Late Stage Coarsening: Theoretical and Computational Developments

> Ben Vollmayr-Lee Department of Physics Bucknell University

Materials Research Laboratory, UCSB May 14, 2003

Coarsening Introduction

- Late Stage Scaling and Universality
- Simulation of Cahn-Hilliard Equation
 - ◊ Eyre's Theorem and von Neumann Stability
 - ♦ Accuracy Requirements

Phase Separation Dynamics

Two-phase systems:

- binary alloys
- polymer blends
- uniaxial magnets
- binary fluids

 T_f

 T_i

Rapid temperature quench leads to . . .

... nearly equilibrated domains separated by thin interface

$F-F_{eq} \propto$ amount of interface

 $\dot{F} < 0 \Rightarrow$ reduction of interface \Rightarrow coarsening!

Sharp Interfaces: interface width $\xi(T)$ constant, so domain size $L(t) \gg \xi$ asymptotically

Self-Similarity: correlation function $C(\mathbf{r}, t) = f(\mathbf{r}/L(t))$

Power-law Growth: $L \sim A t^{1/3}$ and Universality!

• Coarsening Introduction

- Late Stage Scaling and Universality
- Simulation of Cahn-Hilliard Equation
 - ◊ Eyre's Theorem and von Neumann Stability
 - ♦ Accuracy Requirements

• Order parameter conserved: $\partial_t \phi = -\nabla \cdot \mathbf{j}_{\phi}$

- Order parameter conserved: $\partial_t \phi = -\nabla \cdot \mathbf{j}_{\phi}$
- current (asymptotic): $\mathbf{j}_{\phi} = -M(\phi)\nabla\mu$

- Order parameter conserved: $\partial_t \phi = -\nabla \cdot \mathbf{j}_{\phi}$
- current (asymptotic): $\mathbf{j}_{\phi} = -M(\phi) \nabla \mu$
- chemical potential $\mu(\mathbf{x}) = \frac{\delta F}{\delta \mu(\mathbf{x})}$
- Free energy: $F = \int d^d x \left\{ \frac{1}{2} \kappa (\nabla \phi)^2 + V(\phi) \right\}$

- Order parameter conserved: $\partial_t \phi = -\nabla \cdot \mathbf{j}_{\phi}$
- current (asymptotic): $\mathbf{j}_{\phi} = -M(\phi) \nabla \mu$
- chemical potential $\mu(\mathbf{x}) = \frac{\delta F}{\delta \mu(\mathbf{x})}$
- Free energy: $F = \int d^d x \left\{ \frac{1}{2} \kappa (\nabla \phi)^2 + V(\phi) \right\}$

 \Rightarrow Cahn-Hilliard eq: $\partial_t \phi = \nabla^2 [V'(\phi) - \nabla^2 \phi]$

$$\mu = V'(\phi) - \nabla^2 \phi = 0 \implies \phi(z) \sim \tanh(z/2\xi)$$

plug into $F[\phi]$ to find surface tension σ .

$$\mu = V'(\phi) - \nabla^2 \phi = 0 \implies \phi(z) \sim \tanh(z/2\xi)$$

plug into $F[\phi]$ to find surface tension σ .

In bulk, near equilibrium

$$\mu \approx V''(\phi_{eq})(\phi - \phi_{eq})$$
$$\partial_t \phi = \nabla^2 \mu \Rightarrow$$

$$\mu = V'(\phi) - \nabla^2 \phi = 0 \implies \phi(z) \sim \tanh(z/2\xi)$$

plug into $F[\phi]$ to find surface tension σ .

In bulk, near equilibrium

 $\mu \approx V''(\phi_{eq})(\phi - \phi_{eq})$ $\partial_t \phi = \nabla^2 \mu \implies \text{diffusion: } \partial_t \mu = D \nabla^2 \mu$

$$\mu = V'(\phi) - \nabla^2 \phi = 0 \implies \phi(z) \sim \tanh(z/2\xi)$$

plug into $F[\phi]$ to find surface tension σ .

In bulk, near equilibrium

$$\mu \approx V''(\phi_{eq})(\phi - \phi_{eq})$$
$$\partial_t \phi = \nabla^2 \mu \Rightarrow \text{ diffusion: } \partial_t \mu = D \nabla^2 \mu$$

Near interfaces $\mu \sim \kappa$

Gibbs-Thomson:
$$\mu(\mathbf{x}) = \frac{\sigma}{\Delta \phi_{eq}} \kappa(\mathbf{x})$$

Interface dynamics

- Gibbs-Thomson gives μ at the interface
- quasistatic: $\nabla^2 \mu = 0$ gives $\mu(\mathbf{x})$ everywhere!
- interface velocity: $v(\mathbf{x}) \sim [\hat{\mathbf{n}} \cdot \nabla \mu]$

Assume scaling with domain size \boldsymbol{L}

- $\mu \sim \kappa \sim 1/L$ so $\mu(\mathbf{x}) \sim 1/L$ everywhere
- $\mathbf{j} = \nabla \mu \sim 1/L^2$
- $\dot{L} \sim v = [\hat{\mathbf{n}} \cdot \mathbf{j}]$

Assume scaling with domain size \boldsymbol{L}

• $\mu \sim \kappa \sim 1/L$ so $\mu(\mathbf{x}) \sim 1/L$ everywhere

•
$$\mathbf{j} = \nabla \mu \sim 1/L^2$$

•
$$\dot{L} \sim v = [\hat{\mathbf{n}} \cdot \mathbf{j}] \sim 1/L^2$$

• implies $L \sim t^{1/3}$ growth law

Universality: assume asymptotic domain wall trajectories determine asymptotic structure

Implies $C(\mathbf{r},t) = f(\mathbf{r}/L)$ depends on

- volume fraction
- dimension of system

Universality: assume asymptotic domain wall trajectories determine asymptotic structure

Implies $C(\mathbf{r},t) = f(\mathbf{r}/L)$ depends on

- volume fraction
- dimension of system
- surface tension anisotropy $\sigma(\hat{\mathbf{n}})/\sigma_0$
- ratio of equilibrium mobilities: $M(\phi_1)/M(\phi_2)$
- and nothing else! Needs to be tested . . .

- Coarsening Introduction
- Late Stage Scaling and Universality
- Simulation of Cahn-Hilliard Equation
 - ◊ Eyre's Theorem and von Neumann Stability
 - ♦ Accuracy Requirements

Cahn-Hilliard simulation [Rogers, Elder, Desai '88]: Take $V(\phi) = (1 - \phi^2)^2$ and use Euler step

$$\phi_{t+\Delta t} = \phi_t + \Delta t \nabla^2 \mu_t$$

but this has a lattice instability for $\Delta t \geq {\rm const.} \ \Delta x^4$

Severely constrains simulations

while $v \sim 1/L^2 \sim 1/t^{2/3}$, Δt remains fixed

If simulation were accuracy limited instead of stability limited:

A fixed number of steps to resolve passing of interface gives $\Delta t \sim 1/v \sim t^{2/3}$

If simulation were accuracy limited instead of stability limited:

A fixed number of steps to resolve passing of interface gives $\Delta t \sim 1/v \sim t^{2/3}$

$$\Delta t = rac{dt}{dn} \sim t^{2/3} \, \Rightarrow \, t \sim n^3$$
 rather than $t \sim n$

- Coarsening Introduction
- Late Stage Scaling and Universality
- Simulation of Cahn-Hilliard Equation
 - ◊ Eyre's Theorem and von Neumann Stability
 - ♦ Accuracy Requirements

Eyre's Theorem ['98] proves stable steps exist. Split $F = F^C + F^E$ and use e.o.m.

$$\phi_{t+\Delta t} - \Delta t \nabla^2 \mu_{t+\Delta t}^C = \phi_t + \Delta t \nabla^2 \mu_t^E$$

Eyre's Theorem ['98] proves stable steps exist. Split $F = F^C + F^E$ and use e.o.m.

$$\phi_{t+\Delta t} - \Delta t \nabla^2 \mu_{t+\Delta t}^C = \phi_t + \Delta t \nabla^2 \mu_t^E$$

Necessary splitting conditions: for curvature matrix $M_{ij} = \frac{\delta^2 F}{\delta \phi_i \delta \phi_j}$ and similarly M^E and M^C

- M^C must have strictly non-negative eigenvalues
- M^E must have strictly non-positive eigenvalues

•
$$\lambda_{max}^E \leq \frac{1}{2}\lambda_{min}$$

von Neumann Stability [BV-L and Rutenberg, in prep] Start with CH eq: $\dot{\phi} = -\nabla^2 \phi - \nabla^4 \phi - \nabla^2 \phi^3$ Take $\phi(\mathbf{x}) = c + \eta(\mathbf{x})$ and linearize CH equation Write general splitting in Fourier space:

$$[1 + \mathcal{L}_{\mathbf{k}}\Delta t]\eta_{t+\Delta t} = [1 + \mathcal{R}_{\mathbf{k}}\Delta t]\eta_t$$

vN stability for all Δt requires $\mathcal{L}_{\mathbf{k}} > |\mathcal{R}_{\mathbf{k}}|$

Example: consider splitting with r.h.s.:

$$\phi_t - a_1 \Delta t \nabla^2 \phi_t - a_2 \Delta t \nabla^4 \phi_t + \Delta t \nabla^2 \phi_t^3$$

where $a_1 = a_2 = 1$ implies the Euler step.

- Coarsening Introduction
- Late Stage Scaling and Universality
- Simulation of Cahn-Hilliard Equation
 - ◊ Eyre's Theorem and von Neumann Stability
 - ♦ Accuracy Requirements

Great news! Stable steps are possible, so $\Delta t \sim t^{2/3}$.

Use adaptive step-size . . .

Great news! Stable steps are possible, so $\Delta t \sim t^{2/3}$. Use adaptive step-size . . . find $\Delta t^{1/3}$. Drat! What's going on? Great news! Stable steps are possible, so $\Delta t \sim t^{2/3}$. Use adaptive step-size . . . find $\Delta t^{1/3}$. Drat! What's going on?

Exact step:

$$\phi_{t+\Delta t} = \phi_t + \Delta t \nabla^2 \mu_t + \frac{\Delta t^2}{2!} \nabla^2 \dot{\mu}_t + \frac{\Delta t^3}{2!} \nabla^2 \ddot{\mu}_t + \dots$$

For $\Delta t \sim t^{2/3}$ we need $O(\Delta t^n)$ coefficient to decay sufficiently fast.

Can show $\partial_t^n \phi = \partial_t^{n-1} \nabla^2 \mu \sim t^{-2n/3}$ at interface

- If splitting gives terms proportional to $\partial_t^{n-1} \nabla^2 \mu$ at order $O(\Delta t^n)$, we're okay
- If not, then at some order $O(\Delta t^p),$ the error terms no longer decay as fast
- This is rate limiting and gives $\Delta t \sim t^{2(p-1)/3p}$
- Eyre/vN give p=2, so $\Delta t \sim t^{1/3}$

Summary

- New predictions for coarsening universality classes
- Stable numerical methods available (may have more general application)
- More improvement possible, going to $p=3,4\ldots$