1)/(31) = eya/t 2/[In(z2/11) + 2InIn(s,/1;)].  The density of drops
where ' that are smaller at than atr; decays aR, ¢ 2, so these
are again negligible asymptotically. Consequently, the
ya = FyVa/(d1744/93,4) (12) g glg ymp y q y

autocorrelation functiod(z;, ;) = 4P<(t;,1,) is
is a universal constant. Combining (10) and the initial _GC dry _ 1 aGC
condition,P~(¢;,#;) = 1 — €, we find At 1) = €Bg (Ri/Ro)T1 = d67 (/1) + -],

P7(r,1) = (1 — €)[n /0], (13) o)

so P~ indeed decays as a power law. Remarkably, thi%\/ith B = VdF[?_C/(ded),_givinngc = .3'60%?7'CB§;C =
result is valid for allt, > ¢, in the scaling regime, not just -3623. The leading logarithmic corrections (tn/12)

whent, > t;. As expectedP~ decays slower thaR~ , are universal. - - .

and soP (1, 12) ~ P> (1, 1,), leading to Eq. (1) fo. The calculation of majority poisoning and persistence
In order to deriveA from the persistence, it is con- goes through the s(?cme as bgfore, using (11) and (10),

venient to change field variables t¢ = (¢ + 1)/2 with th(le/gesqlte sk Th%gﬁferentgrowg;\:ef?donent

(with minority phasey — 1 and majorityy = 0), giv-  Ke ~ 17 QIVes yg= = Vaufq (1)/2 = VaFg~e™™/2.

ing () = e and the autocorrelation functiof(z;, 1,) = The resultis (3).

_ ; " Up to this point, calculations of, say,(x) have been

4 (r,t1)(r, 1)) — €*]. The two-time average is then : .

the probability of finding a given point inside minority for the leading0O(e) term, for Wh'Ch the drops may be
droplets at bothy, and 7. The contribution from un- regarded as uncorrelated. Higher order effects such as

poisoned regions is exactl§=(1,, 7,), whereas poisoned droplet coIIisior_ls an_d diffusion-mediated inter_a_lctions will
regions that find themselves in a droplet agaim,aton- lead to correl_atlons in the_ dro_p SIZ€s and positions. HOV_V'
tribute[e — P=(11, ). To leading order ire, ever, screening of the 3d;ffusmn flgld has been shown in
p d = 3 to contributeO(e3/2) corrections foruncorrelated

A(tr, 12) = €Ba(Ri/Ro)[1 = d6(t1/12) +---], (14)  drops [27-29], which is thus believed to represent the
giving A = 4 in the dilute limit (this was noted before in leading correction to LSW theory, with correlations com-
the GC case [15]). This exponent depends solely on thing in only atO(e?) [28]. Note that with GC dynamics
existence of a scaling distribution of uncorrelated dropsthere is no diffusion field, hence the leading corrections,
in the LSW limit the details of the drop distribution and due to collisions, are expected to be@fe?).
evolution serve only to determine the universal amplitude With our existing machinery, then, we can compute the
and leading logarithmic corrections. leading corrections to the LSW exponents. Since drops

We expect (14) to hold forR, much less than the are uncorrelated t®(e*?), A = d remains unchanged.
drop separation at;, R, ~ ¢ '/YR,. Fore — 0" this However, the distribution function ig;(x) = f3(x)[1 +
is forever. Below we discuse > 0, where the drop €G3 + g:(0)}H] + O(€?), with
separation is finite and correlations must be considered. 3+ x 14 64x — 87

We turn now to globally conserved dynamics, where the 83(x) = bo|:2In( 3 ) 13T 13 - o :|

. . . 5 — X X (3 2.X)

analog of LSW theory was given by Sire and Majumdar 2 (18)
[15]. Droplet growth followsR = a4[1/R.(t) — 1/R],
where R.(r) represents a time-dependent applied fieldwhere by = %w/ng/e = 1.6297, and we have main-
tuned to maintain the volume fractian Combining the tained x = R/R. [20]. The normalization condition
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