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Phase Separation Dynamics

Two-phase systems:

AT .-I-i

e binary alloys

e polymer blends T
e uniaxial magnets | | | X

e binary fluids cH

Rapid temperature quench leads to . . .



.. nearly equilibrated domains separated by thin
interface

F — F,, o< amount of interface

F < 0 = reduction of interface = coarsening!



Sharp Interfaces: interface width £('T") constant, so
domain size L(t) > £ asymptotically

Self-Similarity: correlation function

C(r,t) = f(r/L(t))

Power-law Growth: L ~ AtY/3 and Universality!
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Theoretical Picture
o Order parameter conserved: 0:¢ = =V - jg4

e current (asymptotic): jo = —M(¢)Vu

o chemical potential p(x) = <2£-

— dpu(x)
o Free energy: F = [d% {3k(V@)? + V() }

— Cahn-Hilliard eq: 8,6 = V2[V'(¢) — V2|



Equilibrium interface
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Equilibrium interface
=V'(¢) = V2% =0 = ¢(z) ~ tanh(z/2¢)
plug into F'|¢] to find surface tension o.
In bulk, near equilibrium
= Vi (deg) (9 = feq)
Oy = V*u = diffusion: dyu = DV?p
Near interfaces yu ~ Kk

Gibbs-Thomson: u(x) =

Ageq’f(x)



Interface dynamics

/\)<\L\ MK

_ Yu=0

O

e Gibbs-Thomson gives i1 at the interface
e quasistatic: V?u = 0 gives u(x) everywhere!

e interface velocity: v(x) ~ [n -Vl



Assume scaling with domain size L
o u~#krn~1/Lso u(x)~ 1/L everywhere
e j=Vu~1/L?

A

o LN’U:[n-j]



Assume scaling with domain size L

o u~#krn~1/Lso u(x)~ 1/L everywhere
e j=Vu~1/L?

o L~v=[n-j]~1/L?

o implies L ~ t'/3 growth law



Universality: assume asymptotic domain wall
trajectories determine asymptotic structure
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Universality: assume asymptotic domain wall
trajectories determine asymptotic structure

Implies C'(r,t) = f(r/L) depends on

volume fraction
dimension of system
surface tension anisotropy o(n)/oy

ratio of equilibrium mobilities: M (1) /M (o)

and nothing else! Needs to be tested . . .
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Cahn-Hilliard simulation [Rogers, Elder, Desai '88]:

Take V(¢) = (1 — ¢?)? and use Euler step

Qr+nt = Pt + AtVQMt

but this has a lattice instability for
At > const. Ax?

Severely constrains simulations

while v ~ 1/L% ~ 1/t?/3, At remains fixed



If simulation were accuracy limited instead of
stability limited:
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A fixed number of steps to resolve passing of
interface gives At ~ 1/v ~ t%/3



If simulation were accuracy limited instead of
stability limited:

to —

Brich ﬁ A rich
>

X

A fixed number of steps to resolve passing of
interface gives At ~ 1/v ~ t%/3

At:j—zth/S = t ~ n? rather than t ~ n
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Eyre's Theorem ['98] proves stable steps exist.

Split F' = F© + F* and use e.o.m.
Srinr — AtV gy n, = b + ALV

Necessary splitting conditions: for curvature matrix
M;; and similarly M* and M¢

5925@59153

o MY must have strictly non-negative eigenvalues

o M?* must have strictly non-positive eigenvalues

E 1y
¢ )\ma:v — 2)\77?»277»



von Neumann Stability [BV-L and Rutenberg, in prep]
Start with CH eq: ¢ = —V2¢ — Vip — V2
Take ¢(x) = ¢+ n(x) and linearize CH equation

Write general splitting in Fourier space:

1+ LxAt|neiar = [1 + RiAt]ny

vN stability for all At requires £y > |Ry]



Example: consider splitting with r.h.s.:

b — I AtV — as AtV ¢y + AtV ¢?

where a; = a9 = 1 implies the Euler step.
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Great news! Stable steps are possible, so At ~ t2/3.

Use adaptive step-size . . .
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Great news! Stable steps are possible, so At ~ t2/3.

Use adaptive step-size . . . find At!/3. Drat! What's
going on”’

Exact step:

At3
2!

At?

o Vi + ...

Grine = G + AtV 1y A V21

For At ~ t?/? we need O(At") coefficient to decay
sufficiently fast.



Can show 0'¢ = 07" V% ~ t=2"/3 at interface

o If splitting gives terms proportional to 0/ 'V?u
at order O(At"), we're okay

e If not, then at some order O(At?), the error
terms no longer decay as fast

e This is rate limiting and gives At ~ ¢2(P~1)/3p

o Eyre/vN give p =2, so At ~ t1/3



Summary

e New predictions for coarsening universality
classes

e Stable numerical methods available (may have
more general application)

e More improvement possible, going to p = 3,4...



